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Abstract: We consider the exploration problem in undirected graphs without node labels, which requires

a mobile agent initially placed at an arbitrary node to visit all nodes and terminates. We assume that both

of both of the agent and nodes are equipped with little memory, and the algorithm cannot use any initial

knowledge on the topology of the graph. In this paper, we propose a new deterministic polynomial-time

exploration (more precisely, depth-first search) algorithm which can be implemented using only O(1)-bit

memory of the agent and O(1)-bit storage on each node. To the best of our knowledge, this is the first

polynomial-time exploration algorithm achieving both sublogarithmic memory and storage. The technical

ingredient of our algorithm consists of the idea from the recent progress on small-space DFS algorithms

by Asano et al. [ISAAC2014], and Elmasry et al. [STACS2015] and a new distributed backtrack algorithm

for DFS paths. The algorithm also includes a new compact (i.e., using O(1)-bit storage) s-t path mainte-

nance mechanism, which may be of independent interest. As an application, we also show a biconnected

component decomposition algorithm which runs in the asymptotically same time and space complexity as

our DFS algorithm.

1. Introduction

1.1 Background and Our Result

The graph exploration problem is one of the funda-

mental problems in both distributed and centralized con-

texts, which requires an agent to visit all the nodes in

the graph. It does not have only several practical ap-

plications such as mobile robots and web crawlers, but

also receives much attention in relation to the complex-

ity theory of small-space computability: The problem of

deciding s-t connectivity is closely related to graph ex-

ploration, which is known as a key problem of capturing

the hardness of space-bounded computation. In this pa-

per, we focus on the space-complexity matter of graph

exploration in distributed settings. A standard setting is

the exploration of unlabelled graphs, where each node

has no unique IDs, and its neighborhoods are identified

by local port numbers assigned to the edges incident to

each node. The agent has a limited amount of persis-

tent memory, and does not have any knowledge on the

network topology. It starts the exploration from an arbi-

trary node, and has to go back the initial node after visit-

ing all other nodes. The model we consider in this paper

equips each node also with persistent memory (to distin-

guish the agent memory, we call it the storage or white-
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board), which can be read and written by the agent vis-

iting there. Obviously, this model has two measurements

on space complexity, that is, memory size and storage size

(per one node). That fact derives several natural questions:

For some specific problem, can we trade one of those costs

to the other one? Or is it possible to solve some prob-

lem achieving the low-space complexity in both senses?

In the graph exploration problem, the O(log n)-bit space

restriction on memory or storage is recognized as the state-

of-the-art borderline. Solving the graph exploration prob-

lem using O(log n)-bit storage is rather easy. The classi-

cal DFS algorithm can be implemented on the agent-based

system even if the agent is oblivious (i.e., no persistent

memory). The case of O(log n)-bit memory space is more

complicated, but it is surprisingly possible. The seminal

Reingold’s undirected s-t connectivity algorithm achieves

graph exploration using only O(log n)-bit memory and no

storage [1]. The optimality of this algorithm in no-storage

cases is also shown by Fraigniaud et al. [2]. However, in

fully-sublogarithmic cases (i.e., the memory and the stor-

age are both sublogarithmic), the feasibility of polynomial-

time graph exploration is still unclear. One of the clos-

est results on this question is the pebble-based algorithm

proposed by Diesser et al. [3], which is a graph explo-

ration algorithm using O(log log n) distinguished pebbles.

The k-pebble model is one of the restricted versions of

the memory-storage model, where each agent has k distin-

guished pebbles, and can put and pick-up each pebble on
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any node for leaving some information there. Since Ω(k)-

bit memory and storage is sufficient to implement k-pebble

systems on the top of the memory-storage model, the al-

gorithm by Diesser et al. achieves O(log log n)-bit mem-

ory and storage. Unfortunately, the running time of this

algorithm can become super-polynomial of n (O(nlog log n)

steps), and thus the existence of the algorithm achieving all

of three properties — polynomial-running time, subloga-

rithmic memory, and sublogarithmic storage — is still an

open problem.

The main contribution of this paper is to answer posi-

tively this question in very strong sense. More precisely,

we present an extremely-simple deterministic polynomial-

time graph exploration algorithm only using O(1)-bit

memory and storage. While many of known algorithms

are based on much complicated techniques such as univer-

sal exploration sequences, the approach of our algorithm

is just a simulation of the depth-first search. The key in-

gredient of our algorithm consists of the recent progress

on small-space (centralized) DFS algorithms by Asano et

al. [4], and Elmasry et al. [5], as well as a new distributed

backtrack algorithm for DFS paths. It includes a novel

compact (i.e., using O(1)-bit storage) s-t path maintenance

mechanism called R-path, which may be of independent

interest. The total running time of our algorithm is O(mn)

steps. Since DFS is an important building block in many

graph algorithms, the authors believe that the proposed al-

gorithm has a vast number of applications. As an example,

we show an agent-based biconnected component decom-

position algorithm which runs in the asymptotically same

time and space complexity as our DFS algorithm.

1.2 Related Work

The graph exploration problem has a long history,

whose explicit origin goes back to the Shannon’s exper-

iment on maze-solving mouse [6]. In the field of theo-

retical computer science, it became in the spotlight after

the seminal paper by Aleliunas et al. [7], which provides

a framework based on random walks and gives an explicit

polynomial-time upper bound (in expectation) on explor-

ing all nodes in the graphs (so-called cover time). Com-

bining a single O(log n)-bit counter yields a simple ran-

domized graph exploration algorithm with termination. It

should be noted that achieving sublogarithmic agent mem-

ory is not trivial even using randomization, as long as we

consider the task with termination. This result triggers the

interest of log-space deterministic graph exploration algo-

rithms, in relation to the computational complexity issue of

log-space computability. The primary tool on this line is

universal exploration (or traversal) sequences. Roughly, it

is a sequence of numbers common to all possible instances

in a target graph class, which guides the agent to a specific

path (more precisely, a sequence of port numbers) covering

all the nodes in the instance. In this approach, the small-

space graph exploration is closely related to the small-

space generation of universal exploration sequences, and a

number of techniques along that way are developed [8, 9].

The Reingold’s seminal logspace undirected connectivity

algorithm is one of the milestones in this approach [1]. Yet

another approach receiving much attention is the rotor-

router model [10], which is also known as a technique

of derandomizing random walks. The rotor-router model

guides the agent following “local” sequences managed be

each node. While our model may have the possibility of

implementing that mechanism, it is not known if there ex-

ists any rotor-router mechanism applicable to any graphs

and implementable using only O(1)-bit storage or not.

A variety of the attempts breaking the logarithmic bar-

rier by Fraigniaud et al. [2], not relying on node storage,

are presented so far: Consider a subclass of graphs such

as trees [11, 12], designing port numbers [13], or adding

some precomputed information (so-called advice) to each

node in advance [14], and so on. In much strong context of

distributed computing, the map construction [15–17], and

collaborative exploration [12, 18] are also well studied.

1.3 Outline of the paper

The paper is organized as follows: In Section 2, we in-

troduce the formal model and the problem definition. The

algorithm is presented in an incremental manner. Section 3

introduces the R-path data structure, and then in Section 4

the main algorithm using R-path is presented. Following

the explanation on the application to biconnected compo-

nent decomposition in Section 5, we conclude the paper in

Section 6.

2. Preliminaries

2.1 Model

Throughout this paper, we denote by [a, b] the set of

natural numbers at least a and at most b. The graph explo-

ration problem is considered on a simple undirected con-

nected graph with port numbering G = (V, E, P), where V

is the set of nodes, E ⊆ V × V is the set of edges, and

P is the set of port-numbering functions. Let n and m be

the numbers of nodes and edges respectively. In the fol-

lowing argument, we refer each node as a value in [1, n].

The reference values (IDs) are used only for introducing

and analyzing our algorithms, and thus the agent cannot

be aware of them. Let E(v) be the set of edges incident

to node v ∈ V , and ∆(v) be the degree of node v ∈ V .

The port numbering function pv : E(v) → [1,∆(v)] assigns

each edge incident to v with a port number in [1,∆(v)].

The set P consists of the port-numbering functions for all

nodes v ∈ V . Let N(v) be the set of nodes that are adja-

cent to v. Since E(v) and N(v) has one-to-one correspon-

dence, we often treat pv as a function on N(v). That is, for

any u ∈ N(v), pv(u) represents the v’s port number of edge

(v, u). Furthermore, we also denote the inverse function of

pv(u) (on N(v)) by p−1
v

(i.e., p−1
v

: [1,∆(v)] → N(v)). The

port numbering is not necessarily consistent with the end-
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points of one edge. That is, pv(u) , pu(v) may hold for

some (u, v) ∈ E. Each node v ∈ V has an O(1)-bit stor-

age called whiteboard b(v), which is a persistent memory

keeping the contents even after the agent leaves (that is,

the agent can refer that information when it comes back).

Note that while we incur the constant-size restriction on

both the memory and whiteboards, we do not restrict the

temporal memory usable in local computation at each step.

That assumption is crucial because the agent must handle

port numbers, which cannot be stored only with O(1) bits.

The agent is a deterministic state machine moving on

the nodes in G along edges. Each agent has an O(1)-bit

memory (i.e., a constant number of states). The behavior

of the agent is formally specified by a deterministic func-

tion A : Q×B×N→ Q×B×N, where Q is the set of agent

states, B is the set of possible values written to each white-

board. The input triple of A means the current agent state,

the contents of the whiteboard where the agent stays, and

the port number of the edges from which the agent comes

to the current node. The triple of A’s output represents the

state of the agent, the value written to the whiteboard, and

the port number to which the agent goes out at the next

movement. If the agent does not move, A returns zero as

the port number. In addition, the port number zero is also

inputted to A initially. The execution of the agent follows

discrete time steps. At each time step, the agent performs a

local computation following A, and moves to the computed

destination. It is guaranteed that the movement at time step

x finishes by the beginning of time x + 1. The node where

the agent currently stays is referred as vcur, and the port

number from which the agent comes to vcur is referred as

pin. Note that the “current time” implied by notations vcur

and pin depends on the context.

2.2 Graph Exploration Problem

In the graph exploration problem, an agent runs the al-

gorithm from an arbitrary node r ∈ V (say root). The goal

of the agent is to visit all the nodes and go back to r. With-

out loss of generality, we assume that the agent can de-

tect if the current location is the root or not. This assump-

tion can be implemented by putting some special mark to

the whiteboard of the root at the beginning of algorithms.

Since this paper considers only deterministic algorithms,

the behavior of the agent is uniquely determined by the in-

put graph G = (V, E, P), the root r ∈ V , and algorithm A.

Let S A(G, r) be the sequence of the nodes that the agent

visits in the execution of A for input instance G and r. An

algorithm A solves the graph exploration problem if for

any G = (V, E, P) and r ∈ V , S A(G, r) has a finite length,

has the tail node same as the head, and contains all nodes

in V .

2.3 Lexicographically-Ordered DFS

The problem our algorithm solves is much stronger than

graph exploration. It actually solves the lexicographically-

ordered depth-first search (Lex-DFS) problem. The Lex-

DFS is a special case of the standard depth-first search,

which requires some specific search order following the

port numbers: When the agent chooses an unvisited node

in N(vcur), it must decide the node u ∈ N(vcur) whose port

number pvcur
(u) is the minimum of all unvisited neighbors.

The Lex-DFS for graph G = (V, E, P) and root r uniquely

defines a depth-first search tree TG,r rooted by r. We de-

note the parent of v in TG,r by par(v).

2.4 Subroutines

For ease of presentation, we introduce two fundamental

subroutines used in our algorithm.

2.4.1 Procedure FindFirst

In the design of our algorithm, the agent often has to

discover the neighbor with a specific state. The procedure

FindFirst(O, P) probes all the neighbors N(vcur) in the or-

der specified by O. The procedure terminates when the

agent finds the neighbor v ∈ N(vcur) satisfying the predi-

cate P : B → {True,False} for the first time. Then the port

pin indicates the node v. Note that the value of pin is modi-

fied by the run of the procedure. The value of vcur does not

change (i.e., the procedure necessarily finishes at the node

where it is invoked). To simplify the description of the al-

gorithm , if there are no neighbor u satisfying P(u) = True,

pin stores −1 values 1. We can choose the value of O from

the following four options: HeadAscend, TailDescend,

MiddleAscend, and MiddleDesend. The choice of Head,

Tail, and Middle determines the port number where the

procedure starts the search, which respectively means 1,

∆(vcur), and pin. The choice of Ascend/Descend is the

order of the search, each of which corresponds to the as-

cending and descending orders of port numbers.

Note that iterative probing of neighbors does not need

any persistent counter: In the invocation at node v, the

agent repeats the go-and-back for each neighbor in N(v),

which is implemented by the mechanism of moving the

agent coming back from v to the neighbor through port

pin + 1 or pin − 1.

2.4.2 Procedure Mark

The procedure Mark(I) updates the whiteboard

b(p−1
vcur

(pin)) following the instruction I. The actual

behavior inside the procedure is that the agent first goes to

p−1
vcur

(pin), updates the contents of b(p−1
vcur

(pin)) following I,

and goes back to vcur. Note that the value of pin and vcur

does not change before and after the run of the procedure.

2.4.3 Note on Procedure Calls

During the execution of FindFirst or Mark, the agent

has to know the argument given to the procedure call. If

many types of predicates or instructions are used in the al-

gorithm, the agent needs much memory to store the type.

Yet another matter on using subroutine calls is the cost for

1 Since the system does not have port number −1, it is actually

implemented by preparing one-bit flag indicating the success or

failure of the exploration in the agent state.
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switching the context of programs. When the agent exe-

cutes a subroutine, it also needs to remember the program

counter and the state of the current context. Fortunately,

the number of the predicates and instructions we use in our

algorithm is bounded by a constant, and a constant number

of bits suffices to store the context of the run (because we

use only constant-depth nesting). Consequently, the im-

plicit cost incurred by subroutine calls does not cause any

problem, and we do not have to care about it in the follow-

ing argument.

3. R-path Data Structure

In our algorithm, we utilize a novel distributed date

structure called R-path. An instance X of R-path main-

tains a traversable path connecting an arbitrary base node

(the root node in our use) to a target node. The important

features of R-path are twofold: We can dynamically up-

date the location of the target node, and O(1)-bit memory

and whiteboards suffice to implement it.

3.1 Specification

An R-path X provides the following two operations to

the upper application layer.

• MoveTop: The agent goes back to the base node of X.

• Modify&Move: The agent changes the target node of

X to p−1
vcur

(pin), and moves to the new target node.

Note that these operations can be executed only when the

agent is on the target node 2. In addition, we prepare one

more operation, which is used only in the implementation

of the two operations above.

• MoveOneHopDown: When the agent is on the path

managed by X, it moves to the neighbor in that path

closer to the target node.

3.2 Compact Encoding of Path

We first explain the the structure of memory and white-

boards: The agent is oblivious in procedure MoveTop and

MoveOneHopDown. In Modify&Move, it has two states,

called Find and Delete. The whiteboard consists of four

variables target, inPath, direction, and color. The vari-

able target is just a flag indicating the current target node.

The variables inPath and direction are also binary flags

for recording the information on the maintained path (the

details are explained later). The variable color is a set

of marks internally used in the procedures, which takes

one of four colors {white, red, blue, yellow}. Initially, all

nodes have color white. We call the node satisfying inPath

= True a in-path node, and denote by P the set of in-path

nodes.

The main idea for saving space is that R-path main-

tains the set of in-path nodes constituting a “minimal” path

from the base node to the target node, where the minimal-

2 More precisely, MoveTop can be executed when the agent is on

the node contained in the path managed by the R-path structure.

However we call this procedure only at the target node.

ity means that the subgraph induced by P forms a path

graph. This feature guarantees that any node in P has at

most two neighbors in P. The flag inPath records if it be-

longs to the maintained path or not. To traverse the main-

tained path correctly, we further add one-bit information

by variable direction, which indicates the upward in-path

neighbor (i.e., the neighbor closer to the base node). Pre-

cisely, the value “Up > Down′′ (resp. “Up < Down′′) of

variable direction implies that the port number of the up-

ward neighbor is greater (resp. smaller) than that of the

downward one. Supported by this information, the agent

can perform upward and downward movement in the path

correctly. For a node z in the maintained path, the upward

and downward neighbors of z are respectively denoted by

pred(z) or succ(z).

3.3 Algorithmic Ideas

For implementing MoveTop and MoveOneHopDown,

it suffices to show that the agent can identify pred(vcur) or

succ(vcur) correctly using the information of variables in-

Path and direction. That mechanism is implemented by a

single invocation of FindFirst with an appropriate search

order. For example, if b(vcur).direction = “Up < Down′′

and the agent wants to find pred(vcur), the agent runs Find-

First with Headascend order. Then the port returned by

FindFirst is the correct way to pred(vcur). All other cases

can be processed similarly (see Figure 1).

The main technical challenge of realizing R-path is how

to implement Modify&Move. The pseudocode of its im-

plementation is presented in Algorithm 1. To explain its

details, we consider the situation where the agent is on the

target node t and wants to update the target node with a

neighbor t′ ∈ N(t). First, the agent colors t′ with yellow

(Line 1). If t′ is on the s-t path (s is the base node), the

edge (t′, t) is the tail edge of the current s-t path in X (Fig-

ure 2(a)). Then the update completes by simply remov-

ing it (Line 4-6). The case that t′ is not on the s-t path is

more complicated. Then, the agent moves to s by invoking

MoveTop, and starts the find phase by changing its state to

Find. In the find phase, the agent descends the current s-t

path by using MoveOneHopDown (Figure 2(b1)). During

the phase it also checks if the current in-path node has t′ as

its neighbor, which is done by searching the yellow neigh-

bor with FindFirst (Line 11). Since the agent eventually

reaches t, which has t′ as a neighbor, the find phase always

terminates with successfully finding the yellow neighbor.

If the yellow neighbor is found at a node u (say branching

node) for the first time, the concatenation of the path from

s to u and the edge (u, t′) creates a new path connecting

s and t′, which satisfies the minimality requirement of R-

path. After finding the branching node u, the agent must

continue to descend the s-t path to t for deleting the ex-

pired path from u to t (Figure 2(b2)). To obtain the correct

downward way at node u, we do not immediately mod-

ify the variables inPath and direction at u at the end of
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Fig. 2: The implementation of Modify&Move

the find phase. Instead, when u is found, the agent colors

node u by red or blue. The color red (resp. blue) implies

that the direction variable at node u must be updated by

the value “Up>Down” (resp. “Up<Down”). Note that the

decision of the color assigned to u can be computed by

comparing the port numbers of the yellow neighbor and

pred(u) via FindFirst (Line 14-21). The actual updates of

b(u).direction is processed at the final step of the delete

phase (Line 29-33). In the remaining issue is to delete the

expired u-t (sub)path. To do it, the agent starts the delete

phase after finding a branching node, with changing its

state to Delete. In the delete phase, the agent continues to

descend the path with resetting inPath by False(Line 36-

37). Arriving at t, the agent finds the yellow neighbor t′,

and thus moves to there. Then it checks the color of u (note

that u is always a neighbor of t′), and updates the variables

b(u).inPath and b(u).direction according to u’s color (Line

29-33) via operation Mark(Figure 2(b3)). Since no node in

the s-u path has t′ as its neighbor, the established path is

also minimal.

The running time of Modify&Move and MoveTop de-

pends on the number of edges incident to in-path nodes.

The computation cost at a node in the path is incurred by

FindFirst. Since the number of invocations of FindFirst at

each node is bounded by O(1), the total number of move-

ments are bounded by O(m) (i.e., the sum of the degrees of

in-path nodes).

4. Agent-Based Lex-DFS Algorithm

Based on R-path

4.1 Overview

Utilizing the R-path structure, we develop a small-

space Lex-DFS algorithm, called DLDFS. The fundamen-

tal structure of DLDFS follows the standard (centralized)

Lex-DFS algorithm using a stack for remembering the par-

ent node par(v) in backtracking at node v. That is, when the

agent visits a new node v, it marks the sign of “already vis-

ited” to the node, pushes the port number to par(v) on the

stack, and finds the next unvisited neighbor. If no unvisited

neighbor is found, it performs the backtracking by pop-

ping the port number from the stack. Except for the part of

the stack, this algorithm does not need any super-constant

size memory or whiteboards. In other words, our technical

challenge lies only on how we implement the stack mech-

anism using only O(1)-bit memory and whiteboards.

4.2 Implementing Abstract Stack using R-path

The implementation of the small-space stack uses the

following agent/node states: In the execution of Push op-

eration, the agent has no explicit state. For Pop opera-

tion, the agent has two states called Find and Reconstruct.

Each whiteboard consists of two variables, inStack ∈
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Algorithm 1 Modify&Move(x)

1: Mark(color← yellow) ⊲ Agent marks new target node.
2: pin ← FindFirst(HeadAscend, inPath = True∧ color = yellow)
3: if pin , −1 then ⊲ Agent finds yellow node on the Rpath.
4: b(vcur).(target, inPath) ← (False, False); Mark(target ← True; color ← white)
5: Move to pin

6: Halt
7: else
8: q ← Find; MoveTop()

9: while True do
10: if q = Find then
11: pin ←FindFirst(HeadAscend, color = yellow)
12: if pin , −1 then
13: q ← Delete; b(vcur).color ← red
14: if b(vcur).direction = “Up > Down′′ then
15: pin ←FindFirst(MiddleAscend, inPath = True)
16: if pin = −1 then
17: b(vcur).color ← blue

18: else
19: pin ←FindFirst(MiddleDescend, inPath = True)
20: if pin , −1 then
21: b(vcur).color ← blue

22: MoveOneHopDown()

23: if q = Delete then
24: if b(vcur).target = True then
25: b(vcur).(target, inPath) ← (False, False)
26: pin ← FindFirst(HeadAscend, color = yellow); Move to pin

27: b(vcur).(color, inPath, target) ← (white, True, True)
28: pin← FindFirst(HeadAscend, color = red)
29: if pin = −1 then ⊲ Branching node is blue
30: pin ← FindFirst(HeadAscend, color = blue)
31: Mark(direction ← “Up < Down′′; color ← white; inPath← True)
32: else ⊲ Branching node is red
33: Mark(direction ← “Up > Down′′; color← white; inPath ← True)

34: Halt
35: else
36: MoveOneHopDown()
37: Mark(inPath ← False)

{True,False} and color ∈ {white, black, red}. Initially, all

nodes are white.

Basically, the algorithm manages only the set of nodes

in the stack, which is recorded by the variable inStack.

The implementation of Push is very easy, that is, we only

have to update b(vcur).inStack with True. The more chal-

lenging part is the implementation of Pop. Obviously, the

set of nodes satisfying inStack = True (say in-stack node)

forms a path from r to vcur in TG,r, but it does not contain

the information on the order of nodes in the path. Thus

we must recover the order for completing the pop oper-

ation. The recovery is obviously impossible for general

stacks, but fortunately in the application to Lex-DFS, re-

traversing the path induced by in-stack nodes correctly re-

covers the path from r to vcur in TG,r. The key fact comes

from the technique implicitly used in the design of small-

space Lex-DFS algorithms in centralized settings, which

is summarized by the following lemma.

Lemma 1 (Asano et al. [4], Elmasry et al. [5]). Let

G = (V, E, P) and r ∈ V be any instance of Lex-DFS,

and Pu = v0, v1, · · · , vk be the path from r to u in TG,r

(r = v0 and u = vk). Then, for any i ∈ [0, k − 1],

pvi (vi+1) = min j∈[i+1,k],v j∈N(vi) pvi (v j). holds.

The lemma above implies that the following process

correctly traverses the path Pu: Assume that the agent is at

node vi ∈ Pu, all the nodes v0, v1, · · · , vi already traversed

are marked by black color, and the nodes vi+1, vi+2, · · · vk

are marked by white color. Then the agent can identify

vi+1 because it is the non-black in-stack neighbor with the

minimum port number. After changing the color of vi to

black, the agent moves to vi+1. Iterating this step the agent

completely traverses the sequence Pu. When it reaches u,

pin points the parent of u. To run this order-recovery mech-

anism, the agent must go back to the root node r for staring

the re-traversal, which is realized by managing r-u path us-

ing R-path structure and calling MoveTop procedure, and

adding the call of Modify&Move to the implementation of

Push.

The running time of the whole algorithm is dominated

by the running time of Push and Pop operations (except

for the cost incurred by those operations, O(m) steps suf-

fices to finish the algorithm). Since we have shown that

Modify&Move and MoveTop are both requires O(m) steps,

the total running time is bounded by O(mn) steps. Thus

c© 2018 Information Processing Society of Japan 6
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the following theorem is obtained.

Theorem 1. There exists an agent-based Lex-DFS algo-

rithm using a constant-space memory and whiteboards,

which runs in O(mn) steps.

5. Application: Biconnected Component

Decomposition

5.1 Problem Definition

We define the biconnected component decomposition

(BCD) problem as a node-coloring problem. An edge

e ∈ E is called a bridge if removing it from G partitions G

into two connected components. A subgraph G(S ) induced

by a set of nodes S ⊂ V is called a biconnected compo-

nent if it is a maximal subgraph containing no bridge. By

the definition, any biconnected component in a graph is

mutually disjoint, and thus the vertex set of G can be par-

titioned into a number of biconnected components. The

BCD problem is defined as the one assigning two colors

(black/white) to each node such that (1) any node in a bi-

connected component has the same color, and (2) two end-

points of any bridge are colored differently. Since the con-

traction of each biconnected component into a single node

always induces a tree, the coloring satisfying (1) and (2)

always exists.

5.2 Algorithmic Ideas

The fundamental property holding for any bridge e ∈ E

is that the graph G does not contain a cycle containing e.

It follows the observation that an edge e ∈ E is a bridge

if and only if e satisfies that (1) e ∈ TG,r holds and (2)

∀e′ = (u, v) < T , the simple path connecting u and v in

TG,r does not include e. This is the key observation of our

algorithm.

In our algorithm, each node has an one-bit flag called

isbridge, which is initially True at all nodes. This flag rep-

resents if the edge to the parent is a bridge or not. In the

algorithm, the agent performs Lex-DFS twice, where the

first time is for detecting all bridges, and the second time is

for coloring. In the first run of Lex-DFS, the agent checks

if each traversed edge is contained in a cycle or not. Since

it is well-known that any non-tree edge appears as a for-

ward or back edge in any DFS tree, the task of cycle detec-

tion can be processed by finding a in-stack neighbor. It is

processed immediately before the pop operation. Assume

that now the agent backtracks at node v. Before execut-

ing the pop operation, the agent first goes back to the root

node using MoveTop and moves down to v along the path

induced by in-stack nodes. Then, it also checks if each

node in the path, except for par(v), has v as its neighbor

or not. If it is found that a node u is a neighbor of v, the

in-stack (sub)path between u and v and edge (u, v) forms

a cycle. Thus the agent sets isbridge to False for all the

nodes in the u-v path.

At the end of the first-time Lex-DFS, it is guaranteed

that the nodes with isbridge = True has a bridge as the

edge to its parent, which is a sufficient information to ob-

tain the BCD coloring: In the second-time Lex-DFS, the

agent colors each node along the Lex-DFS ordering of

nodes. The color given to each node is initially white, and

flipped when it reaches the node with isbridge = True.

It is obvious that the running time of this algorithm is

asymptotically the same as our Lex-DFS algorithm. Con-

sequently, we obtain the theorem below:

Theorem 2. There exists an agent-based algorithm solv-

ing the BCD problem using a constant-space memory and

whiteboards, which runs in O(mn) steps.

6. Conclusion and Future Directions

In this paper, we proposed a small-space Lex-DFS algo-

rithm which consumes only a constant-size memory and

storages. This is the first polynomial-time graph explo-

ration algorithm with fully-sublogarithmic space complex-

ity. As an application of Lex-DFS, we also presented a bi-

connected component decomposition algorithm running in

the same time complexity as the Lex-DFS algorithm.

The authors believe that our algorithm derives several

interesting open problems as follows:

• Can we obtain any fully-sublogarithmic algorithms

for other problems (e.g., BFS search, computing

graph properties, or any collaborative tasks by mul-

tiple agents)? Conversely, can we have any problem

impossible to solve in the systems with O(1)-bit mem-

ory and storages?

• Is it possible to construct a faster DFS algorithm run-

ning in o(mn) steps with keeping the same space us-

age? Or, can we have any time-complexity lower

bound in this settings?

• Is there a graph exploration algorithm for oblivious

agents using O(1)-bit storages?
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