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Abstract: Cell analysis is one of the core procedures done frequently during the course of research in a number of
fields, including bacteriology and embryology. It is often done manually, examining images gathered with a micro-
scope. This approach is labor-intensive and lacks reproducibility, emphasizing the importance of an automatic solution
for the cell analysis problem. This work presents image processing based automation solutions for two cell analysis
problems: drug susceptibility testing and early-stage embryo segmentation. The first problem we solved for a re-
cently introduced device, by processing its images that contained cells. Cells were detected, their features extracted
and used as input for SVM predicting drug susceptibility. The solution of the second problem involved applying 3D
level set with custom energy functions for processing Z-stacks of fluorescence microscopy images. Both tasks were
implemented as stand-alone tools, showed high accuracy on the respective datasets.
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1. Introduction
Analysis of visual data is the main procedure during the ex-

perimental stage of research in various fields, including biology
and medicine. New devices for capturing images and advances in
microscope design facilitated the acquisition of extremely large
volumes of visual data. Not only improvements in hardware con-
tributed towards the increase of data quantity, but also progress in
developing novel techniques for visualization, for example, those
that allowed to target and display particular parts of living cells
and investigate the time-depended internal changes [1]. Despite
an explosive increase in the rate at which digital image data is
obtained in biological studies, the development of methods for its
automatic processing and analysis is dramatically lacking [2].

There are a number of difficulties which prevent the adoption
of existing image processing algorithms for numerous biomedical
tasks. First, due to the substantial variety of images obtained in
each particular task, it is nearly impossible to create a fully uni-
fied method, thus each time it is necessary to tune a previously
introduced technique or develop one from scratch. Second, deep
knowledge in both fields - computer science and biology - is re-
quired to construct an efficient algorithm, which can be achieved
only by strong collaboration between researchers of different spe-
cialties. Finally, there is a necessity of constant maintenance,
since the procedure of capturing data can change dramatically
during the experimental stage.

An increasing number of studies have presented results of ap-
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plying computational image processing methods to biomedical
data [3], [4], [5], [6]. Yet, there is still a strong need for automated
methods that are capable of conducting image analysis providing
robust, accurate, objective metrics and alleviating specialists of
labor-intensive work.

Investigation of cell morphology, growth, reaction to chemical
agents is a frequently occurring problem in biomedical research.
It is a core task in many different fields including bacteriology
and embryology. Automation of this procedure is rather com-
plicated since it often demands to conduct several procedures –
perform cell detection, carry out tracking, extract a number of
cell features, and provide a high-level judgment.

During the course of studies presented in this paper automatic
solutions for two cell analysis problems have been constructed:
rapid drug susceptibility testing and early-stage embryo segmen-
tation.

2. Rapid drug susceptibility testing
A rapid increase of bacteria strains resistant to multiple drugs

observed in recent years is a highly alarming issue [7]. Various
factors contribute towards this tendency, among which inappro-
priate use of antibiotics in animal husbandry and overprescrip-
tion of drugs are the most significant [8]. The development of
new antibiotics is a costly procedure that requires investigation of
genetic makeup of each individual bacteria strain and meticulous
testing of a plethora of active chemical agents. The procedure
of testing new potential active agents during clinical research is
called drug susceptibility testing (DST).
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2.1 DST
DST is the process of investigation bacteria strain resistance to

different concentrations of various drugs. There are two types of
DST: genotyopic that involves gene sequencing for identifyinbg
mutated genes, and phenotypic that observes visual morphologi-
cal changes in cells, directly examines responses to antimicrobial
agents. Unlike genotypic, phenotypic primarily analyze visual
information of the microorganisms inspecting replication of cells
at different drug concentrations and comparing it with a refer-
ence control sample. The minimum concentration of a drug that
prevents bacteria growth is referred as minimum inhibitory con-
centration (MIC).

Among the most common and wide spread methods for con-
ducting DST is a microbroth dilution method [9], [10]. The DST
procedure with this method starts with preparing two-fold dilu-
tions of antibiotics in a liquid growth medium dispensed in test
tubes. These test tubes assembled in trays, which often contain
96 wells, allowing to test approximately 12 different drugs in a
range of 8 two-fold dilutions simultaneously. To cary out testing,
drugs are pre-introduced and then a bacterial suspension is trans-
fered into each well. The accuracy of the method is very high, and
it is commonly used for obtaining ground truth MIC for bacteria
strains. Alternative methods for performing DST are gradient and
disk diffusion methods. These methods assess the susceptibility
levels of bacteria cells by evaluating the shapes of an area free of
bacteria cells formed as a result of the presence of antibiotic test
strips or paper disks [11], [12]. The MIC in these techniques is
determined after an overnight of incubation.

Several attempts to develeop a rapid and automized machines
and methods for conducting DST have been done. For example,
a MicroScan device capable of providing data after 22h was de-
signed to incubate and analyze up to 96 microdilution trays [13].
The Vitek 2 System uses compact plastic reagent cards, that con-
tain small quantities of an antibiotic and test media in a 64-well
format. The device can be configured to perform up to 240 simul-
taneous tests, and collecting results after 4-10 hours of incuba-
tion. Despite several solutions for automation of DST procedure
do exist, the high price of the devices and necessity to perform
full-length incubation cycle of bacteria isolates restricts the wide
spread of these systems. In rescently published works a num-
ber of new inexpensive devices and rapid DST techniques have
been proposed [14], [15]. One of the proposed methods involves
using the drug susceptibility testing microfluidic (DSTM) device
designed by Matsumoto et al. [16], [17]. It was showed that this
device can provide readable data in no more than 3 hours, quicker
than the majority of other devices.

2.2 DSTM device
The DSTM device is prepared as follows. It contains five sets

of four microfluidic channels, printed in a polymer on a cover
glass [17] . Four channels in one set share inlet hole allowing to
perform observations of cell growth with an introduced drug with
three different concentrations and a control sample (see Figure 2).

The following procedures are conducted in order to determine
MICs for bacteria strains using the DSTM device. First, a drug
in different concentrations is introduced in three test microfluidic

channels of each one of the channel sets. The remaining channel
is used as the control sample for the observations. Next, after the
drug solution is dried, a cation-adjusted Mueller-Hinton broth of
bacteria culture, grown in advance on Heart infusion agar, is in-
troduced with a micropipette. Finally, the fully prepared device
is incubated under humid conditions at 37◦C for up to 3 hours.

The protocol of estimating the MIC with the DSTM device
consists of visual inspections of images of channel sets taken with
a camera attached to a microscope. Visible differences in cell
morphology, or a number of cells between test sample, and the
control sample signify that the input strain is susceptible to the
used drug at a particular concentration. The minimum concentra-
tion of the drug to which the strain is susceptible constitutes its
MIC.

The growth rate of each individual bacteria strain can differ
from other strains. Thus, it is not possible to carry out the com-
parison of the changes using a uniform control sample for all
range of strains. Hence, the control sample of each strain must
be incubated together with the test samples to perform correct
observations.

Manual measurements of cell characteristics based on visual
inspections were extremely labor-intensive, time-consuming, suf-
fer from approach subjective biases and lack of reproducibility.
To resolve this issue we developed an algorithm and implemented
it as an automatic tool able to extract bacteria cell features as well
as determine the susceptibility of a bacteria strain.

Fig. 1 An actual of the DSTM device, together with a microscopy image of
the microfluidic channels.

2.3 Methods for cell analysis
A number of methods able to perform cell detection, tracking,

and analysis have been introduced in recent years. A CellProfiler
system is capable of simultaneously measuring size, shape, in-
tensity, and texture of a variety of cell types in a high throughput
manner [18]. After carrying out illumination correction, iden-
tifying cells with fluorescence markers it then measures a large
number of simple and complex features for each cell. The cal-
culated features include area, shape, intensity, texture, Zernike
shape, Haarlick and Gabor texture features. Another automated
cell analysis framework CellScreen was developed for automated
quantification non-invasive cell counts in small volume cultiva-
tion vessels [3]. The system consists of an inverse microscope,
equipped with a 10x lens, a camera, and a special application
software. Initially, 96 well plate, filled with cell suspension is
positioned on the motor stage, positioned and calibrated automat-
ically. The images captured at the base of the well, then the num-
ber of viable and dead cells and their morphology is evaluated.

To solve the task of measuring strain susceptibility from an
image of DSTM device, the existing methods require significant
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modification. Different packages must be used at different stages
of analysis, resulting in a complex workflow and an increased
processing time. Therefore, the aim of the research was to de-
velop a dedicated method for automatic processing microscopy
images of DSTM device for performing DST.

2.4 Automatic DST with DSTM device
The developed algorithm for quantitative analyses and sus-

ceptibility assessment of a bacterial strain from an image of the
DSTM device has five stages: noise reduction, localization of the
channel regions, cell detection, feature extraction, susceptibility,
and MIC estimation.

Fig. 2 A scheme of the proposed algorithm for processing an input image of
DSTM device channel to extract cell features, estimate susceptibile
for each drug concentration and obtain MIC

The input images are taken with a camera attached to a micro-
scope. At the first stage, these images are enhanced by applying
illumination correction and denoising. Next, Probabilistic Hough
Transform is used to determine the borders of each individual
microfluidic channel. At the following stage, a cell detection is
carried out assigning a background or cell label for each pixel.
The acquired segmentation facilitates the extraction of a various
cell features, which are then normalized with those obtained from
the control sample. The features are assembled into vectors, that
serve as input for a pre-trained SVM, which determines if the bac-
teria strain is susceptible to a particular drug concentration or not.
The least concentration of the drug for which the SVM predicted
susceptibility is the MIC.
2.4.1 Illumination correction

The process of capturing digital images using microscopy often
results in nonuniform illumination of the scene. For further cor-
rect processing of the visual data it is essential to enhance the im-
age by performing illumination calibration. The illumination of
image taken with a light microscope can be model to be guadratic
using the following equation [19].

Fig. 3 Photographs of DSTM device channels illustrating cell responses to
different antimicrobial agents: (a) cell elongation for ciprofloxacin,
meropenem, piperacillin; (b) decrease in the number of living cells
for amikacin; (c) formation of spheroplasts for meropenem.

Iq(x, y) = a1x2 + a2y
2 + a3xy + a4x + a5y + a6 (1)

The procedure for illumination correction minimizes and opti-
mization function χ2 based on least-squares estimators to fit it to
the intensity distribution of the input image.

χ2 =

M∑
m=1

N∑
n=1

(I(m, n) − Iq(m, n))2 (2)

This illumination correction approach was directly applied to
the input images of the DSTM device. It was followed by the bi-
narisation procedure carried by Otsu adaptive thresholding [20].
This procedure separates foreground and background pixels to
calculate threshold t by minimizing the weighted within-class
variance of each type of pixels.

σ2
w(t) = q1(t)σ2

1(t) + q2(t)σ2
2(t) (3)

2.4.2 Channel detection
The next step of the algorithm is the detection of DSTM device

microfluidic channels in the input image. This is carried out by lo-
cating left and rights borders for each channel. The DSTM device
is placed manually in the observation field, the position of the bor-
ders varies from image to image. Thus a dynamic algorithm for
detecting these borders was constructed. It utilized Canny edge
detection followed by Progressive Probabilistic Hough Transform
(PPHT) [21]. The output of the PPHT is a set of lines – channel
border candidates. Using additional constraints - generally verti-
cal orientation of the lines and equality of channel widths.
2.4.3 Cell detection

Cell detection is the most challenging step in image analysis
and its accuracy determines the efficiency of the resulting cell
measurements.

A number of susceptible bacteria strains growing in the pres-
ence of a drug demonstrate anomalous growth, where cells do not
divide and continue to elongate. At the captured image these cells
appear as cluttered together, entangled, and overlapped. This is-
sue had to be addressed to obtain the accurate number of cells
present in each channel.

Watershed or level set techniques were not applicable for solv-
ing this problem due to the small scale of the cells [24]. Instead,
a separation algorithm modeling overlapped cells as graphs and
performing splitting was developed. At first, the algorithm ex-
tracts all connected regions using connected-component labeling
method [25] applying it to the binary image obtained as the re-
sult of procedures carried out at the illumination correction stage.
Next, morphological thinning is applied to using the Zhang-Suen
method [26]. For each pixel, this method checks neighbors and
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removes pixels if they correspond to a certain pattern. Thin-
ning produces a skeleton representation of the original structure
in which the intersection points are pixels two or more non-
background neighbors. In addition to intersections, points where
potential cells touch is located – points where the second deriva-
tive, violates the constraint, defined by a threshold constant.

At the next step, each cell is modeled as a graph that preserves
its morphological structure. Intersection, endpoints and touch
points become nodes, while the connection between these points
become edges. All possible routes in the graph are extracted using
the breadth-first search. For each route, smoothness constraint is
checked and if it is not satisfied the route is removed from the set.
The smoothness constraint is defined as the maximum allowed
angle between nodes. A set of routes with the maximum number
of nodes to cover the entire graph is chosen. The found routes
represent individual cells and labeled accordingly. Finally, labels
are assigned to pixels that were removed at the thinning stage.
2.4.4 Feature extraction

The output of the cell detection stage is a set of labeled pixels,
which describes bacteria cells. From this data extracting a variety
of different features to represent changes in cell growth is a fairly
straightforward task.

Cell morphology is one of the major indicators of the strain
sensitivity. To represent this attribute for each cell its area and
length are calculated. The area is defined as the total number of
pixels, while the length is approximated as the number of pix-
els in the thinned representation of the cell. Statistics of these
two features, mean, minimum, and maximum, as well as an 8-
bin histogram of cell frequencies in relation to length, are used
to characterize strain growth in the presence of a particular drug
concentration. In addition to shape features, the cell count is also
added to the set of features to represent the number of the living
cells.

The growth rate of bacteria strains varies significantly – two
bacteria strains, obtained from different patients, could show
completely distinct growth rates, even without the presence of
a drug. Hence, to be able to compare cell characteristics of vari-
ous strains the calculated attributes has to be normalized. This is
done by dividing obtained variables from each one of three test
channels by those calculated for the control channel, producing a
set of relative attributes.
2.4.5 Susceptibility estimation

The prediction of susceptibility from a set of relative features
for each microfluidic channel performed with a Support Vec-
tor Machine. Support Vector Machine (SVM) is a widely used
supervised learning technique for classification and regression
[27], [28]. Let set X = {(~xi, yi), i = 1, ...,N; } be the training
data where ~xi ∈ Rd represents feature vectors and yi ∈ {−1, 1}
are labels. SVM solves the classification problem by identifying
a hyperplane, separating two classes. The task or building the
separating hyperplane can be reformulated as a problem of solv-
ing a task of maximizing a Lagrangian LD subject to additional
constraints.

LD =

N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiα jyiy j~xi · ~x j (4)

N∑
i=1

αiyi = 0, 0 ≤ αi ≤ C (5)

2.5 Experimental results
2.5.1 Dataset

The DSTM device used in the studies was prepared by fabri-
cating microfluidic channels (width, 100µm; height, 50 µm) in a
polymer (polydimethylsiloxane - PDMS; Silpot184, Dow Corn-
ing Toray Co., Ltd., Tokyo, Japan) on a glass cover (Matsunami
Glass Ind., Ltd., Osaka, Japan) using soft lithography technique
[22]. The input images were captured with a USB camera, at-
tached to a phase contrast microscope with 10-fold objective lens
with JPEG compression and 1280x1024 resolution.

Five different drugs were applied to the bacteria strains:
amikacin (AMK; Nichi-Iko Pharmaceutical Co., Ltd. Toyama,
Japan), ciprofloxacin (CIP; Meiji Seika Kaisha, Ltd., Tokyo,
Japan), meropenem (MPM; Meiji Seika Kaisha, Ltd.), cef-
tazidime (CAZ; Sawai Pharmaceutical Co., Ltd, Osaka, Japan),
piperacillin (PPC; TOYAMA CHEMICAL CO., LTD, Tokyo,
Japan). Each one of the drugs was used in three different con-
centrations during the testing phase: AMK (4, 8 and 16 mg/L),
CIP (1, 2 and 4 mg/L), MPM (1, 2 and 4 mg/L), CAZ (4, 8 and
16 mg/L) and PPC (4, 8 and 16 mg/L). The active agents were
dissolved in water, injected into microfluidic channels, and then
freeze-dried before using the DSTM device [23].

Strains of 101 clinically isolated bacteria specimens of Pseu-
domonas aeruginosa ATCC27853 were used in experiments. The
strains were grown overnight on Heart infusion agar and sus-
pended in cation-adjusted MuellerHinton broth, and then were
introduced with a micropipette into the DSTM devices. Next,
the DSTM devices then were incubated under humid conditions
(37C) for up to 3h. The ground truth MICs were determined
for the same set of bacteria strains with the microbroth dilution
method [9], [10].
2.5.2 Channel and cell detection accuracy

The first set of the experiments aimed to determine the of the
channel detection stage of the algorithm. Since each image con-
tained 4 channels, and the number of images was 505 (101 im-
ages per each drug), the total number of channels to detected was
2020. Among these only 8 were not correctly detected, due to
less prominent channel borders.

Next, it was necessary to evaluate how well the designed al-
gorithm is able to locate cells. It was not possible to generate
a ground truth segmentation by manually labeling each pixel as
belonging to an individual cell or background due to the num-
ber of cells and images. In addition, no automatic method would
be able to resolve this issue. Therefore, to conduct estimation
of cell detection accuracy, the cells in 100 sample channels from
25 randomly chosen images were manually counted. Then, the
obtained values were compared with those calculated by the pro-
posed technique.

The figure 4 displays are scatter plot that represents the re-
lationship between the number of cells identified automatically
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with those counted manually. The average accuracy of correctly
detected cells was 93%. Careful analysis of the samples where
misdetection had occurred revealed that the main cause of errors
is highly overlapped elongated cells where the algorithm labels
segments as individual cells.

Fig. 4 Scatter plot that represents the accuracy of cell detection with the
proposed algorithm.

2.5.3 Susceptibility estimation
Evaluation of the susceptibility estimation accuracy was one of

the main targets during the experimental stage. The entire dataset
containing 303 feature vectors (3 test samples for each one of 101
images) was split into training and testing sets in the ratio 80:20
and testing were done with cross-validation. Separate SVMs were
trained for each individual antimicrobial agent.

Several feature vectors for SVM training was combined with
different cell characteristics to investigate which set of features is
able to achieve the highest accuracy. The following feature sets
were used: (F1) length statistics, (F2) area statistics, (F3) count
and average length, (F4) count and average area, (F5) average
length and area, (F6) histogram (see Table 1).

Drug
Feature AMK CIP MPM CAZ PPC
ALL 0.91 0.96 0.94 0.95 0.9
F1 0.81 0.85 0.9 0.88 0.89
F2 0.83 0.88 0.89 0.86 0.87
F3 0.9 0.96 0.94 0.94 0.9
F4 0.85 0.88 0.87 0.85 0.88
F5 0.78 0.83 0.87 0.87 0.89
F6 0.89 0.95 0.94 0.92 0.9

Table 1 Susceptibility estimation accuracies for feature vectors constructed
from different cell characteristics

For CAZ and PPC, features indicating length (F3, F4, and
F5) were more reliable characteristics for estimation, whereas for
AMK and CIP it was cell count. For MPM, feature vectors in-
dicating length or cell count were equally accurate. The average
accuracy of susceptibility estimating exceeded 90%.
2.5.4 Susceptibility estimation: 2h vs 3h incubation

Above it was shown that the developed algorithm is capable of
estimating strain susceptibility with a rather high accuracy after
3h of incubation. Since it is important for bacteriologists to ob-
tain results as soon as possible, we aimed to investigate how well

the SVM can predict susceptibility from images taken earlier than
3h.

The same dataset of 101 strains and 5 drugs was used during
this experiment, yet the input images were captured merely after
2h of incubation. The feature vectors fed into the SVM consisted
of only two elements: cell count and average length. Then, the
accuracy of susceptibility estimation after 2h for each drug was
compared with the one, achieved after 3h. The results of this ex-
amination is presented in Table 3.

Drug
Incubation time AMK CIP MPM CAZ PPC
2 h 0.74 0.85 0.82 0.8 0.79
3 h 0.9 0.96 0.94 0.94 0.9

Table 2 Susceptibility estimation accuracy using a feature vector, reflecting
only cell count and average length, on samples incubated for 2 h or
3 h

After 2h of incubation, the difference between cell features of
the control and test samples the accuracy of susceptibility estima-
tion was dramatically lower. The minimum value was of 74% was
observed for the amikacin (AMK). The explanation of this fact is
that the bacteria strains grown in the presence of AMK expressed
lesser morphological changes in comparison to other drugs.
2.5.5 MIC estimation accuracy

To provide more statistics for evaluation of the developed
method the degree of correlation between predicted MIC and the
ground truth was calculated. To get the estimation of the min-
imum concentration for each individual bacteria strain, the sus-
ceptibility of each channel in the corresponding image was calcu-
lated with the pre-trained SVM from a feature vector, containing
only cell count and average length. Then, the MIC was assigned
as the minimum concentration among susceptible channels. The
ground truth MIC was obtained by applying the microbroth dilu-
tion method using the same bacterial solution on the same day.

Including samples that showed a two-fold difference in the
MIC, as determined by the traditional microbroth dilution
method, the matching rate of the proposed method was at least
96% (see Table 3).

Drug
AMK CIP MPM CAZ PPC

Accuracy 0.97 0.99 0.97 0.97 0.96
Table 3 Accuracy of MIC estimation for different drugs based on a feature

vector containing only cell count and average length.

2.5.6 SVM classifier vs human export
The final set of experiments was dedicated to comparing the ac-

curacy of MIC prediction with the SVM with the criteria devised
by a human expert, that investigated various features: length,
count, the ratio of cell pixels to the background, and distribution
of cells with different lengths. The criteria proposed by the expert
were derived obtain through trial and error to represent the best
correlation between estimated and ground truth MICs ?.

2.6 Implementation
The goal of the conducted study was not only to design an al-

gorithm for automatic analysis of input images of the DSTM de-
vice but also to develop a stand-alone software tool, that could
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Drug
AMK CIP MPM CAZ PPC

SVM 0.97 0.99 0.97 0.97 0.96
Human 0.96 1.0 0.97 0.97 0.96

Table 4 MIC estimation with the trained SVM classifier vs criterie selected
by a human expert

be used not only by highly skilled experts but also by those who
don’t have significant knowledge in the field of bacteriology. The
implemented tool was designed to have a GUI to provide users
with a simple way for conducting the analysis. The tool is capa-
ble of processing a single image as well as multiple images in a
batch manner (see Figure 5).

The processing speed of the implementation was evaluated us-
ing a machine that had the following characteristics: Intel Core
i7-6700K, 4.0 GHz, 32 GB RAM. Since the cell detection step
of the algorithm can be carried out independently for each chan-
nel, a parallel procedure using thread technology has been imple-
mented.

The speed of processing varied, increasing the number of cells.
Yet it did not exceed half a minute for a single input image. The
longest time was observed for channels with highly overlapped
samples (see Table 5).

Cell count 100 300 600
Without overlapped cells 11s 15s 22s
With overlapped cells 12s 17s 35s

Table 5 Processing speed, given in seconds, of the implemented algorithm
for different average number of cells in a single channel.

2.7 Comparison with existing DST methods
Previously, the methods for conducting DST to produce visual

differences in growth between control and test samples required
long incubation times. Advancements in nanotechnology allowed
to rely on microfluidic chips and microscopy for a wide range of
microbiological experiments [16].

Among all proposed procedures for DST, only a handful was
able to obtain results in less than 4h. For example, Choi J. et
al. [29] described a method involving microfluidic agarose chan-
nel chip for MIC acquisition by analyzing alterations in bacterial
number and size occurred in response to drugs. The method re-
quired a complicated process of setting up a 96-well type unique
plate and conducting observations where images of the plate had
to be taken one by one at a certain time interval.

Other approaches were focused on designing microfluidic
chips and measure susceptibility by assessing time-lapse images
[30], [31]. Notably, Price et al. [32] using an automated mi-
croscopy system analyzed susceptibility of Staphylococcus au-
reus obtaining results in 2-4h. The approach required 2h preincu-
bation to get logarithmically growing cells, yet was not suitable
to assay multiple strains simultaneously.

The key factor that contributed to the rapidity of susceptibility
estimation with the DSTM device is the introduction of a micro-
scope. The damaged bacteria cells treated by antimicrobial agents
are easily visualized with a microscope. In comparison to other
methods, to obtain visual information with the DSTM device re-
quires less than 4 hours: 10 min to set-up and 3h of incubation.

The algorithm developed for automatic cell detection facilitates
the analysis of bacteria cells, and capable of processing input im-
ages within 2 minutes. The advantage of the automatization is not
only the speed of result acquisition but also the accuracy of cell
detection, susceptibility estimation, and MIC prediction, that was
proved with the conducted experiments to be similar to a highly
skilled expert [33].

The implementation of the algorithm as a stand-alone software
tool was deemed useful to bacteriologist in daily research since
it provided an easy to use graphical interface and functionality to
extract cell features for more detailed analysis.

It is planned to expand the range of bacteria types for which the
method can be applied, and propose to use the DSTM device in
daily tests in hospitals. The implementation of the developed au-
tomatic algorithm for susceptibility testing will be supplied with
the device. When this technology is put into practical use, sus-
ceptibility testing will elevate the need for expensive equipment
providing low cost, simple, accurate and rapid tool.

Fig. 5 A screenshot of the graphical interface of the developed software
applications. The menu panels on the left side of the application al-
low to choose imported images, manually select channel areas, and
specify processing parameters. The central area is designated for dis-
playing input and processed images. The panel of the right displays
a frequency chart and cell characteristics.

3. Early stage embryo segmentation
3.1 Cell analysis in embryology

Embryology is a wide field of study that includes investigation
of internal mechanisms of a variety of processes that occur in a
developing embryo. The early stages of growth, from fertilization
to implantation, are of particular interest to the medical commu-
nity. Advances in molecular biology and microscopy provided
new insights into what is taking place at these stages of embryo
development.

The development of the pre-implantation embryo starts from
a single fertilized cell, the zygote. The first division of the zy-
gote usually occurs within 24 hours after ovulation and produces
two cells – blastomeres. Subsequently, a series of mitotic di-
visions take place, yet the volume of the embryo remains con-
stant, while the newly formed blastomeres become smaller and
smaller. When the number of cells reaches 16 the embryo en-
ters the morula stage, during which identical blastomeres start
to differentiate to give rise to different types of cells in the body
[34], [35]. Blastomeres extracted from an embryo are called em-
bryonic stem cells. These cells became known for their ability to
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proliferate and replicate themselves indefinitely and yet maintain
the developmental potential to form any cell type. This unique
feature promises to establish new efficient transplantation treat-
ments for regenerative medicine. Yet to fully unlock the potential
of these cells a detailed model that describes the specialization
process is required.

Fig. 6 Overview of the pre-implantation development of a mouse embryo
during which a fertilized egg divides into increasingly smaller cells
resulting in the formation of the blastocyst.

A number of hypotheses have been proposed to explain the pro-
cess that drives cells to commit to a distinctive line. Early ones
were based on assumptions that development of an embryo was
driven by random processes, where cell contributed equally to any
type of lineage. However, more recent time-lapse imaging stud-
ies suggest that a variety morphological characteristic - volume,
shape and relative positions of blastomeres - play a significant
role in determining cell fate [36], [37], [38]. Despite significant
progress in understanding the process of cell specification, there
are other aspects that also contribute to the determination of the
resulting cell [39], [40].

Uncovering all the mechanisms, underlying the specification
of individual cells and establishing a complete model, requires
quantitative analyses of various blastomere characteristics. They
can be obtained without a considerable effort if segmentation into
individual cells is performed. A number of methods to automate
this labor-intensive procedure have been developed over the past
decade.
3.1.1 Methods for blastomere segmentation

Embryos are commonly imaged by means of phase contrast
technique called Hoffman Modulation Contrast (HMC). This ap-
proach converts optical gradients into variations of light. Ob-
tained HMC images display a transparent embryo with a side-lit
appearance.

Singh et al. [41] presented a segmentation algorithm for pro-
cessing a single HMC image for estimating embryo viability
for fertility. The algorithm successfully segments up to 4 blas-
tomeres, applying isoperimetric graph partitioning, followed by
region merging which uses length, vesselness, and entropy of the
borders between regions. To estimate shape, least-squared fitting
of an ellipsoidal model is used. For the task of performing 3D
morphology measurements and modeling of an embryoGuisti et
al. [42] presented a graphcut-like global energy minimization ap-
proach for segmenting a Z-stack of HMC images and extracting
3D morphology characteristics from HMC images are captured
at different focus levels.

Graphcut-based algorithms, being very versatile, showed effi-
ciency in segmenting each individual cell nuclei in histopathol-
ogy images and tissue samples of higher organisms [43]. The
watershed approaches described in [44], [45] were also able to
successfully detect nuclei in tissue or cell cultures. Segmenta-
tion by gradient vector flow tracking was capable of producing

accurate results, however, it is sensitive to object texture.
Another technique that showed efficiency on a dataset contain-

ing microscopic images of 381 8-cell embryo was proposed by
Tian et al. [46]. The method is based on least square curve fit-
ting applied to phase contrast image to detect blastomeres. Then
the method used edge detection, removing of multiple connected
points and morphology operations to obtain part of cell edges.
3.1.2 Embryo segmentation from fluorescence images

Embryonic development is a dynamic three-dimensional pro-
cess of complex cellular interactions. For high-resolution visual-
ization of development progression genetically encoded fluores-
cent protein (FP) reporters have been most prominent, because
of their high signal-to-noise ratio, minimal toxicity, and ease of
use [47]. There are various methods for visualizing FP reporters.
Widefield fluorescence microscopy for observing whole embryos,
confocal microscopy that allows visualizing an embryo at subcel-
lular and spatiotemporal resolution, and light sheet fluorescence
microscopy, that utilizes plane of light to optically section and
view tissues with subcellular resolution.

Unlike segmentation, an embryo from HMC images, tech-
niques that provided similar output for fluorescence microscopy
images has not been well studied. Nevertheless, a number of
algorithms for general cell segmentation in fluorescence images
have been developed [5], [6], [48].

Dufour et. al [5] proposed a method, based on multiple ac-
tive surfaces, for automatic segmentation and tracking fluorescent
cells in 3D microscopy. The algorithm is able to process multiple
cells, even if they touch, divide or move. An improved version
of this method, in terms of tracking precision and computational
time, was introduced by Dzyubachyk et. al [6]. Xinghua et al.
[48] developed a tool designed to provide quantitative cells mea-
surements in fluorescent intensity 2D and 3D image data. The
main algorithm consists of a detection module to identify each
nucleus, a segmentation module that propagates assigned labels
to the entire body of the respective nucleus, and a classification
module identifying different types of cells.

Fig. 7 Cross sections images of an 8 cell embryo nuclei and membranes. To
mark nuclei and membranes H2B-mCherry and mG proteins were
used.

Inspired by achievements of these works in applying level set
based techniques for segmentation and tracking cell the aim of
our studies was to design and implement a new level set approach
for the task of segmentation early stage embryo in fluorescence
images. The input images were obtained by first, applying excita-
tion light to embryos obtained by crossing female H2B-mCherry
mice with male mG mice [49] (see Figure 7). Then, cross sections
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of the embryos were captured with a light microscope resulting
in two Z-stacks of 3D fluorescence microscopy images: one stack
of cell nuclei and another one of membranes. The segmentation
task is formulated as the detection of inner regions for each indi-
vidual cell as well as localizing the whole volume, occupied by
membranes (see Figure 8). Membranes, corresponding to indi-
vidual cells can be afterward acquired from the solution by locat-
ing surfaces equidistant from inner cell region boundaries with
the distance transform [50].

Fig. 8 To perform segmentation of an embryo 3D level set method is ap-
plied to two Z-stacks of fluorescence microscopy images. One of the
Z-stacks composed of images displaying cell membranes, while the
other one contains visual information about cell nuclei positions.

3.1.3 3D level set segmentation
The segmentation task can be solved with different methods.

Filtering techniques, for example, Canny edge detector, rely only
on local information and don’t guarantee continuously closed
edge contours. Snake [51] and Balloon [52] methods require
good initial estimation of the region boundaries and use edge
cues to carry out segmentation, however, they lack a meaning-
ful probabilistic interpretation and global conditions. Learning
based algorithms are capable of achieving high segmentation ac-
curacy, yet they require a considerable amount of input data to
train on. Finally, optimization techniques based on energy func-
tions or Bayesian criteria involve the usage of global criteria for
which solving a minimization task is difficult.

A trade-off between local and global criteria is the level set
method [54]. It performs evolution by fitting statistical models
to intensity, color or texture with each of the separated regions.
The advantages of this technique are less sensitive to noise and to
varying initialization, ability to handle complex morphology and
topological changes automatically. The major drawback of the
method, however, is that solving the defined partial differential
equation (PDE) is often computationally expensive. This issue is
commonly overcome by limiting the region where computation is
performed [53] or totally avoiding solving the PDE [55].

To estimate cell membranes correctly, instead of directly at-
tempting to locate each one of them individually the developed
algorithm performs segmentation into inner cell regions and the
whole region occupied by membranes. For each type of object
to segment, a separate level set energy function as a differential
equation was defined that penalizes overlapping with other seg-
ments, forces membrane to wrap around inner regions, and spec-
ifies that inner cell boundary is where intensity changes signifi-
cantly.

The level set method was introduced in [54] to track moving
interfaces for various problems in fluid dynamics. Later it was
successfully applied to perform segmentation in computer vision.
The central idea behind this method is to evolve the boundary sur-
face S in the domain Ω ∈ R3 from some initialization in direction
of negative energy gradient with the gradient descent procedure
presented in the equation (6).

∂S
∂t

= −
E(S )

S
= F · n (6)

∂φ

∂t
= −

∂E(φ)
∂φ

= −F|∇φ| (7)

Following the approach for identifying multiple segmentation
regions [56], individual level set functions φi are defined for each
of N inner cell region boundaries and one ψ is set to describe the
surface of the membranes, all of which are evolved simultane-
ously.
3.1.4 Energy functions

The choice of the energy function E(φ) is important, since it
determines the accuracy and robustness of the level set method.
In the developed approach individual energies Einner(φi) and
Emembrane(ψ) were constructed for the two types of level set func-
tions φi and ψ respectively.
3.1.4.1 Inner region energy

The inner region energy Einner(φi) is designed to describe the mor-
phology of the inner cell region boundary. It is a weighted sum
of four terms.

Einner(φi) = w1Eedge(φi) + w2Enucleus(φi) + w3Eoverlap(φi) (8)

The edge energy Eedge(φi) measures how well the surface S i

matches the boundary of the i − th cell inner region. It is defined
following the approach of geodesic active contours.

Eedge(φi) =

"
S i

e(x, y, z) ds (9)

In the equation above, function e(x, y, z) is the edgeness met-
ric. It can be defined with a number of methods, however, for
any definition, the function must be zero at the boundary surface
of a segmented object and take large values elsewhere. In the
proposed approach the edgeness metric was specified as the Eu-
clidean distance from each point of the detected surface S i to the
cell membranes displayed in fluorescence images.

The energy Enucleus(φi) characterizes the position of the nu-
cleus, forcing the inner region to contain nuclei inside it.

Enucleus(φi) = −

$
Qi

log p(Qi|I(~x))dx dy dz−

$
Q0

log p(Q0|I(~x)) dx dy dz
(10)

The I(~x) = I(x, y, z) is the intensity of the pixel (x, y) in the
z−th cross section of the nuclei z-stack. The Qi denotes the region
occupied by the i − th nucleus, while the Q0 is the background.
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The terms log p(Qi|I(~x)) and log p(Q0|I(~x)) represent logarithm
of posterior probabilities of a pixel (x, y, z) to belong to the inner
cell region or background, depending on its intensity I(~x).

The surface boundaries of the all individual cell membranes
combined together are specified by the energy Emembrane(ψ). It
consists of three terms: one that specifies occupied volume that
depends on the intensity of voxels in fluorescence images of
membranes, other penalizes overlapping with inner cell regions
and the final one, that prevents occurring tearing in the surface by
attempting to cover inner cell regions.

Emembrane(ψ) = v1Evolume(ψ) + v2Eoverlap(ψ) + v3Einclusion(ψ)
(11)

Evolume(ψ) = −

$
Ω1

log p(Ω1|J(~x)) dx dy dz−

−

$
Ω0

log p(Ω0|J(~x)) dx dy dz
(12)

The components Ω1 and Ω0 correspond to membranes region
and the background respectively. The J(~x) = J(x, y, z) is the in-
tensity of the membrane pixel (x, y, z).

The energy function Eoverlap(ψ) is constructed similar to
Eoverlap(φi) penalizes the membrane overlap with cell inner re-
gions.

Eoverlap(ψ) =
∑
i=1

$
Ω1

H(−ψ(~x))H(−φi(~x)) dx dy dz (13)

The fluorescent proteins mark cell membranes nonuniformly,
which makes some images display nonexistent holes in mem-
brane surface. To overcome this issue and restore the correct
structure of the embryo the term Einclusion(ψ) was designed to
force the membrane to cover inner cell region.

Einclusion(ψ) =

$
Ω1

1
1 + e(k∗(d(x,y,z)−D)) dx dy dz (14)

The function d(x, y, z) measures the distance from the point
(x, y, z) to the boundary of the inner cell region. The constant
D sets the maximum allowed distance from the membrane to the
inner cell regions.

To summarize all the above, for the segmentation problem de-
fined as locating inner cell regions and membranes it is necessary
to solve N + 1 PDEs, where N is the number of cells in the em-
bryo.

∂φi

∂t
= −

∂Einner(φi)
∂φi

= −Finner |∇φi|, i = 1,N (15)

∂ψ

∂t
= −

∂Emembrane(ψ)
∂ψ

= −Fmembrane|∇ψ| (16)

It has to be noted that these equations are mutually dependent
due to energy functions Einner(φi) interact with each other and
with the Emembrane(ψ) via the Eoverlap(φi) and Eoverlap(ψ). Thus the
equations (15) and (16) have to be solved simultaneously.

3.1.5 Fast two cycle level set
Direct implementation of the level set method has a major

drawback: directly and fully solving PDEs defined by equations
(15) and (16) with numerical methods is computationally expen-
sive. To increase the processing speed a number of techniques
were proposed. Some methods were focused on updating the
level-set function globally over the entire regular grid, while oth-
ers performed computations only in a restricted neighborhood of
the zero level set. The later approaches are called narrowband
techniques [57], [55].

One example of narrowband methods is [57], where a tube is
constructed in the neighborhood of the zero level set, that is ini-
tialized as a signed distance function within this tube. When the
zero level set becomes too close to the edge of the tube, then both
the tube and level set function is reinitialized with the fast march-
ing method.

A significant number of development methods attempt to solve
the associated evolution PDEs accurately, yet for some problems,
such as image segmentation, accuracy is not necessary. Exploit-
ing this idea Shi and Karl [55] developed a method, that com-
pletely avoids direct calculations of PDEs. This method was able
to achieve near real-time performance due to the fact that it does
not demand reinitialization of the level set functions and update
it only in the narrow band.

The boundary surface in the level set method is defined via the
zero level set function φ that in discrete case is defined over a
grid. Specifying that φ is negative inside the and positive out-
side the surface with the implicit boundary representation, it is
possible to define two sets Lin and Lout of neighboring points.

Lin = {~x|φ(~x) < 0,∃ ~x0 ∈ N(~x) : φ(~x0) > 0}

Lout = {~x|φ(~x) > 0,∃ ~x0 ∈ N(~x) : φ(~x0) < 0}
(17)

The Shi-Karl method avoids directly solving PDE, instead two
sets Lin and Lout are gradually evolved. The evolution is sepa-
rated into two cycles: data-driven expansion and smoothness reg-
ularization with a term derived from a Gaussian filtering process.
The first cycle switches grid points from one set Lin or Lout to
another, specified by the sign of the discrete approximation F̂ of
the speed function, therefore shrinking or expanding the bound-
ary. The regulation cycle provides smoothness regulation to the
boundary using local Gaussian filtering. The points during this
step are added to one of the sets, depending on the sign of convo-
lution of the level set function with a Gaussian filter. The iteration
procedure stops when the stop condition (18) is satisfied or if a
pre-specified maximum number of iterations is reached.

F̂(~x) ≤ 0,∀x ∈ Lout, F̂(~x) ≥ 0,∀x ∈ Lin (18)

Those equations disagree with each other on which direction to
evolve the boundary only when the energy minimum is reached.

In comparison to other narrowband techniques, the Shi-Karl al-
gorithm performs computation only with two lists of grid points
neighboring the surface boundary. Although it belongs to the
class of narrowband techniques, representing one of the extreme
cases, it has one fundamental difference. The level set curve evo-
lution is done without solving any PDE, thus there is no need for
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controlling step size or maintaining numerical stability. Despite
avoiding using PDEs, this method preserves all the advantages of
the level set: generality of formulations for an arbitrary number
of dimensions and automatic handling of topological changes .

Fig. 9 A scheme of the implemented algorithm. First the sets Lin and Lout
are computed for each inner cell region and membrane. Then the two
cycle iterative algorithm is executed.

3.2 Experimental results
3.2.1 Dataset

The dataset used in the experiments to test the designed 3D
level set method consisted of 20 embryo samples at various de-
velopment stages (4-32 cells). Female H2B-mCherry mice were
crossed with mG mice to obtain embryos, whcih were then re-
covered and cultured under the condition of 37C, 5% CO2 in 20µl
drop of KSOM in the chamber installed in the inverted light-sheet
microscope. The visual data was composed of 130 optical cross
sections, acquired every 10 minutes, the distance between the two
consecutive optical slices was 1µm, then scaled to have 260 im-
ages. The resolution of the input images was 260x260.

The primary sets Li
in and Li

out for inner cell regions, used in Shi-
Karl iterative algorithm, were initialized with cell nuclei. The nu-
clei were automatically detected by applying 3D Gaussian filter,
followed by Otsu’s adaptive thresholding, followed by connected
component labeling. Among all detected blobs N with a maxi-
mum number of points were chosen. Then the sets were calcu-
lated according to their definitions (17). The same approach was
applied to determine initial sets of cell membranes (see Figure 9).

(a) 4 (b) 8 (c) 16 (d) 24 (e) 32

Fig. 10 3D reconstruction of segmentation results for inner cell regions and
membranes for embryos containing 4, 8, 16, 24, and 32 cells.

Visual examination of the segmentation results presented on
Figure 10 demonstrate that the algorithm was able to correctly
identify inner cell regions and membranes for embryos with 4,
8, and 16 cells (see Figure 12). However, if the number of blas-
tomeres was 24 or 32 the algorithm appeared to provide less ac-
curate results. The shapes of the detected inner regions were less

(a) 4 (b) 8 (c) 16 (d) 24 (e) 32

Fig. 11 Cross sections of embryos that contain 4, 8, 16, 24, and 32 blas-
tomeres that display the results of the inner region segmentation
with the developed method.

smooth, with traces of under-segmentation. The obtained surface
of cell membranes, on the other hand, appeared to suffer less from
those problems observed for inner regions.

These results can be explained by the fact that an embryo un-
dergoes a dramatic morphological change that occurs at the 24-32
stage. An internal cavity is formed, forcing blast, forcing blas-
tomeres to clutter to one side of the embryo. The outer mem-
branes, separating the inside and outside environment become
less visible, their intensity is low, while the membranes between
cells become more prominent.

Fig. 12 Top row – ground truth segmentation of inner regions for embryos
at 4, 8, 16 cell stages. Middle row – output of theproposed algo-
rithm. Bottom row – error maps of the segmentation.

3.2.2 Quantitative accuracy evaluation
Performing quantitative assessment of the segmentation accu-

racy for the described task cannot be done straightforward since it
is impossible to obtain ground truth labeling for blastomeres and
membranes from any direct measurements. Therefore, to conduct
tests, the ground truth set was built by manually specifying areas
of inner cell regions and membranes on the input images.

The accuracy of the segmentation for each cell component was
evaluated as an average F-score, which is defined as the harmonic
mean of precision and recall (see Equations (19) and (20)).

F =
2 × precision × recall

precision + recall
(19)

If the segmentation result obtained with the proposed method
is denoted as S e and S 0 is the ground truth, then precision and
recall are defined as:
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precision =
|S e ∩ S 0|

|S e|
recall =

|S e ∩ S 0|

|S 0|
(20)

The results of the segmentation for inner cell regions and mem-
branes given as precision, recall and F-measure are presented in
Table 6 and Table 7.

Cell count 4 8 16 24 32
Precision 0.93 0.93 0.85 0.8 0.66

Recall 0.93 0.9 0.9 0.83 0.80
F-score 0.93 0.91 0.88 0.81 0.75

Table 6 Segmentation accuracies for inner cell regions presented as pre-
cision, recall, F-score for embryos with different number of blas-
tomeres.

Cell count 4 8 16 24 32
Precision 0.81 0.78 0.7 0.73 0.75

Recall 0.79 0.77 0.74 0.69 0.67
F-score 0.8 0.79 0.72 0.72 0.7

Table 7 Segmentation accuracies for cell membranes presented as preci-
sion, recall, F-score for embryos with different number of blas-
tomeres.

The F-measure of labeling inner cell regions is 93% for the
4 cell stage and it gradually dropped as the number of cell in-
creased. For the 32 cell embryos it reached 70%. As it was illus-
trated above in previous section, this tendency is caused by the in-
creasing embryo’s morphological complexity as it undergoes cell
division. Segmentation accuracy for the membranes is slightly
lower than inner cells, ranging from 70% to 77%, depending on
the number of cells.
3.2.3 Comparison with other methods

The segmentation accuracy of the developed method was com-
pared with a conventional 3D watershed algorithm [58]. Initial
markers were selected to be cell nuclei that were extracted in the
same way as was described for the proposed method. To the in-
put image a Gaussian smoothing was applied, followed by adap-
tive thresholding. The input images of embryo membranes were
thresholded to obtain a binary image, then dilated in order to sep-
arate the volume occupied by the embryo cells from the back-
ground, then the binary representation of the membrane is sub-
tracted from the images obtained at the previous step.

The implemented watershed method successfully detected
some of the cell regions, yet other regions suffered from under-
segmentation. The segmentation accuracy for embryos with 4,
8, 16, and 24 blastomeres of the watershed algorithm was lower
than the proposed 3D level set method (see Table. 8). For 32 cell
embryo, the watershed approach showed slightly better results.
However, it has to be noted that this implementation of the wa-
tershed unlike the developed level set method allowed detection
only of the inner cell region and not designed for reconstructing
membranes.

Cell count 4 8 16 24 32
3D level set 0.93 0.91 0.88 0.81 0.75
Watershed 0.73 0.89 0.83 0.78 0.77

Table 8 Comparison of inner cell region segementation accuracy achieved
with the developed 3D level set method and watershed method.

The are only a few reports where for a newly proposed method

a numerical assesment of segmentation accuracy is presented.
Guisti et al. [42] proposed a method that involves processing
of Z-stack of HMC images. They assessed its efficiency on 53
4-cell embryo image stacks. During the testing stage, the candi-
date cell was considered as correct if its Jaccard similarity index
was higher than 0.8, achieving 71% of accuracy. Singh et al. [41]
applied isoperimetric graph partitioning to HMC embryo images
to approximate blastomere position. It achieved 81% of accuracy
(Jaccard similarity index was also set to 0.8) on a dataset of 40
embryo images. In comparison, the approach described in this
thesis was able to achieve 90% with the same evaluation tech-
nique.
3.2.4 Individual energy terms

Fine-tuning weights in the definition of the energy functions
Einner(φi) and Emembrane(ψ) is a difficult procedure, since there is
no guarantee that the chosen set allows achieving the best accu-
racy. Thus to understand how the individual energies affect ac-
curacy of segmentation a number of weight sets were tested (see
Table 9 and Table 10). The accuracies of blastomere and mem-
brane segmentation were calculated for an embryo with 8 cells.

w1 w2 w3 Accuracy
0 1 1 0.63
1 1 0 0.74
1 1 1 0.90
1 1 3 0.91

Table 9 Accuracy of cell region segmentation depending on weight values
for an embryo with 8 cells presented as F-score

v1 v2 v3 Accuracy
1 0 0 0.75
0 1 1 0.77
1 1 1 0.79
1 1 3 0.8

Table 10 Accuracy of membrane segmentation depending on weight values
for an embryo with 8 cells presented as F-scores

Exclusion of Evolume(ψ) forces to rely only on Einclusion(ψ) dur-
ing evolution of cell membranes, results in under segmentation.

3.3 Discussion
The use of fluorescence visual data instead of images, obtained

with Hoffman Modulation Contrast (HMC) technique greatly fa-
cilitates localization of blastomeres and cell membranes.

Experimental results showed that the developed 3D level set
algorithm was capable of segmenting efficiently embryos with up
to 24 cells. However due to significant changes in internal em-
bryo morphology it did not achieve good results for the samples
containing 32 cells. The advantages of the designed 3D level set
method include handling complex embryo morphology, restoring
regions of membranes with low visibility and processing speed.

There are two factors which primarily affect the segmentation
accuracy of the developed method. The first one is the design and
usage of the energy term Einclusion(ψ). This energy was created
to correctly fill ’holes’ by enveloping inner cell regions and in
some cases it forces to incorrectly add regions which are not be-
long to membranes. The second factor, contributing to estimation
accuracy, is the precision of Canny detector used for computing
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edgeness function e(x, y, z). Re-defining edgeness metric with a
different function potentially can increase the accuracy.

Another approach for improving segmentation accuracy, for
the 32-cell embryos in particular, is to introduce additional en-
ergies into equation (8) and (9). For example, to carry out more
direct control of blastomere smoothness an individual smooth-
ness energy can be included into computations, instead of relying
on regularization cycle of the Shi-Karl iterative algorithm. Spec-
ifying an energy for a cavity in the 32-cell embryo could also
increase the result of segmentation.

The implementation of the method was also done as a stand-
alone tool with a GUI, that aided visualization of the resultative
segmentation (see Figure 13).

Fig. 13 The 3D level set algorithm for early embryo segmentation was im-
plemented as a stand-alone application with a GUI.

4. Conclusion
The advances in live cell imaging allowed rapid acquisition

of high volumes of visual data, dramatically transforming the
biomedical science. Image-based experiments became the stan-
dardized approach to carry out scientific studies. Significant
progress has been achieved in developing new devices and tech-
niques for data acquisition, yet there is still lack of tools that aid to
process and analyze obtained data automatically. Image process-
ing frameworks that were primarily designed for generic tasks of
image classification or semantic segmentation are often not di-
rectly applicable to biomedical problems. Frequent changes in
device settings used to obtain images, high variety of input sam-
ples, the necessity of achieving high accuracy - all these factors
make it challenging to devise a robust approach. Thus a consid-
erable number of studies conducted rely on manual processing of
collected data.

Furthermore, even if an algorithm that automatizes the process
of biomedical investigation can be developed an assessment of its
accuracy presents difficulties. The main reason is that commonly
the ground truth, especially in cases of where it is required to
execute cell detection or segmentation, cannot be obtained by di-
rect measurements, demanding to reserve to indirect evaluation,
qualitative analysis or providing manually prepared ground truth
data.

Studies, that were presented in this paper introduced two new
methods for computer-aided biomedical image analysis. More
specifically, both of the developed methods targeted the most
common task that occurs during biomedical research - cell anal-
ysis.

The first method was designed in order to aid bacteriologists
with the task of DST. In particular, the DST procedure in our
studies was carried out with the help of a special microfluidic de-
vice - DSTM device, designed to reduce the time necessary to ob-
tain the image of cells grown in presence of a drug with different
concentrations. Previously the cell analysis procedure was car-
ried out manually, by visually observing changes in cell growth
rate and morphology, examining images of the device captured
with a camera attached to a phase contrast microscope. The im-
plementation of the developed algorithm for automatic cell anal-
ysis, which was produced as a stand-alone tool, greatly facili-
tated DST procedure. It allowed efficiently detect cells and ex-
tract their features, that can be used later for detailed analysis by
a human expert. In addition, it was also capable of determining
strain susceptibility and its MIC without any user involvement
using classification algorithm based on SVM. The tests, evaluat-
ing the accuracy of the built algorithm on a dataset, containing
101 images for each one of 5 drugs, showed high accuracy. The
method was able to achieve a 97% accuracy, despite the fact, that
a rather straightforward image processing techniques were used.
The developed software application has been planned to supply
with the device to hospitals, and other medical organizations to
facilitate rapid drug testing.

The second method was designed to solve the task of early-
stage embryo segmentation into inner cell regions and mem-
branes. Segmentation of embryo into the individual cell would
simplify the extraction of cell characteristics. That in its turn
would allow building new models of cell specialization process,
moving forward the field of transplant medicine and genetic dis-
order diagnosis. Previously introduced techniques for achieving
embryo segmentation used HMC images, that due to the process
of acquisition, make it dramatically more complex to obtain cor-
rect results for embryos with a high number of cells. On the other
hand, fluorescence protein imaging procedure makes it possible
to capture images with marked cell components, such as mem-
branes and nuclei. Exploiting this advantage, we proposed a new
3D level set method for embryo segmentation from 2 Z-stacks
(cell membrane and nuclei). The 3D level set involves solving
PDEs, derived from the definition of energy functions. The en-
ergy functions in the proposed methods were designed to take into
account intensity levels of cell membranes and internal morpho-
logical structure. Instead of solving PDEs directly, an iterative
two cycle technique was used, significantly reducing computa-
tional burden. To visualize results, and the stand-alone tool was
created, utilized to conduct a qualitative and quantitative assess-
ment of the accuracy of the proposed algorithm. The accuracy of
the method achieved 93% for 4-cell embryo, gradually reduced
with the increase of blastomeres, reaching 75% for 32-cell case.

More and more challenging image analysis tasks are being
solved in the biomedical field. Ability to construct automatic
systems, capable of providing high level contextual and semantic
analysis of images with the same accuracy as a trained expert, or
even higher, without doubt will be beneficial to biomedical field.
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