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COOMA: A Components Overlaid Mining Algorithm for

Enumerating Connected Subgraphs with Common

Itemsets

Kazuya Haraguchi1,a) YusukeMomoi2,b) Aleksandar Shurbevski3,c) Hiroshi Nagamochi3,d)

Abstract: Consider a data set that is represented by a tuple (G, I,σ) of a graph G = (V, E), an item set I, and a
function σ : V → 2I , and denote by Aσ(X), X ⊆ V, the set of items common to σ(v) for all vertices v ∈ X, i.e.,
Aσ(X) =

⋂

v∈X σ(v). A vertex subset X ⊆ V is called a connector if (i) the subgraph G[X] induced from G by X is
connected; and (ii) adding any vertex v ∈ V \ X to X loses the connectivity of the subgraph or decreases the common
item set, i.e., G[X ∪ {v}] is disconnected or |Aσ(X ∪ {v})| < |Aσ(X)|. In the present paper, we propose a novel algorithm
named COOMA (components overlaid mining algorithm) for enumerating all connectors. For every item, COOMA
enumerates connectors by “overlaying” an already discovered component on a subgraph induced by the item. We show
that COOMA is more efficient than a depth-first-search based algorithm, COPINE [Sese et al., 2010], especially for
instances that have a large number of connectors (e.g., more than 106), where we use real genetic networks as well as
random instances for the benchmark. We also discuss the enumeration problems under various conditions, e.g., |Aσ(X)|
should be no less than an input parameter θ, and how to adapt COOMA to the variants.

1. Introduction

Many existing data are stored in the form of a graph [5]. In

graph data, a vertex is often associated with items. For example,

in a social network, each vertex corresponds to a user and two

users are joined by an edge if they are friends. A user may be

associated with products that he or she has purchased so far. In a

genetic network, each vertex may correspond to an SNP (single

nucleotide polymorphism), and two SNPs are joined by an edge if

they have significant relationship in some context. An SNP may

be associated with individuals that possess the SNP [14].

We consider a data mining problem for such graph. Suppose

that we are given a tuple (G, I,σ) of a graph G = (V, E), an item

set I, and a function σ : V → 2I . For each vertex v ∈ V , the

subset σ(v) represents the set of items with which v is associated.

For X ⊆ V , we denote by Aσ(X) the set of items common to σ(v)

for all vertices v ∈ X, i.e., Aσ(X) =
⋂

v∈X σ(v). A vertex subset X

is called a connector if (i) the subgraph G[X] induced from G by

X is connected; and (ii) adding any vertex v ∈ V \X to X loses the

connectivity of the subgraph or decreases the common item set,

i.e., G[X ∪ {v}] is disconnected or |Aσ(X ∪ {v})| < |Aσ(X)|.

In the context of social networks, a connector X may repre-
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sent a maximal subset of users such that any two of them are

connected by a sequence of individuals in the set who are pair-

wise friends, and that all of them have purchased the products

in Aσ(X). It should be meaningful to obtain connectors in terms

of marketing. For example, we may recommend a product i in

Aσ(X) to a user u who is not in X but has a friend in X, expecting

that u may like i and thus buy it.

We consider the problem of enumerating all connectors for a

given instance (G, I,σ). This problem was first introduced for

biological networks and an algorithm named COPINE was pro-

posed [9], [10]. Okuno studied parallelization of COPINE [8].

COPINE is a straightforward algorithm in some sense. Based on

gSpan [13], the algorithm traverses a search tree in the depth-first

manner.

We claim that there should be room for exploring better algo-

rithms. For enumeration problems, several algorithmic frame-

works have been invented so far; e.g., reverse search [2],

BDD/ZDD [6] and dynamic programming [3]. These frameworks

have been applied to various enumeration problems [4], [7], [12].

COPINE is not the only algorithmic solution to our problem. We

may develop other enumeration algorithms, aiming at a better

graph mining tool for practitioners.

With this in mind, we propose a novel enumeration algorithm

named COOMA, which stands for a components overlaid mining

algorithm. The interesting feature of COOMA is that it does

not utilize the conventional algorithmic frameworks mentioned

above. For every item, COOMA enumerates connectors by “over-

laying” an already discovered connector on a subgraph induced

by the item.
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For the problem of enumerating connectors, various extensions

are possible. In fact, COPINE is originally developed for the

problem of enumerating all connectors X such that |Aσ(X)| ≥ θ,

where θ is an input parameter. We may also restrict the size of a

desired connector to no less than an input parameter, supposing

that a connector of too small a size is meaningless. We will dis-

cuss how to adapt COOMA to these extensions. For future work,

we may deal with vertex-weighted and/or edge-weighted graphs.

The edge density may be taken into account in the definition of

desired subgraphs, as in [1], [11].

The organization of the paper is as follows. For preliminar-

ies, we introduce notation and terminologies and formalize the

enumeration problem in Section 2. We then propose COOMA

in Section 3. In Section 4, we discuss three points on this new

enumeration algorithm. First, we describe the difference between

COOMA and COPINE in how connectors are enumerated. Sec-

ond, we propose a sophisticated version of the algorithm, R-

COOMA, based on reorganization of (I,σ). Third, we show use-

ful techniques that reduce the input size by preprocessing. In

Section 5, we compare the enumeration algorithms in terms of

computation time that is taken to enumerate all target subgraphs.

We show the efficiency of COOMA and R-COOMA, especially

for instances that have a large number of connectors (e.g., more

than 106). We use real genetic networks as well as random in-

stances for the benchmark. Finally we give concluding remarks

in Section 6.

2. Preliminaries

A graph stands for a simple undirected graph in this paper. The

vertex set (resp., edge set) of a graph H is denoted by V(H) (resp.,

E(H)).

Let G = (V, E) be a graph with a vertex set V and an edge set

E. For a vertex v ∈ V , let NG(v) denote the set {u ∈ V | uv ∈ E} of

neighbors of v in G. Let X be a subset of V . Define NG(X) to be

the set ∪v∈X NG(v) \ X of neighbors of X in G. Let F be a subset

of E. Define X[F] to be the set of vertices x ∈ X such that x is an

end-vertex of an edge in F, F[X] to be the set of edges e = uv ∈ F

with u, v ∈ X, and G[X] (resp., G[X, F]) be the subgraph (X,E[X])

(resp., (X[F],F[X])). A vertex subset Z of a graph H is called a

component of H if H[Z] is connected and H[Z ∪ {v}] is not con-

nected for any vertex v ∈ V(H) \Z. Let C(X,F) denote the family

of all components of the graph G[X, F].

For the example in Figure 1, let us take X =

{v1, v2, v3, v6, v9}. Then E[X], the edge set of G[X],

is {v1v2, v2v3, v2v6, v2v9, v3v6, v6v9}. For an edge set

F = {v2v6, v2v9, v5v9}, we have X[F] = {v2, v6, v9} and

F[X] = {v2v6, v2v9}. The subgraph G[X, F] has just one

component.

For a set I of items, let σ be a function σ : V → 2I . Let X be a

non-empty subset of V . The item set Aσ(X) of X is defined to be

Aσ(X) !
⋂

v∈X σ(v).

In our problem, an instance is given by a triple (G, I,σ). We

call X ⊆ V a connector of (G, I,σ) if;

• G[X] is connected; and

• for each vertex v ∈ V \ X, G[X ∪ {v}] is not connected or

Aσ(X) \ σ(v) ! ∅ (i.e., Aσ(X) ! Aσ(X ∪ {v})).
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Fig. 1 An example of (G, I,σ)

Table 1 All connectors X and their item sets Aσ(X) of the instance given by
Figure 1

X Aσ(X)

{v1, v2, v6, v9} {i1}
{v2, v3, v7, v8, v9} {i2}
{v3, v5, v6, v7, v9} {i3}

{v4} {i1 , i2}
{v2, v9} {i1 , i2}
{v6, v9} {i1 , i3}
{v3} {i2 , i3}
{v7} {i1 , i2, i3}
{v9} {i1 , i2, i3}

We call a connector X a θ-connector for an integer θ ≥ 0 if

|Aσ(X)| ≥ θ. LetM(G, I,σ) denote the family of all connectors

of (G, I,σ). LetMθ(G, I,σ) denote the family of all θ-connectors

of (G,σ).

Table 1 shows all connectors and their item sets of the instance

(G, I,σ) given by Figure 1.

Now we summarize the problem of enumerating all θ-

connectors as follows.✓ ✏
Connector Enumeration Problem

Input: An instance (G, I,σ) that consists of a graph G =

(V, E), an item set I and a function σ : V → 2I , and an

integer θ ≥ 0.

Output: Mθ(G, I,σ).

✒ ✑
For a non-empty subset J ⊆ I, define V⟨J⟩ ! {v ∈ V | J ⊆ σ(v)},

and E⟨J⟩ ! {uv ∈ E | J ⊆ σ(u) ∩ σ(v)}. For J = { j}, we

may denote V⟨J⟩ and E⟨J⟩ by V⟨ j⟩ and E⟨ j⟩, respectively. Let

CG,I,σ denote the union of all components in G[V⟨i⟩], i ∈ I, i.e.,

CG,I,σ =
⋃

i∈I C(V⟨i⟩, E). In Figure 1,

C(V⟨i1⟩, E) = {{v1, v2, v6, v9}, {v4}, {v7}},

C(V⟨i2⟩, E) = {{v2, v3, v7, v8, v9}, {v4}},

C(V⟨i3⟩, E) = {{v3, v5, v6, v7, v9}},

and CG,I,σ is the union of these three collections.

We call a subfamily M′ ⊆ M(G, I,σ) self-contained if for

every two sets X ∈ M′ and C ∈ M′ ∩ CG,I,σ, it holds that

C(X ∩ C, E) ⊆ M′. This means that, if M′ is self-contained,

then the intersection M′ ∩ CG,I,σ is empty, or for any mini-

mal connector X ∈ M′ \ CG,I,σ, there is a connector C ∈

M′ ∩ CG,I,σ such that X ⊆ C. For the instance in Figure 1,
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M′ = {{v1, v2, v6, v9}, {v3, v5, v6, v7, v9}, {v6, v9}} is self-contained.

On the other hand, M′ = {{v2, v3, v7, v8, v9}, {v6, v9}} is not self-

contained since the intersection {v9} is not inM′.

3. Algorithm COOMA

In this section, we present the algorithm COOMA for the con-

nector enumeration problem. We first derive significant proper-

ties of connectors that are needed to design the algorithm. We

then show the algorithm, along with an example of how it enu-

merates all connectors, followed by the correctness proof.

Lemma 1. Let (G = (V, E), I,σ : V → 2I ) be an instance.

(i) CG,I,σ ⊆M(G, I,σ).

(ii) For any two connectors X1, X2 ∈ M(G, I,σ), it holds

C(X1 ∩ X2, E) ⊆M(G, I,σ).

(iii) For each connector Y ∈M(G, I,σ) \ CG,I,σ and each item

i ∈ Aσ(Y), there is a connector X ∈ M(G, I,σ) with X ! Y

such that Y ∈ C(X ∩ C, E) for the component C ∈ C(V⟨i⟩, E)

that contains Y.

(iv) If a subfamilyM′ ⊆ M(G, I,σ) is self-contained and con-

tains CG,I,σ, thenM′ =M(G, I,σ).

Proof. (i) Let X be a set in CG,I,σ, where G[X] is a connected

subgraph of the graph G[V⟨i⟩] and i ∈ Aσ(X) for some i ∈ I. For

each vertex v ∈ V \X, if i ∈ σ(v) (resp., if i " σ(v)) then G[X∪ {v}]

is not connected (resp., i ∈ Aσ(X) \ σ(v) ! ∅). Hence X is a con-

nector of (G, I,σ).

(ii) Let Y be a set in C(X1 ∩ X2, E), where G[Y] is connected

but G[Y ∪ {v}] is not connected for any vertex v ∈ X1 ∩X2 \Y . Let

v ∈ V \X1∩X2 be a vertex. It suffices to show that G[Y∪{v}] is not

connected or Aσ(Y) \ σ(v) ! ∅. Since Xi ∈ M(G, I,σ), i = 1, 2,

G[Xi∪{v}] is not connected or Aσ(Xi)\σ(v) ! ∅. Hence we see that

G[Y∪{v}] is also not connected or Aσ(Y)\σ(v) ⊇ Aσ(Xi)\σ(v) ! ∅

for i = 1 or 2, as required.

(iii) If Aσ(Y) = Aσ(C) then Y = C ∈ CG,I,σ ⊆ M(G, I,σ)

would hold by (i). Since Y " CG,I,σ, there is an item j ∈

Aσ(Y) \ Aσ(C). Since Y " CG,I,σ, Y " C′ for the component

C′ ∈ C(V⟨ j⟩, E), where C′ ∈ CG,I,σ ⊆ M(G, I,σ) holds by (i).

Moreover, Y is contained in a component of the graph G[C′ ∩C].

This means that M(G, I,σ) contains a connector X with X ! Y

such that Y is contained in a component of the graph G[X ∩ C].

We choose X as a minimal subset among all such connectors. Let

Z denote the component of the graph G[X ∩ C] that contains Y ,

where Z ∈ M(G, I,σ) by (ii). If Z ! Y , then Y ∈ G[Z ∩ C],

contradicting the choice of X. Hence Z = Y and the connector X

satisfies the lemma.

(iv) Obviously M′ ⊆ M(G, I,σ). We show the converse. To

derive a contradiction, assume that there is a set Y ∈M(G, I,σ) \

M′, where we choose Y as a maximal subset among all such con-

nectors. Let i ∈ Aσ(Y) be an item and denote by C the component

in C(V⟨i⟩, E) that contains Y , where C ! Y , since Y " M′ ⊇

CG,I,σ ⊇ C(V⟨i⟩, E). By (iii), there is a connector X ∈ M(G, I,σ)

with X ! Y such that Y ∈ C(X ∩ C, E). By the choice of Y ,

X ∈M′. This, however, means that Y ∈ C(X ∩C, E) \M′ for the

connector X ∈M′, contradicting thatM′ is self-contained. "

From Lemma 1(ii), M(G, I,σ) is closed under intersection.

From Lemma 1(iii), any inclusion-wise maximal connector is a

member of CG,I,σ since for any connector Y not in CG,I,σ, there

is a connector X ! Y . The converse does not necessarily hold

true; in Figure 1, {v7} ∈ CG,I,σ is not an inclusion-wise maximal

connector.

The algorithm COOMA works as follows. COOMA starts with

an initial collection Mcurrent ⊆ CG,I,σ that consists of all compo-

nents of G[V⟨i1⟩, E⟨i1⟩] and all singletons in CG,I,σ, where the item

i1 can be determined arbitrarily. The algorithm repeatedly en-

largesMcurrent by “overlaying” every X in the currentMcurrent on

the subgraph G[V⟨i⟩, E⟨i⟩], over all items i ∈ I \ {i1}. By over-

laying, we mean to generate connectors by taking the intersection

between X and each component in G[V⟨i⟩, E⟨i⟩]. Upon the comple-

tion of the iteration on each item i, the components of G[V⟨i⟩, E⟨i⟩]

are added toMcurrent so thatMcurrent is self-contained.

Now we summarize COOMA in Algorithm 1. We illustrate

how it works by taking the instance of Figure 1. In line 3, the

initialMcurrent is set to;

Mcurrent = {{v1, v2, v6, v9}, {v4}, {v7}}.

We observe the remaining part of the algorithm, where in the for-

loop from lines 4 to 15, we set i to i2 and i3 in this order.

(i = i2) In line 5, the subgraph Gi2 consists of only one compo-

nent, that is {v2, v3, v7, v8, v9}. By overlaying X ∈Mcurrent on

Gi2 in the while-loop (lines 7 to 13), we obtain a new con-

nector {v2, v9} = {v1, v2, v6, v9} ∩ {v2, v3, v7, v8, v9}. Note that

the collection Mtemp is used to store Mcurrent as of the be-

ginning of the iteration on the item i. After the while-loop,

the component {v2, v3, v7, v8, v9} in Gi2 is added toMcurrent in

line 14. ThenMcurrent becomes;

Mcurrent = {{v1, v2, v6, v9}, {v2, v3, v7, v8, v9}, {v2, v9}, {v4}, {v7}}.

(i = i3) In line 5, the subgraph Gi3 consists of only one com-

ponent, that is {v3, v5, v6, v7, v9}. By overlaying X ∈ Mcurrent

on Gi3 in the while-loop, we obtain three new connectors as

follows;

{v6, v9} = {v1, v2, v6, v9} ∩ {v3, v5, v6, v7, v9},

{v3}, {v9} ∈ {v2, v3, v7, v8, v9} ∩ {v3, v5, v6, v7, v9}.

Note that {v3, v9} = {v2, v3, v7, v8, v9} ∩ {v3, v5, v6, v7, v9} is

not a connector since G[{v3, v9}] is disconnected. After the

while-loop, the component {v3, v5, v6, v7, v9} in Gi3 is added

toMcurrent in line 14. Finally we have the following output;

Mcurrent = {{v1, v2, v6, v9}, {v2, v3, v7, v8, v9}, {v3, v5, v6, v7, v9},

{v2, v9}, {v3}, {v4}, {v6, v9}, {v7}, {v9}}.

The following theorem shows the correctness of COOMA.

Theorem 1. Algorithm 1 outputsM(G, I,σ) correctly.

Proof. Let ik , k = 2, . . . , p denote the items chosen from I in

line 4 in this order, and letMk
current denote the setMcurrent after the

iteration on item ik of the for-loop. By induction on k = 2, . . . , p,

we prove thatMk
current after the iteration on item ik of the for-loop

satisfies:

(a) Mk
current ⊆M(G, I,σ);

(b) Mk
current ⊇ C(V⟨i j⟩, E) for all items i j ∈ I with j < k; and
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Algorithm 1 COOMA

Input: a graph G = (V, E), an item set I and a function σ : V → 2I

Output: M(G, I,σ)

1: Compute C(V⟨i⟩, E) and Fi := C(V⟨i⟩, E⟨i⟩) for each item i ∈ I, and

S :=
⋃

i∈I (C(V⟨i⟩, E) \ C(V⟨i⟩, E⟨i⟩));

◃ C(V⟨i⟩, E) \ C(V⟨i⟩, E⟨i⟩) consists of singletons

2: Choose an item i1 ∈ I;

3: Mcurrent := Fi1
∪ S;

4: for each item i ∈ I − {i1} do

5: Construct the graph Gi := G[V⟨i⟩, E⟨i⟩];

6: Mtemp :=Mcurrent;

7: while ∃X ∈Mtemp with |X| ≥ 2 do

8: Choose a set X ∈Mtemp with maximum |X| ≥ 2;

9: Mtemp :=Mtemp \ {X};

10: Compute C(X, E⟨i⟩) in the graph Gi;

11: Mcurrent :=Mcurrent ∪ C(X,E⟨i⟩) without creating duplications;

12: Mtemp :=Mtemp \ C(X, E⟨i⟩);

13: end while

14: Mcurrent :=Mcurrent ∪ Fi without creating duplications;

15: end for

16: OutputMcurrent asM(G, I,σ).

(c) Mk
current is self-contained.

Let M1
current denote the set Mcurrent in line 3. Then M1

current is

a subset of M(G, I,σ), since C(V⟨i1⟩, E) ⊆ Fi1 ∪ S ⊆ CG,I,σ ⊆

M(G, I,σ) by Lemma 1(i). Obviously M1
current is self-contained

since any pair of sets are either disjoint, or one is a singleton and

a subset of the other. Hence M1
current satisfies conditions (a)-(c)

for k = 1.

For k ≥ 2, assume thatMk−1
current before the iteration on item ik

of the for-loop satisfies conditions (a)-(c). We prove thatMk
current

satisfies conditions (a)-(c). The set Mk−1
current will be augmented

during the while-loop for item ik and in line 14. Note that each

set Y in C(X,E⟨i⟩) in line 10 is a component in C(X ∩ C, E) for

a component C ∈ C(V⟨ik⟩, E⟨ik⟩) ⊆ C(V⟨ik⟩, E) with |C| ≥ 2. The

while-loop adds to Mk−1
current the sets Y in C(X ∩ C, E) for each

pair (X,C) of a set X ∈Mk−1
current (⊆ M(G, I,σ)) with |X| ≥ 2 and

a set C ∈ C(V⟨ik⟩, E) with |C| ≥ 2. All sets Y in C(X ∩ C, E)

are connectors in M(G, I,σ) by Lemma 1(ii). Line 14 adds to

Mk−1
current the family C(V⟨ik⟩, E⟨ik⟩), which is a subset ofM(G, I,σ)

by Lemma 1(i). Hence after the iteration, conditions (a) and

(b) hold for Mk
current. To prove that (c) holds after the iteration,

it suffices to show that for each set X ∈ Mk−1
current, the family

C(X ∩ C, E) with any set C ∈ C(V⟨ik⟩, E) with |C| ≥ 2 is included

in Mk
current, since (c) holds before the iteration. If X ∈ Mk−1

current,

then C(X ∩C, E) for any set C ∈ C(V⟨ik⟩, E) with |C| ≥ 2 is added

to Mk−1
current during the while-loop. If X is a newly added set to

Mk
current, then there is a set CX ∈ C(V⟨ik⟩, E) with CX ⊇ X, where

the family C(X ∩ C, E) for each set C ∈ C(V⟨ik⟩, E) is empty or

contains CX . Therefore (c) holds after the iteration.

After the last iteration of the for-loop, M
p
current is a self-

contained subfamily ofM(G, I,σ) withM
p
current ⊇ CG,I,σ, which

means thatM
p
current =M(G, I,σ) by Lemma 1(iv). "

We analyze the time complexity of COOMA. For a familyM

of connectors, let us represent by ∥M∥ the total of the graph size

(i.e., |V[X]| + |E[X]|) over all connectors X inM. In the for-loop

(from lines 4 to 15) with the item i, the subgraph G[X] is searched
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Fig. 2 The search tree of COPINE on the example of Figure 1

for each X ∈Mi
current. Then the running time is bounded by;

O(
∑

i∈I

∥

∥

∥Mi
current

∥

∥

∥) = O(|I| · ∥M(G, I,σ)∥).

4. Discussion

4.1 Difference between COOMA and COPINE

An existing algorithm COPINE [9], [10] traverses a search tree

in the depth-first manner. In Figure 2, we show the search tree

for the instance of Figure 1. In the search tree, each node ex-

cept the root is associated with a vertex in G, and accordingly,

it is also associated with a subset of vertices that are on the path

from the root to the node. The black nodes represent connec-

tors in CG,I,σ, whereas the gray nodes represent connectors in

M(G, I,σ) \ CG,I,σ. COPINE identifies whether the vertex subset

X of the visited node is a connector or not, and outputs X if it

is so. It has a mechanism for pruning the tree, by which redun-

dant search is avoided. For example, if G[X] is disconnected or

|Aσ(X)| < θ, then we can skip the search of the descendants of the

current node.

COOMA enumerates connectors in a completely different way.

The nodes indicated by a rectangle represent the connectors in

Mcurrent as of line 3. In the first (resp., second) for-loop from

lines 4 to 15 where i is set to i2 (resp., i3) the connectors indicated

by a rounded rectangle (resp., a pentagon) are found.

When we enumerate θ-connectors for a large θ, we expect

COPINE to be more efficient than COOMA since COPINE has

a mechanism for pruning the search tree based on the item set

size, while COOMA does not. To enumerate θ-connectors by

COOMA, we have to run the algorithm completely and to collect

X such that |Aσ(X)| ≥ θ. In this strategy, the computation time of

COOMA hardly changes with respect to θ.

An extension of the connector enumeration problem may ask

for enumeration of connectors X such that |X| ≥ s for a parameter

s, supposing that a connector of too small a size is meaningless.

Then, we expect COOMA to be superior for this extension; we

can implement COOMA so thatMcurrent is maintained separately

by the set size. To be more precise, preparing an appropriate data

structure to store the found connectors (e.g., trie, binary tree and

hash table) for each set size |X| ∈ {1, . . . , |V |}, we store a discov-

ered connector X by inserting X to the data structure for the size

|X|. We can ignore a connector X and thus discard it if |X| < s. On

the other hand, it may be hard to prune the search tree of COPINE

based on |X|.
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Algorithm 2 R-COOMA

Input: a graph G = (V, E), an item set I and a function σ : V → 2I

Output: M(G, I,σ)

1: Compute C(V⟨i⟩, E) and C(V⟨i⟩, E⟨i⟩) for each item i ∈ I, and S :=
⋃

i∈I (C(V⟨i⟩, E) \ C(V⟨i⟩, E⟨i⟩)) without creating duplications;

◃ C(V⟨i⟩, E) \ C(V⟨i⟩, E⟨i⟩) consists of singletons

2: F :=
⋃

i∈I C(V⟨i⟩, E⟨i⟩) without creating duplications;

3: j := 0;

4: while F ! ∅ do

5: j := j + 1;

6: Find a maximal family F j of disjoint sets in F by the minimum-

cardinality greedy method (i.e., after initializing F j := ∅, add a set

X ∈ F \ F j with minimum |X| to F j);

7: F := F \ F j;

8: end while

9: p := j;

10: Mcurrent := F1 ∪ S;

11: for each index i = 2, 3, . . . , p do

12: Construct the graph Gi := G[V,∪S∈Fi
E[S ]];

13: Mtemp :=Mcurrent;

14: while ∃X ∈Mtemp with |X| ≥ 2 do

15: Choose a set X ∈Mtemp with maximum |X| ≥ 2;

16: Mtemp :=Mtemp \ {X};

17: Compute C(X, E(Gi)) in the graph Gi;

18: Mcurrent :=Mcurrent ∪ C(X,E(Gi)) without creating duplications;

19: Mtemp :=Mtemp \ C(X, E(Gi));

20: end while

21: Mcurrent :=Mcurrent ∪ Fi without creating duplications;

22: end for

23: OutputMcurrent asM(G, I,σ).

4.2 Reorganization of (I,σ)

The implementation of COOMA as in Algorithm 1 repeats the

for-loop from lines 4 to 15 over the items in I \ {i1}. If we could

reorganize (I,σ) to (I′,σ′) so that M(G, I,σ) = M(G, I′,σ′)

and |I| > |I′|, then COOMA would enumerate all connectors in

M(G, I,σ) more quickly, from the instance (G, I′,σ′).

In Algorithm 2, we show such a variant of COOMA, named R-

COOMA (reorganized COOMA). The part that reorganizes (I,σ)

is from lines 2 to 9. In line 2, all connectors X ∈ CG,I,σ such that

|X| ≥ 2 are collected into F . Then from lines 4 to 8, the “new

item set” is constructed by partitioning F into F1, . . . ,Fp. Each

F j ( j = 1, . . . , p) is the union of disjoint subsets in F , and the

subsets are chosen from F by the minimum-cardinality greedy

method.

The for-loop from lines 11 to 22 is almost the same as that

of COOMA in Algorithm 1. The only exception is line 12. We

take the subgraph Gi := G[V,∪S∈Fi
E[S ]] instead of the subgraph

Gi := G[V⟨i⟩, E⟨i⟩] (see line 5 in Algorithm 2).

Let us describe why we employ the minimum-cardinality

greedy method in constructing F j. If a connector is found dur-

ing the algorithm, then it is overlaid to the subsequent subgraphs

Gi. Connectors that are found earlier in the algorithm are overlaid

more times than ones that are found later. Hence, it must be better

to use the minimum-cardinality greedy method to construct F j.

Also we expect that p < |I| holds and that R-COOMA runs

faster than COOMA.

The next theorem states the correctness of R-COOMA.

Theorem 2. Algorithm 2 outputsM(G, I,σ) correctly.

Proof. For k = 2, 3, . . . , p letMk
current denote the setMcurrent at

the end of the k-th iteration of the for-loop in lines 11 to 22, and

let M1
current be the set Mcurrent obtained in line 10. We will first

show that eachMk
current, k = 1, 2, . . . , p, satisfies:

(a) Mk
current ⊆M(G,σ);

(b) Mk
current is self-contained;

and finally,

(c) M
p
current ⊇ C(V⟨i⟩, E), for all i ∈ I.

First, observe that (a) and (b) are satisfied byM1
current = F1 ∪S

in line 10, since by Lemma 1(i) it holds that F1 ∪ S ⊆ CG,I,σ ⊆

M(G, I,σ), and any two sets inM1
current are either disjoint or one

is a singleton and a subset of the other. Next, for k ≥ 2, assume

thatMk−1
current satisfies (a) and (b).

The setMk−1
current will be updated in the while-loop of lines 14 to

20, and in line 21. Now, each set Y ∈ C(X, E(Gi)) in line 17 is a

component in C(X∩C, E) for a connector C ∈ C(V,∪S∈Fi
E[S ]) ⊆

CG,I,σ. The while-loop of lines 14 to 20 adds toMk−1
current the sets

Y in C(X ∩ C, E) for each pair of a set X ∈ Mk−1
current with |X| ≥ 2

and a set C ∈ C(V,∪S∈Fi
E[S ]) with |C| ≥ 2. By Lemma 1(ii), all

such sets Y are connectors in M(G, I,σ). In line 21 all sets of

the family Fi ⊆ CG,I,σ ⊆ M(G, I,σ) are added to Mk
current, and

thereforeMk
current satisfies (a).

To see that Mk
current also satisfies (b), it suffices to show that,

for each X ∈ Mk−1
current and all C ∈ C(V,∪S∈Fi

E[S ]), the fam-

ily C(X ∩ C, E) is included in Mk
current, since (b) is satisfied for

Mk−1
current by the inductive assumption. If X ∈ Mk−1

current, then this

is achieved by the while-loop of lines 14 to 20. Otherwise,

i.e., if X is newly added to Mk−1
current, then there must be a set

CX ∈ C(V,∪S∈Fi
E[S ]) with CX ⊇ X. For each set C ∈ C(V⟨ik⟩, E),

the family C(X ∩C, E) is empty or contains CX , and therefore (b)

also holds after the iteration.

Finally, at the end of the for-loop, M
p
current contains CG,I,σ =

S ∪
⋃p

i=1
Fi, and thus (c) is satisfied. By Lemma 1(iv), it holds

thatM
p
current =M(G, I,σ). "

4.3 Reduction

We may reduce the input size by preprocessing. Here we intro-

duce some such techniques.

Reduction 1. Any vertex v ∈ V with |σ(v)| < θ can be removed

from G.

This is possible becauseMθ(G, I,σ) remains unchanged after

v is removed from G. Analogously, we can remove an edge uv

with |Aσ({u, v})| < θ.

Reduction 2. Any edge uv ∈ E with |Aσ({u, v})| < θ can be re-

moved from G.

For any edge uv with σ(u) = σ(v), it holds that |X ∩ {u, v}| = 0

or 2 for each set X ∈ M(M, I,σ). This leads to the following

reduction.

Reduction 3. We can contract any edge uv ∈ E with σ(u) = σ(v)

to obtain a smaller graph.

Note that Reduction 3 can be applied to a leaf edge uv ∈ E with

σ(u) = σ(v).

5. Computational Experiments

In this section, we compare the three algorithms, COOMA,
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R-COOMA and COPINE, in terms of computation time. The

benchmark instances include real genetic networks as well as

random instances. We show the efficiency of COOMA and R-

COOMA, especially for instances that have a large number of

connectors.

Experimental Settings

We implemented COOMA and R-COOMA in C++. For

COPINE, we employ the source code (written in C) that is used

in [8]. We apply Reductions 1 and 2 to reduce the input size.

All the experiments are conducted on a workstation that car-

ries an Intel Core i7-4770 Processor (up to 3.90GHz by means of

Turbo Boost Technology) and 8GB main memory. The installed

OS is Ubuntu 16.04. Under this environment, it takes 0.25 s,

1.54 s and 5.90 s approximately to execute the dmclique bench-

mark (http://dimacs.rutgers.edu/pub/dsj/clique/) for

instances r300.5.b, r400.5.b and r500.5.b, respectively. We

compile the source codes of COOMA and R-COOMA by the

g++ compiler (ver. 5.4.0) with -O2 option, and the source code

of COPINE by the gcc compiler (ver. 5.4.0) with -O2 option.

Random Instances

We generate a random instance (G, I,σ) under four parame-

ters, that is the number n of vertices, the number q of items, the

edge density dE ∈ [0, 1], and the item density dI ∈ [0, 1]. Specifi-

cally, first we take a random graph G = (V, E) of the Erdös-Rényi

model such that |V | = n and an edge is drawn between any two

vertices with the probability dE . Let I = {i1, . . . , iq}. For each ver-

tex v ∈ V , we decide the set σ(v) of items so that, for every item

i ∈ I, i ∈ σ(v) holds with the probability dI . For (n, q, dE , dI ), we

use all combinations of the following;

• n ∈ {100, 150, 200, 250, 300};

• q ∈ {20, 30, 40};

• dE ∈ {0.25, 0.50, 0.75};

• dI ∈ {0.30, 0.40, 0.50}.

We generate five random instances for each (n, q, dE , dI ). The

values that are shown below are averages over the five instances.

First, let us observe how the number |M(G, I,σ)| of connectors

changes with respect to the parameters. In Figure 3, we show how

the number changes when we increase one parameter value, fix-

ing the other parameters. In general, |M(G, I,σ)| gets larger as a

parameter value increases. When the parameters take the largest

values (i.e., (n, q, dE , dI) = (300, 40, 0.75, 0.50)), |M(G, I,σ)| is

up to 3.8 × 106.

It is interesting to see that the number |M(G, I,σ)| is the most

sensitive to dI , rather than q = |I|; the number becomes more

than eight times (5673.2/677.8 = 8.37) when we increase dI from

0.30 to 0.50, while the number becomes just 3081.2/677.8 = 4.55

times when we double q from 20 to 40. The reason is described

as follows; when dI is larger, the intersection |σ(u) ∩ σ(v)| tends

to be larger for any u and v. Then each vertex must be included

in more connectors.

Next, we show the distribution of connectors with respect to

the cardinality. We show the distribution for a random instance

under (n, q, dE , dI ) = (300, 40, 0.75, 0.50) in Figure 4. Note that

the vertical axis is in logarithmic scale. The cardinality of almost

all connectors is no more than 20. We see some peaks. For ex-

ample, the rightmost peak is interpreted as follows; For an item

(200, 20, 0.25, 0.30)

1684.4

(250, 20, 0.25, 0.30)

2077.4

(300, 20, 0.25, 0.30)

2552.0

(150, 20, 0.25, 0.30)

1124.6

(100, 20, 0.25, 0.30)

677.8

(100, 30, 0.25, 0.30)

1671.2

(100, 40, 0.25, 0.30)

3081.2

(100, 20, 0.50, 0.30)

967.4

(100, 20, 0.75, 0.30)

1172.8
(100, 20, 0.25, 0.40)

1927.6

(100, 20, 0.25, 0.50)

5673.2

Fig. 3 The numbers |M(G, I,σ)| of connectors in random instances under
parameters (n, q, dE , dI )
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Fig. 4 Distribution of connectors X with respect to the cardinality |X|;
(n, q, dE , dI ) = (300, 40, 0.75, 0.50)

i, the expected number of vertices that have i is 300 × 0.5 = 150.

These vertices must belong to the same component because the

edge density dE = 0.75 is relatively high. They form a connector,

and then we see a peak around |X| = 150.

Finally, we compare the three algorithms, COOMA, R-

COOMA and COPINE, in terms of computation time. We

show their computation time in Figure 5. The vertical axis in-

dicates the computation time, and the horizontal axis indicates

|I| · |M(G, I,σ)| of a random instance. We take this value as a

rough approximate of |I| · ∥M(G, I,σ)∥, expecting the computa-

tion time of COOMA to be proportional to it. The three symbols

△ (COOMA), " (R-COOMA) and + (COPINE) on the same ver-

tical line show the computation time for the same instance. As

shown, as |I| · |M(G, I,σ)| gets larger, COOMA and R-COOMA

are more likely to be faster than COPINE, and their computation

time is proportional to |I| · |M(G, I,σ)| in general.

The difference of computation time between COOMA and R-

COOMA is not clear in Figure 5. The figure focuses on small

instances such that |I| · |M(G, I,σ)| ≤ 106 to observe the differ-

ence between the two and COPINE.

We show the computation time for larger instances in Figure 6.

In this figure, we plot the computation time of only COOMA

and R-COOMA. We see that R-COOMA is more efficient than
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Fig. 5 Computation time of the three algorithms for random instances such
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Fig. 6 Computation time of COOMA and R-COOMA for random instances
that have larger |I| · |M(G, I,σ)|

COOMA, as |I| · |M(G, I,σ)| gets larger.

R-COOMA is an algorithm that reorganizes (I,σ) by prepro-

cessing before running COOMA. The size of the new item set

is substituted for p in line 9 of Algorithm 2. In our experiment,

q = p holds for all instances. Nevertheless, R-COOMA is faster

than COOMA. This indicates that an item i having small connec-

tors in C(V⟨i⟩, E) should be searched prior to items i′ which have

larger connectors in C(V⟨i′⟩, E).

Genetic Networks

We apply the enumeration algorithms to instances generated

from real genetic networks. The genetic data are provided by

Dr. Jiexun Wang, a biostatistician from Khoo Teck Puat Hospital

in Singapore.

We describe an overview of the genetic data. It consists of 22

data sets, one of which corresponds to a pair of autosome chro-

mosomes of a human cell. In each data set, there are several

SNPs (single nucleotide polymorphism) that are associated with

multiple diseases. Roughly, an SNP is regarded as a proxy to a

gene. The association between any two SNPs is measured by an

LD (linkage disequilibrium) value, which is a numerical value in

[−1, 1].

For each data set, we consider the problem of enumerating all

maximal subsets of SNPs such that:

• the SNPs share a common set of diseases; and

• any two SNPs within them are “strongly” associated (i.e., the

Table 2 Number of connectors (indicated by |M|) and computation time (s)
of the algorithms for 22 instances generated from the genetic data:
ϵ means that the computation time is less than 0.01 seconds.

ID n q dI |M| COP- COO- R-COOMA
INE MA (p)

1 267 1358 0.051 30422 1.13 2.84 1.44 (228)
2 266 1358 0.050 28141 1.05 2.51 1.32 (225)
3 194 1358 0.050 14407 0.40 1.31 0.67 (183)
4 150 1353 0.048 8305 0.16 0.78 0.34 (145)
5 157 1356 0.048 8347 0.18 0.77 0.35 (149)
6 335 1358 0.054 92360 4.63 10.78 4.37 (305)
7 137 1355 0.048 6189 0.11 0.56 0.26 (134)
8 143 1357 0.049 7453 0.14 0.70 0.33 (150)
9 144 1355 0.053 9599 0.20 0.98 0.46 (190)
10 156 1356 0.051 9820 0.21 0.94 0.45 (164)
11 170 1357 0.050 10668 0.25 1.00 0.48 (166)
12 168 1357 0.050 9707 0.22 0.92 0.44 (166)
13 86 1332 0.048 2710 0.03 0.24 0.10 (102)
14 94 1337 0.051 3569 0.04 0.33 0.14 (118)
15 112 1347 0.051 5550 0.08 0.54 0.23 (140)
16 100 1342 0.050 3892 0.05 0.36 0.15 (120)
17 93 1336 0.053 4439 0.05 0.46 0.18 (161)
18 63 1293 0.052 1627 0.01 0.14 0.05 (88)
19 91 1342 0.052 3578 0.04 0.34 0.14 (123)
20 82 1326 0.052 2854 0.03 0.26 0.11 (109)
21 48 1234 0.056 1001 ϵ 0.08 0.03 (84)
22 55 1238 0.054 1231 ϵ 0.10 0.04 (81)
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Fig. 7 Computation time of the three algorithms for the genetic instances

absolute value of the LD value between the SNPs is high).

We transform a data set into our instance as follows. We regard

an SNP as a vertex, a disease as an item, and that the SNPs form

a complete graph with weighted edges, where the weight of an

edge that connects two SNPs is given by the LD value between

them. To focus on the strong edges, we reserve γ
(

n
2

)

edges that

have the largest absolute LD values, and remove the remaining

edges, where n is the number of vertices and γ ∈ [0, 1] is a pa-

rameter. What we would like to enumerate is connectors in the

resulting graph.

We show the number of connectors and computation time of

the algorithms in Table 2. In this experiment, γ is set to 0.50. In

these instances, the number n of vertices is from 48 (ID 21) to 335

(ID 6), and the number q of items is from 1234 (ID 21) to 1358

(ID 6). They contain much more items than the random instances

in the last experiment, while the item density dI is lower; it is as

small as about 0.05. We plot the computation time of the three

algorithms in Figure 7, in the similar manner as Figures 5 and 6.

We see that R-COOMA is clearly faster than COOMA. The

computation time of R-COOMA is less than 50% of the compu-

c⃝ 2018 Information Processing Society of Japan 7

Vol.2018-AL-168 No.8
2018/5/26



IPSJ SIG Technical Report

tation time of COOMA for all instances. In Table 2, we show p,

the size of the “new” item set that R-COOMA obtains as a result

of the preprocessing. As shown, the new item set contains fewer

than 1/4 items than the original item set for all instances. This

must be one of the significant reasons that R-COOMA is faster

than COOMA.

COPINE is the fastest for all instances except ID 6, while

the difference between COPINE and R-COOMA is quite small.

Since R-COOMA is faster than COPINE for the instance ID 6,

which has the largest number of connectors, we expect that, for

instances that have more connectors, R-COOMA is more efficient

than COPINE.

6. Concluding Remarks

In this paper, we propose a novel algorithm COOMA for the

problem of enumerating all connectors of a given graph with an

item set. We experimentally show the efficiency of COOMA

and its sophisticated version, R-COOMA, in comparison with

COPINE, an existing algorithm, especially for instances that have

a large number of connectors.

Among the future work is improvement of our implementa-

tion. COOMA is a graph-search based enumeration algorithm,

and it would be interesting to design another algorithm based on

other algorithmic frameworks, e.g., family trees. Possible exten-

sions include the formulation of other graph models (e.g., hyper-

graphs, digraphs and vertex- and/or edge-weighted cases) under

various requirements (e.g., k-edge- and/or k-vertex-connectivity,

min/max degree and flow values or distance in weighted ver-

sions).
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