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Prediction of drug-target interactions with 3D structure
information of target binding sites
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Abstract: Predicting drug-target interactions is an important step for drug design. Previous method to compare tar-
get pairwise similarities by comparing amino acid sequences is effective but containing limitation when dealing with
remote homology sequences. Using 3D structure information is better since protein structures often decide the func-
tions and the interaction modes of drug-target pairs. However, difficulties on getting 3D structures of target proteins
make it tough to extract and analyze the binding site structures from the target protein structures. Moreover, rather
than the whole structure, the binding site structure of a target decides more on the drugs it interacts with according
to the hypothesis that targets with similar binding sites are easier to interact with the same drug. Thus, our approach
applied target binding site similarities to represent target pairwise similarities by using homology search to get the 3D
structures as well as extracting and comparing the binding sites structures. Finally, our method improved prediction

accuracy compared with previous methods.
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1. Introduction

Predicting drug-target interactions is an important part that
helps new drug discovery. In addition, under the limited exper-
imental environment, the rate of successful new drug develop-
ment has decreased year by year, which makes it important to
make use of existing or abandoned drugs (drug repositioning).
Traditional human-depended method for selecting drug-target in-
teractions is quite manpower-consuming and expensive, whereas
using computer-aided methods will avoid experimental errors and
give a series of scientific predictions. Moreover, the demand on
dealing with huge amount of interaction data in a short time also
leads to the trend of using computer-aided methods. Usually,
computer-aided methods predict the interactions by analyzing the
inner relationship between drug compounds and target proteins
by catching characteristics based on the chemical functions or
structure information with machine learning algorithms.

Nowadays, a number of computational methods are developed
for making drug-target interaction predictions, which can be di-
vided into network-based and machine learning-based methods.
Network is an effective tool to predict possible drug-target associ-
ations. Cheng et al. [1] inferred drugtarget interactions based on
the topology of the known interaction network with the drug sim-
ilarity (DBSI), target similarity (TBSI) and network-based sim-
ilarity (NBI) separately. Different from this, Chen et al. [2]
applied network-based random walk with restart on a heteroge-
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neous network (NRWRH). For machine learning methods, in the
approach of Yamanishi et al. [3], they proposed a supervised bi-
partite graph learning approach by mapping the chemical space
and the geometric space into a unified space and making use of
the concept that interacting drugs and targets are close to each
other while non-interacting drugs and targets are far away from
each other. The probability of interaction is then calculated to
express how close a pair of drug-target is in the mapping space.
Bleakley and Yamanishi [4] further proposed a new supervised
method, bipartite local model (BLM) by combining drug-based
and target-based predictions so that transformed edge prediction
problems into binary classification problems. In these supervised
learning method, drug-target pairs are labeled as positive or neg-
ative samples according to whether the interactions between the
drug and target have been confirmed or not. Therefore, some of
the pairs that have not yet been confirmed will be regarded as
negative samples, which will actually decrease the predictive ac-
curacy. Instead, Xia et al. [5] applied a semi-supervised approach
for local model learning and made improvements based on BLM
method. Mei et al. [6] presented an improved version of BLM
with neighbor-based interaction-profile inferring (BLMNII) that
made it possible to provide a reasonable prediction for drug/target
candidates that are currently new. Different from weighted pro-
file methods, the interactions are used as label information to train
the local model instead of being used directly in the final step to
predict the interaction probability.

Besides developing the statistical and machine learning meth-
ods, enriching the data is another way to help with the prediction.
For predicting the drug-target interactions, drug similarities, tar-
get similarities and known drug-target interactions are used as in-
put data. The difficulty on selecting negative samples when using
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supervised machine learning algorithms comes from the blank of
confirmed known drug-target interactions. To solve this prob-
lem, Shi et al. [7] thought of a concept of super-target to clus-
ter similar targets following the concept, if a drug can interact
with a target, it can interact with the super-target group contain-
ing that target. Using this approach, the method performanced
better than previous methods. To calculate drug similarities, Ya-
manishi et al. [3] integrated the chemical structure information
of compounds. Campillos et al. [8] calculated the similarities
based on drug side-effect with 1018 drug side-effect relations and
746 market drugs.Shi et al. [7] incorporated a score based on
the Anatomical Therapeutic Chemical (ATC) Classification Sys-
tem. To compare targets, Shi et al. [7] also introduced functional
categories (FCs) with classified chemical reactions catalyzed by
targets or the annotating functions of protein-coding genes while
most of other researches calculated target protein similarities by
calculating amino acid sequence similarities by Smith-Waterman
algorithm [9].

However, it is estimated that around 60% of drug discovery
projects fail because the target proteins are finally found to be not
druggable. Therefore, understanding how a target protein works
when interacting with a drug at the beginning will help to de-
crease the risk of predicting undruggable targets. When calcu-
lating the target protein similarities, it has limitation by calculat-
ing the amino acid sequence similarities rather than comparing
3D structures. Meanwhile, using the amino acid sequence simi-
larities may involve the sequences that are remote homology se-
quences, which means that they are from different parts of the
same protein with the same structure. Since not all residues on
the protein surface participate in the interactions, instead there
are specific locations that are known as binding sites for the inter-
actions to happen. Those remote homology sequences may share
the same binding sites when interacting with similar drugs. Thus,
just calculating the amino acid sequence similarity is not suffi-
cient to compare target protein similarities. Therefore, introduc-
ing binding sites similarity is crucial for improving the successful
rate of drug-target interaction prediction. This point was also re-
viewed by Haupt and Schroeder [10].

Since similar drug compounds bind to similar target binding
sites, the function and structure characteristics will be considered
when extracting the binding sites. Methods for extracting binding
sites are divided into geometric methods [11],[12],[13],[14],[15],
and energy calculation methods [16],[17]. Geometric methods
by analyzing the surface of the protein are more suitable for ex-
tracting binding sites from the target protein structures. Differ-
ences among those geometric methods are based on detection al-
gorithms. For example, POCKET [11] and LIGSITE [13] search
for protein-solvent-protein (PSP) events to represent the pockets
along with both sides. SURFNET [12] marks the gap spheres be-
tween atoms and reduces the radii until no atom can intersect into
and then retains the spheres with a bigger radius. FPOCKET [14]
is based on voronoi tessellation and alpha spheres of the Qhull.

In this research, we calculated target protein binding site sim-
ilarities considering chain information as well as other statistic
values combining with the protein sequence similarity to avoid
influence of tiny binding sites or incorrect binding sites. With our
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approach, the remote homology sequences will be calculated as
the same binding site structure. In addition, those proteins that
with similar sequences but actually share different binding sites
can be picked out to decrease their influence. We tested our cor-
rected dataset and new similarity definition on state of the current
algorithm. The results showed using our method to calculate tar-
get similarity will help to increase the accuracy, especially on ion
channel group. This increase on precision is important in drug-
target prediction that related to peoples health.

2. Methods

To predict the unknown drug-target interaction pairs, the drug
and target pairwise similarities as well as known interaction data
are used as input of machine learning algorithm. To calculate the
target similarity, we introduced binding site similarity. There are
three steps for calculating the binding site similarities: search-
ing 3D structures, extracting binding sites and comparing bind-
ing sites structures. The target proteins are originally noted with
KEGG [18] ID and can be achieved with amino acid sequences
from KEGG website. 3D structures are then calculated using
these sequences by homology search and selected based on each
protein with chain information. Binding sites structures are then
extracted and interpreted into fingerprints and calculated with
similarities. However, due to the size of binding sites, the calcu-
lation of similarity between small binding sites is not sufficient.
Thus, previous sequence similarity is also considered to decrease
the influence of this.

2.1 Search 3D structures

Using a series of amino acid sequence can definitely describe
a unique protein, but it will cause problem when comparing the
function or protein features between two sequences since both of
the sequences may be a part of the same protein, which are known
as homology sequences. To get avoid of this, we implemented
homology search to the sequences by blast [19] at the beginning.
Possible 3D structures of the sequence are ranked with statistic
values (E-value, expect) and some values are used to describe the
match degree (scores, identities, positives, gaps). Those homol-
ogy sequences will return the same protein structure and the dif-
ference between homology sequences may exist on chain. Con-
sidering the chain information as well as the statistic values, the
most possible 3D structure of the sequence is selected for further-
ing to extract the binding sites. Additionally, the protein struc-
ture similarities are also compared to confirm the structures we
achieve match the original amino acid sequence.

2.2 Extract binding sites

Since not the whole structure of the protein will get involved
in the interaction procedure, comparing the whole structure sim-
ilarity is not accurate. Binding sites, with specific structure fea-
tures to specific compounds, are more suitable to be compared to
calculate the similarities between targets. Comparing the current
methods for extracting binding sites structures, FPOCKET is the
most practical method showing good performance by considering
the geometric features. More importantly, it analyzes the drugga-
bility score which is one of the key elements that we referred
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when selecting the possible binding sites.

2.3 Compare binding sites structures

Usually it is necessary to find a way to represent the 3D struc-
tures before comparing binding site structures. A typical method
is to describe the 3D structures with C, and Cg atoms. However,
when the binding sites are focus on a single chain, the size of
them will be too small to find enough atoms. Fuzcav [20] which
represents a binding site structure with a 11-dimensional vector
with O or 1 value in each bit of fingerprint, is chosen in our re-
search. Following similarity calculation rule given in the original
method we calculate the similarities of our protein datasets.

a
sim(4, B) = min(nzA, nzB) 0
As equation 1 shows: a is the number of common non-null

counts in both fingerprints and nzA and nzB are the numbers of

non-null counts in fingerprints A and B, respectively. With this
method, it can calculate the similarities between two binding sites
efficiently.

2.4 Datasets

The datasets used in our research are same with those in
the research by Yamanishi et.al (2008). The datasets contain
four groups of protein targets, which are enzyme, ion chan-
nel, G-protein-coupled receptor(GPCR) and nuclear receptor.
Each group contains the drug compounds similarities considering
chemical functions calculated by SIMCOMP and protein amino
acid sequences similarities calculated by Smith-Waterman (SW)
algorithm as well as the known drug-target interactions. In our
research, we calculate the target protein similarities by calculat-
ing the binding site similarities following the three steps above.
However, since the shortage of 3D structure information, there
will be some target proteins that cannot achieve binding sites in-
formation. Moreover, there will be some binding sites that are
too small to calculate the fingerprints. To simply compare the
achievement of using binding site structures, in this research, we
just remove those protein that cannot achieve binding site similar-
ities from the original datasets. Table 1 shows the components of
each group of datasets with the number of drugs (V,), the number
of targets (N,) and the number of drug-target interactions (Ny—;).

Table 1 Data components of each target group

Dataset Enzyme ITon channel GPCR Nuclear receptor
Ny 445 210 223 54

N; 419 122 71 24

Ny 186455 25620 15833 1296

The detailed datasets information with some statistic values de-
scribing the characteristics of each data group is shown in table 2.
Regarding the results of the interactions, some of them are proved
active (positive) drug-target interactions (N,_g;) and others are un-
known (negative) interactions (N,_s) , which will further be used
as positive and negative label in machine learning algorithms.
From the interaction data, we can find the number of negative
interactions are far more than positive ones. Those negative in-
teractions contain not only the true negative interactions but also
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the temporarily unknown interactions which will be clearly de-
fined with the development of wet experiments. Number of drugs
that interact with no target (N,_o,) and only one target (N,_1;) as
well as number of targets that interact with no drug (N,_¢4) and
only one drug (N,-14) are also counted. From these values, it can
be found that active interactions take a tiny part, which is less
than 0.05%. The small value of N, indicates there is a great
space and significance for us to find out the interactions of those
drugs with currently unknown disease target proteins. Ny_j; is
smaller than N,_;4, which proves that there exist some targets that
interact with more than one drug, which also satisfies with the
hypothesis that similar drugs can interact with the same protein.
Therefore, finding out the target’s properties which interacts with
several drugs will help us to interprete the interaction between
drugs and targets and help to find out unknown drugs with exist-
ing proteins.

Table 2  Statistics of each target group

Dataset Enzyme Ion channel GPCR Nuclear receptor
Np_ar 2056 998 445 71

Nu_ar 184399 24622 15388 1219

Na-or 36 40 47 6

Ny_1; 231 64 87 38

Ni—oa 0 0 0 0

Ni—1q 173 10 26 8

Sparsity 0.989 0.961 0.9719 0.9406

The targets chosen for this research were processed from
amino acid sequences to binding site fingerprints and then de-
scribed with similarities. The details of data percentages in each
step are shown in figure 1. It is shown that almost all of the se-
quences can be achieved with 3D structures, those with no 3D
structures (the red part) takes less than 2% of the total. Mean-
while, among the 3D structures, a part of them do not have bind-
ing sites on specific chain (the yellow part). The lost data (the red
and yellow part) in this research is just removed from the original
dataset for comparing, but this can be improved with some statis-
tic strategies in the future. Protein with fingerprints to describe
their binding sites will be used by calculating the similarities that
later used with other input data to make predictions.

Enzyme lon
channel

GPCR Nuclear
receptor

with fingerprints
‘no fingerprints

no binding sites
‘no 3D structures

Fig. 1 Data distribution at each step for calculating the binding sites simi-
larities
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To decrease the influence of remote homology sequences and
introduce the structure information, especially the binding site
structures of target proteins, we proposed a method that used
binding site similarities instead of protein sequence similarities.
We further implemented our new pairwise similarities of targets
on the current method to compare the results.

3. Results

To evaluate the prediction results based on different methods
of calculating the similarities of targets, we adopted the same
datasets of pairwise drug similarities and known drug-target in-
teractions, the same procedure and assessment as those used in
BLMNII [6]. We adopted 10-fold cross validation(10-CV) as the
testing strategy in which targets in each dataset were split into 10
subsets of equal size, and 1 subset was used as testing set while
the remaining 9 subsets were used as the training set. In each trail
of cross validation, 1/9 targets were taken as testing targets, using
interactions with known drugs that were labeled as positive while
unknown drugs that were labeled as negative testing instances re-
spectively. We then repeated the above procedure 10 times and
evaluated the method on four groups of datasets. After that, Re-
ceiver Operator Characteristic (ROC) curve and Precision-Recall
(PR) curve were used to describe the performance, and the area
under each curve with values (AUC and AUPR respectively) was
also calculated. Usually, the method that achieves bigger AUC
and AUPR values performance better. However, in drug-target
interaction predictions, since the imbalance of the positive and
negative data as well as the limitation of the datasets, AUPR will
be more important which will decrease the influence of false pos-
itive data. Table 3 shows the AUC while table 4 presents the
AUPR comparing our proposed method with the baseline method.

From the result values, our method of calculating the similar-
ities of binding sites show good effectiveness on AUPR values
than previous methods. Due to the limitation of the known in-
teraction data, the AUPR value is more helpful on drug-target
interaction predictions since it pays more attention on the true
positive predicted drug-target pairs. In addition, future works on
filling the blank data or introducing more information will help
to increase the AUPR and even AUC.

Table 3 Comparison of AUC values among four groups of targets

Dataset Enzyme Ton GPCR Nuclear
channel receptor

Proposed 0.93 0.96 0.89 0.86

Baseline 0.93 0.94 0.92 0.86

Table 4 Comparison of AUPR values among four groups of targets

Dataset Enzyme Ton GPCR Nuclear
channel receptor

Proposed 0.50 0.61 0.28 0.48

Baseline 0.46 0.44 0.27 0.49

4. Discussion

4.1 Detailed analysis based on ROC curves
Our method showed good performance on ion channel group
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with improving both of AUC and AUPR value. Although on
other groups of data, our methods didn’t show an increase in AUC
value, the ROC curves also gave us some inspirations on the im-
provement. With more interactions were predicted, noise data
caused by incorrect similarities or non-zero values will cause the
increase of TPR and decrease of FPR. From the ROC curve of
Enzyme group in figure 4, when making enough predictions, our
method’s performance is better than the previous one. Thus, we
can infer that when dealing with bigger size datasets, calculating
the binding site similarities will help on avoiding false positive
predictions. As figure 4 shows, there was some improvement in
ion channel group while a decrease in both GPCR and nuclear
receptor group.

Enzyme len channel

True Positive Rate
True Positive Rate

binding sites similarity (area = 0.96)
sequence similarity (area = 0.94)

binding sites similarity (area = 0.93)
sequence similarity (area = 0.93)

o4l 02 0.4 06 08 1 %% 0z 0.4 0.6 0.8 Lo
False Positive Rate False Positive Rate

GPCR Nuclear Receptor

10 — 10
— — ' r ‘/

True Positive Rate
o
@
True Positive Rate

binding sites similarity (area = 0.86)
sequence similarity (area = 0.86)

binding sites similarity (area = 0.89)
sequence similarity (area = 0.92)

O 02 0.4 06 08 1 *4% 0z 0.4 0.6 0.8 10
False Positive Rate False Positive Rate

Fig.2 Comparison of ROC curves on different target groups

One reason of this decrease may because of the size of the
datasets. When calculating and comparing the binding sites struc-
tures, the loss of data will influence more on those originally
small data groups. Thus, when comparing the similarities, it be-
came not sufficient to compare among the small datasets. In the
future, we can check this influence by replacing the blank values
with real values based on statistic strategies.

4.2 Detailed analysis based on Precision-Recall curves
Comparing with AUC, AUPR is more useful to analyze the
performance since it can decrease the influence of the highly-
ranked false positive predictions when the number of pairs with-
out known interactions are much more than the number of pairs
with known interactions. The AUPR values were increased 5%-
10% with our methods (figure 5), especially in ion channel group.
For nuclear receptor group, the influence of using binding site
similarities may not be obvious when combining with drug pair-
wise similarities. Additionally, the imbalance of known and un-
known interactions may have a larger influence on this small
group of data. In enzyme and GPCR group, at the beginning,
our method showed a great advantage over the previous one, with
more predictions, false positive predictions increased, where our
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method’s performance was worse than the previous one. It seems
that with more predictions, our method contains more false posi-
tive results. This may be caused by the limitation of similarities
calculated from binding site fingerprints. Among the dissimilar
binding sites (with similarity equals 0), not all of them is really
dissimilar binding site structures, since those without enough bits
of fingerprints may also be regarded as dissimilar binding sites.
In ion channel group, the percentage of binding sites with O bit
fingerprints (0.287) is much smaller than GPCR group (0.310)
and Enzyme group (0.537). Relatively, the performance of Ion
channel group is shown better than other two groups. Between
GPCR and Enzyme, the decreasing point also occurred later with
GPCR group than Enzyme group. In future work, we can check
this point by examining the bits of fingerprints. By dividing the
data into binding sites with few bits and binding sites with enough
bits but dissimilar, considering the latter with zero value while the
former with a non-zero value, the calculation of binding sites sim-

ilarities will be more sufficient and useful for making predictions.
Enzyme

lon channel
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binding sites similarity (area = 0.50]
sequence similarity (area = 0.46)

binding sites similarity (area = 0.61)
sequence similarity (area = 0.44)
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Fig. 3 Comparison of Precision-Recall curves on different target group

4.3 Importance of protein binding site structure informa-
tion

By using homology search to calculate the 3D structures of
proteins, the structures should be checked to make sure it can
represent the original sequence. We applied TM-align measure-
ment, which calculates the similarities between protein 3D struc-
tures and then compared the TM-align with SW-values. As figure
2 shows, the distributions of two measurements are mainly the
same, just using TM-align enlarge the values. Thus, using ho-
mology search, we successfully interpreted those sequences into
3D structures. Among them, the different data containing ho-
mology structures, which has a SW-value but TM-align equals
to 1. Those sequences are dangerous if we didnt deal with before
making predictions. For example, in Nuclear Receptor group, tar-
get proteins hsa2l103 and hsa2104 which we can also infer from
their id that they are homology structures are proved with high
SWe-value (0.721) and TM-align (1). However, for those uncon-
spicuous data, for example, hsa8856 and has9970 are actually
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homology structures that even on the same chain of the structure,
that TM-align equals 1 while SW-value equals to 0.325. Those
data can be dealt with by our method.

10 o o
Q
08
06
[=]
04
o]
02 .
00
T T
SW-value TM-align

Fig. 4 Comparison of distributions of SW-value and TM-align

Other than this, sequences with low SW-values are considered
as dissimilar proteins, but indeed they are similar in 3D struc-
tures. For example, the target protein hsal0161 and hsa3362 in
GPCR group (SW-value=0.051, TM-align=0.668). We checked
their 3D structures and found that part of structure of hsal0161
is very similar to structure of hsa3362 (Figure 3), which is ig-
nored due to using the amino acid sequence to describe a protein.
By confirming of those structures, from which the binding site
structures were extracted can be proved to be more credible for
representing the protein.

Hsal0161 Hsa3362

Fig. 5 Example of low sequence similarity but high structure similarity

5. Conclusion

In this paper, we developed a new method to predict drug-target
interactions and presented the advantages of using similarities of
binding site structures over using protein amino acid sequence
similarities. Most of the previous researches used protein se-
quence similarities to describe the relationship of pairwise tar-
gets because sequence information can be easily achieved from
the websites and similarities between them can be effectively cal-
culated by dynamic algorithms. However, there are two problems
using sequence similarities. One is sequence similarities cannot
show the structure and function features, which actually influence
most when a target interacting with drugs. The other problem is
using sequence similarities includes remote homology sequences,
which show different sequences but actually are with the same
structure. Binding sites are specific places that the interactions of
drugs and targets happen. By using binding site structures simi-
larities, it will be suitable for describing the feature of the target
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that interact with the drug. Thus, it will be more accurate to calcu-
late the similarities between targets by calculating their binding
site similarities. Moreover, for extracting the binding sites, we
have to calculate the 3D structures of the protein using homology
search, which can decrease the influence of the remote homology
structures and calculate them as the same structure.

Some new drug-target interactions are found and some previ-
ous predicted interactions are checked based on our method. The
improvement on AUPR value proves the good performance of our
proposed method. By analyzing the reason for influence on AUC
and AUPR, we found the data size and also the information imbal-
ance on fingerprint similarities of binding sites can both influence
the results. Thus, with further correction and modification in the
future, the AUC and AUPR may be increased more significantly.

Future works can be focused on optimizing the calculation of
the binding site similarities especially when dealing with small
binding sites with few bits of fingerprints. Moreover, specializing
a way to correct the protein similarity with both protein sequence
similarities and binding site similarities as well as other datasets
that can describe the target pairwise similarities can enrich the
datasets and help with the prediction results.
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