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Abstract: In this paper, we present CVS (Compressed Vector Set), a fast and space-efficient data mining framework
that efficiently handles both sparse and dense datasets. CVS holds a set of vectors in a compressed format and conducts
primitive vector operations, such as �p-norm and dot product, without decompression. By combining these primitive
operations, CVS accelerates prominent data mining or machine learning algorithms including k-nearest neighbor algo-
rithm, stochastic gradient descent algorithm on logistic regression, and kernel methods. In contrast to the commonly
used sparse matrix/vector representation, which is not effective for dense datasets, CVS efficiently handles sparse
datasets and dense datasets in a unified manner. Our experimental results demonstrate that CVS can process both
dense datasets and sparse datasets faster than conventional sparse vector representation with smaller memory usage.
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1. Introduction

Edge devices, such as sensors and mobile devices, are preva-
lent in our life. To conduct data mining tasks on edge devices in a
real-time manner, it is necessary to conduct the tasks in the edge
devices themselves, instead of delegating the tasks to the pow-
erful remote computers. However, since edge devices have rela-
tively small memory footprints and low computational power, the
applicability of edge devices to the data mining tasks is limited.
Motivated by this problem, several studies have tried to reduce
the memory usage and the computational time for specific tasks
or specific data types [9], [10], [12].

For sparse matrix data that is mostly filled with zero values,
sparse matrix representation [9], [10], which only holds non-zero
value and its position, can concisely represent the matrix and re-
duce the cost of some mathematical operations. However, actual
data is not always sparse but can be dense. Since storing dense
data with a sparse matrix format can increase the size, sparse ma-
trix representation cannot be used in a versatile way.

In this paper, we present CVS (Compressed Vector Set), a gen-
eral framework for fast and space-efficient data mining, which
successfully supports both sparse and dense datasets. CVS com-
presses vector sets by run-length encoding and conducts fun-
damental mathematical operations on them without decompres-
sion. By combining fundamental mathematical operations, CVS
runs advanced data mining algorithms such as k-nearest neighbor
search, stochastic gradient descent on logistic regression, and ker-
nel methods. To reduce the size of compressed vectors as much
as possible, CVS (1) reorders the dimensions of vectors if the
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mathematical operations are dimension-order insensitive, and (2)
discretizes vectors if the result of data mining algorithms is less
affected by the precision of values in vectors.

We summarize our contributions:
( 1 ) We present algorithms to conduct advanced data mining

tasks on vectors compressed by run-length encoding (Sec-
tion 3 and Section 4).

( 2 ) We observe that reordering dimensions of the vectors fur-
ther reduce the compression size without changing compu-
tational results. Based on the observation, we tackle the
dimension-order reordering problem that finds best reorder-
ing pattern, which is NP-hard. We show a polynomial time
algorithm for finding a dimension-reordering pattern that
empirically yields good compression rate (Section 5).

( 3 ) We demonstrate the combination of data discretization and
dimension-reordering can drastically improve the perfor-
mance without much affecting the accuracy of data mining
tasks (Section 6).

( 4 ) We demonstrate the effectiveness of CVS compared to the
conventional sparse vector representation in data mining and
machine learning tasks on real datasets (Section 7).

The rest of this paper is organized as follows. Section 3 de-
scribes how CVS compresses and conduct mathematical opera-
tions on a set of vectors. Section 3 shows how CVS conducts

This paper is based on our previous conference paper [19]. We drasti-
cally rewrote the content to improve the generality, theoretical sound-
ness, and presentation. We also made several extensions: (1) advanced
data mining algorithms on CVS including k-nearest neighbor algorithm,
stochastic gradient descent on logistic regression, and kernel methods,
(2) a lossy-compression technique with data discretization, (3) additional
experiments including comparison against sparse vector representation
and performance demonstration of data discretization, and (4) literature
reviews of related technologies including deep neural network compres-
sion and bitmap-index reordering.
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concrete data mining and machine learning tasks on compressed
vectors without decompression. Section 5 describes how CVS
improves the compression rate with dimension-reordering. Sec-
tion 5 describes how CVS improves the compression rate with
data discretization. Section 7 evaluates CVS by experiments with
various datasets. Section 8 describes related work. Section 9 con-
cludes the paper.

2. Preliminaries

In this section, we review concepts that relate to Compressed
Vector Set (CVS): sparse vector representation and run-length en-
coding. List of main symbols are summarized in Table 1.

2.1 Sparse Vector Representation
Sparse matrix representations [9], [10] represent a vector that

is mostly filled with zero values in a space-efficient way. One
of the most commonly-used representations is to represent a vec-
tor with non-zero values and its positions. For example, a sparse
vector

x = (0, 0, 42, 99, 0, 0, 0)

is represented by two vectors

values = (42, 99)

positions = (2, 3)

in this format.
While the sparse vector representation reduces the space-

efficiency, they also reduce the computational complexity of sev-
eral mathematical operations. For example, the dot product of
two vectors x and y, which are comprised of Bx and By non-zero
elements, can be carried out in O(Bx + By) time.

One downside of the sparse vector representation is its ineffi-
ciency for dense data. For example, a dense vector

x = (7, 7, 42, 99, 7, 7, 7)

is represented by

values = (7, 7, 42, 99, 7, 7, 7)

positions = (0, 1, 2, 3, 4, 5, 6)

in the sparse vector representation, which doubled the size com-
pared to the original vector. In contrast, our proposed CVS can
represent a dense data efficiently when the number of distinct el-
ements is not so large. We compare the performance of sparse
vector representation and CVS empirically in Section 7.

2.2 Run-length Encoding
Run-length encoding (RLE) [2] is a data compression tech-

nique that represents a sequence of n consecutive same val-
ues x, . . . , x with a block 〈n, x〉. For example, RLE represents
(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1) as (〈5, 1〉 , 〈9, 2〉 , 〈3, 1〉),
reducing the number of elements to represent the data from 17
to 6. In this paper, we denote the RLE-compressed form of the
vector x as

RLE(x) = (〈n1, x1〉 , . . . , 〈nB, xB〉),

Table 1 List of symbols.

Symbol Description

x A vector (x ∈ RD)
X A vector set (X = { x1, . . . , xJ })
J Number of vectors in a vector set
X Vector set as a matrix (X ∈ RD×J)
D Dimension of a vector

RLE(x) A compressed form of a vector x
〈n, x〉 A block in a compressed vector (n-consecutive x)
B Number of blocks in a compressed vector

where B is the total number of blocks and nb is the number of
values in the b-th block. We also use |RLE(x)| to represent the
total number of blocks of vector x.

When the input vector x does not contain many consecutive
same values, RLE cannot efficiently encode the data and some-
times increase the size; RLE represents (1, 2, 3, 4, 1, 1, 1, 1) as
(〈1, 1〉 , 〈1, 2〉 , 〈1, 3〉 , 〈1, 4〉 , 〈4, 1〉), which increased the data size.
PackBits [2] is a simple but effective method to alleviate this prob-
lem, which has two encoding rules: (1) ordinary RLE encod-
ing and (2) raw data encoding. (1) When PackBits finds a se-
quence of n consecutive same values x, . . . , x, it does RLE en-
coding: replaces the sequence with a block 〈n, x〉. (2) Otherwise,
PackBits is facing a sequence of n consecutive different values
x1, . . . , xn, and PackBits does raw data encoding: replaces the
sequence by 〈−n, x1, . . . , xn〉. For example, PackBits encodes a
data sequence (1, 2, 3, 4, 1, 1, 1, 1) to (〈−4, 1, 2, 3, 4〉 , 〈4, 1〉) suc-
cessfully reducing the data size, whereas RLE encodes the se-
quence to (〈1, 1〉 , 〈1, 2〉 , 〈1, 3〉 , 〈1, 4〉 , 〈4, 1〉) increasing the data
size.

3. Compressed Vector Set

In this section, we describe the idea of Compressed Vector Set
(CVS), which compresses a vector set with run-length encoding
to save the storage space, and conducts mathematical operations
on the set of vectors without decompression reducing the compu-
tational time.

3.1 Vector Compression
Given a set of vectors X = { x1, x2, x3, x4, x5 }, where

x1 = (1, 1, 2, 2, 2),

x2 = (2, 2, 1, 2, 2),

x3 = (2, 3, 3, 3, 3),

x4 = (2, 3, 3, 2, 2),

x5 = (2, 3, 1, 2, 2),

CVS compresses each vector in X using RLE/PackBits:

RLE(x1) = (〈2, 1〉 , 〈3, 2〉),
RLE(x2) = (〈2, 2〉 , 〈1, 1〉 , 〈2, 2〉),
RLE(x3) = (〈1, 2〉 , 〈4, 3〉),
RLE(x4) = (〈1, 2〉 , 〈2, 3〉 , 〈2, 2〉),
RLE(x5) = (〈−3, 2, 3, 1〉 , 〈2, 2〉).

3.2 Operation without Decompression
CVS conducts mathematical operations on compressed vectors
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directly without decompressing the vectors, reducing both the
computational time and the memory usage. The key insight under
the technique is that an RLE-encoded vector contains preliminary
knowledge that value x appears n times consecutively. In the rest
of this section, we demonstrate how CVS utilizes this knowledge
to perform actual mathematical operations without decompres-
sion.
3.2.1 �p-norm

First, we demonstrate how CVS computes �p-norm of a com-
pressed vector. �p-norm is an essential statistics, which appears in
many complex operations including a cosine similarity and math-
ematical optimization algorithms [7].

Consider �2-norm (Euculidian-norm) of a vector

x = (1, 2, 2, 2, 2).

Naı̈vely, �2-norm of x is computed as

‖x‖2 =
√

12 + 22 + 22 + 22 + 22, (1)

which requires five multiplications and four additions inside the
square root.

In CVS, we have

RLE(x) = (〈1, 1〉 , 〈4, 2〉),

and �2-norm of x is computed as

‖x‖2 =
√

12 + 4 × 22, (2)

which only needs three multiplications and one addition inside
the square root, of which the computational cost is less than
Eq. (1), the naı̈ve one.

CVS can compute general �p-norm without decompression.
Suppose we have a vector x that can be expressed by B blocks
in RLE:

x = (x1, . . . , xD),

RLE(x) = (〈n1, x1〉 , . . . , 〈nB, xB〉).

Naı̈vely, �p-norm of x is computed as

‖x‖p=
⎛⎜⎜⎜⎜⎜⎝

D∑
d=1

xp
d

⎞⎟⎟⎟⎟⎟⎠
1/p

(3)

whereas CVS computes �p-norm by

‖RLE(x)‖p=
⎛⎜⎜⎜⎜⎜⎝

B∑
b=1

nbxp
b

⎞⎟⎟⎟⎟⎟⎠
1/p

. (4)

From the Eqs. (3) and (4), it is obvious that CVS reduces the com-
putational complexity of �p-norm from O(D) to O(B) where D is
the number of dimensions of the input vector and B is the number
of blocks in the compressed vector.
3.2.2 Dot Product

Consider the dot product of two vectors x1 ∈ R11 and x2 ∈ R11,
whose compressed forms are

RLE(x1) = (〈5, 4〉 , 〈6, 8〉),
RLE(x2) = (〈3, 1〉 , 〈5, 3〉 , 〈3, 2〉).

Algorithm 1: Dot product of x and y without decompression.
Input: RLE(x) = 〈n1, x1〉 , . . . , 〈nBx , xBx 〉 and

RLE(y) = 〈n′1, y1〉 , . . . , 〈n′By , yBy 〉, where Bx ≤ By.

Output: x
y
1 p← 0

2 yremains ← n′1
3 jnext ← 0

4 for i← 2 to Bx do
5 xremains ← ni

6 ysum ← 0

7 for j← jnext to By do
8 ysum ← ysum +min(xremains, yremains) × RLE(y)[ j]

9 if xremains < yremains then
10 yremains ← yremains − xremains

11 break

12 else
13 xremains ← xremains − yremains

14 yremains ← n′jnext+1

15 jnext ← jnext + 1

16 p← p + RLE(x)[i] × ysum

17 return p

Naı̈vely, the dot product requires eleven multiplications and ten
additions. In contrast, CVS computes the dot product as

4︸︷︷︸
n1

× (1 × 3 + 3 × 2)︸������������︷︷������������︸
1st ysum

+ 8︸︷︷︸
n2

× (3 × 3 + 2 × 3)︸������������︷︷������������︸
2nd ysum

, (5)

by using the Algorithm 1. In Eq. (5), six multiplications and three
additions are required, which is less than the naı̈ve one. The com-
putational complexity of the Algorithm 1 is O(Bx+By), where Bx

and By are the number of blocks to represent the vectors x and y,
respectively. The Algorithm 1 is analogous to the algorithm for
merging two sorted arrays or sort-merge join algorithm in rela-
tional database systems. In similar way, CVS can compute addi-
tion x+ y, subtraction x− y, and division x/y of two compressed
vectors in O(Bx + By) time.

4. Data Mining Algorithms on CVS

So far, we have described two basic computations on CVS: �p-
norm on a vector and dot product of two vectors. In practice,
many complex data mining algorithms can be conducted without
decompression using the concept of those computations. In this
section, we demonstrate several data mining algorithms on CVS.

4.1 k-Nearest Neighbors Algorithm
k-Nearest Neighbors Algorithm (k-NN) is an important algo-

rithm used in many applications including document search [18],
density estimation [8], and instance-based classifiers. Given a
query vector q and a set of vectors X, k-NN algorithm finds k

vectors that are closest to query vector q from X.
Since k-NN computes all the distances between the query vec-

tor q and the set of vectors X, its runtime is slow on large vec-
tor sets. While spatial index structures such as R-Tree and and
SR-Tree [14] can reduce the number of distance computations by
pruning unpromising vectors, still high-dimensional Euclidean
distance computations are required, which can be heavy. CVS
can co-exists with these methods and support reducing the com-
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putational time and memory usage of the distance computation.
Recall the Euclidean distance of vector x and vector y is de-

fined as

‖x − y‖2=
√
‖x‖22+‖y‖22−2x
y. (6)

Since Eq. (6) mainly consists of �2-norm and dot product, CVS
efficiently computes the Euclidean distance of x and y without
decompression.

4.2 Stochastic Gradient Descent
Stochastic Gradient Descent (SGD) algorithm is a mathemati-

cal optimization algorithm to find a local minimum of a function.
In machine learning, many machine learning models including
linear regression, logistic regression, and deep neural networks
can be trained by SGD algorithm.

Let us consider the logistic regression with SGD algorithm on
CVS. SGD randomly picks a training data (xi, yi) and update the
regression coefficients wt+1 in the following equation

wt+1 = wt + γxi

{
yi − 1

1 + exp (−w
t xi)

}
, (7)

where wt is the current regression coefficients (prediction model)
and γ is the learning rate. Iteratively repeating the update Eq. (7),
SGD converges to the global optima and completes the training
of the model. Since Eq. (7) mainly consists of dot products and
additions of vectors, CVS can be naturally applied.

Furthermore, prediction using the trained model w can also be
made by CVS efficiently, since the prediction simply consists of a
dot product. Concretely, logistic regression predicts the objective
value ŷ for input feature vector x by

p(ŷ|x,w) =
1

1 + exp (−w
x)
. (8)

4.3 Kernel Method
Kernel methods, such as support vector machine and spectral

clustering, are widely used in machine learning tasks because
it can capture non-linearity in data well. One downside of ker-
nel method is its high computational cost; Kernel method com-
putes data-to-data similarity k(xi, x j) through a kernel function
k : RD × RD → R for all (i, j) ∈ [J] × [J], i.e., kernel meth-
ods compute the similarities of all vector pairs. This similarity
computation requires O(D2J2) time, which is quite large.

CVS can alleviate the computational cost of data-to-data sim-
ilarity computation. Consider radial basis function kernel (RBF-

Kernel), which is defined as

k(xi, x j) = exp(−γ‖xi − x j‖2). (9)

CVS reduces the computational complexity of Eq. (9) from O(D)
to O(Bi + Bj) where Bi and Bj are number of blocks to repre-
sent original vectors in RLE, which is often much smaller than
D. Thus, the total computational complexity of kernel method is
reduced from O(D2J2) to O((Bi + Bj)2J2).

5. Dimension Reordering

Directly compressing the provided set of vectors does not al-
ways yield a good compression result. In this section, we show

that CVS can improve the compression rate by reordering the di-
mensions of vectors without affecting the computational result.

5.1 Motivation of Dimension Reordering
Suppose we have a set of 6-dimensional vectors

x1 = (2, 1, 2, 1, 2, 1),

x2 = (1, 2, 1, 1, 2, 2),

x3 = (2, 1, 1, 2, 1, 1).

By compressing each vector with RLE/Packbits, we obtain the
compressed form of the vectors as

RLE(x1) = (〈−6, 2, 1, 2, 1, 2, 1〉),
RLE(x2) = (〈−2, 1, 2〉 , 〈2, 1〉 , 〈2, 2〉),
RLE(x3) = (〈1, 2〉 , 〈2, 1〉 , 〈1, 2〉 , 〈2, 1〉).

However, if we reorder the dimensions by considering a permu-
tation

σ =

⎛⎜⎜⎜⎜⎝1 2 3 4 5 6
5 1 4 6 3 2

⎞⎟⎟⎟⎟⎠
on the dimensions of the vectors, we obtain vectors

x′1 = (1, 1, 2, 2, 2, 1),

x′2 = (2, 2, 2, 1, 1, 1),

x′3 = (1, 1, 1, 1, 2, 2),

which yield the better result compared to the original vectors as

RLE(x′1) = (〈2, 1〉 , 〈3, 2〉 , 〈1, 1〉),
RLE(x′2) = (〈2, 3〉 , 〈1, 3〉),
RLE(x′3) = (〈4, 1〉 , 〈2, 2〉).
Many data mining tasks consist of mathematical operations

that are not affected by order of vector dimensions. We refer to
such a mathematical operation as dimension-order insensitive. If
data mining tasks on CVS are known to be dimension-order in-
sensitive, CVS reorders the dimensions of vectors to improve the
compression rate. All the operations we demonstrated in Sec-
tion 3.2 are dimension-order insensitive.

5.2 Problem Definition
We hereafter treat a set of vectors X to be compressed by CVS

as matrix X whose column-vector represents a vector and row-
vector represents a dimension. For instance, the vector set in the
previous section is treated as

X =
[

x
1 x
2 x
3
]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 2
1 2 1
2 1 1
1 1 2
2 2 1
1 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Given a set of D-dimensional J vectors as matrix X ∈ RD×J ,
CVS solves the following problem to find the best dimension-
order:
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Problem 1 (Dimension-reordering)

σ∗ = arg min
σ∈P(D)

J∑
j

|RLE(σ(x j))|

where P(D) is all permutations on D-dimensions, | · | is the num-

ber of blocks to represent the vector in the compression, x j is the

j-th column vector of matrix X, and σ(x j) is the vector obtained

by reordering the dimensions of x j using the permutation σ.

Unfortunately, Problem 1 is NP-hard. The problem is equiva-
lent to the Bitmap-index reordering problem in column-oriented
database systems, which is proved to be an NP-hard problem [16].
Also, the problem is found to be reduced from the Traveling
Salesman Problem (TSP) under the Hamming distance, allowing
us to investigate the use of heuristics for TSP [16]. In the rest of
this section, we introduce two heuristic approaches for dimension
reordering: greedy method and Scored-lex-sort method, both of
which run in polynomial time.

5.3 Greedy Method
First, we introduce a greedy approach to find a good dimen-

sion order for Problem 1. The greedy method selects a row (a
dimension), and then greedily selects the row that has minimum
hamming distance with the previously selected row from the re-
maining rows as shown in Algorithm 2. In Algorithm 2, ai∗ ← b j∗
denotes replacing the i-th row of the matrix A with the j-th row of
the matrix B and OD,J denotes a zero matrix whose size is D × J.

The greedy method runs in polynomial time. The number
of row comparison regarding Hamming distance in the greedy
method is (D − 1) + (D − 2) + ... + 1 = D(D − 1)/2, and each
row comparison needs J element comparison. Thus, the compu-
tational complexity of the greedy method is O(D2 J). Although
O(D2 J) is polynomial, it is not appropriate for processing vectors
with a large number of dimensions, D.

Algorithm 2: Greedy method

Input: X ∈ RD×J : Input matrix.

Output: Reordered matrix

Data: P: Row pool.

Xcand: Candidates set.

X′: Reordered matrix.

1 foreach i ∈ { 1, ...,D } do
2 X′ ← OD,J

/* Select i-th row in matrix X as the beginning

row, and add other rows to the pool P. */

3 P← { 1, ...,D } \ { i }
4 x′1∗ ← xi∗
5 for k ← 2 to D do

/* Pick up j-th row that has minimum hamming

distance with the beginning row from pool P,

and add it to reordered matrix X′. */

6 j← arg min
j∈P

HammingDistance(X, k − 1, j)

7 P← P \ { j }
8 x′k∗ ← x j∗
9 Xcand ← Xcand ∪ { X′ }

10 return arg min
X′∈Xcand

Size(X′)

5.4 Scored-lex-sort Method
Second, we introduce Scored-lex-sort method, an efficient

approach to find an approximate solution for the Problem 1
based on lexicographical sort. Scored-lex-sort method runs in
O(J D log D), which is better than greedy method’s O(D2 J). To
introduce scored-lex-sort method, we first describe ordinary lexi-
cographical sort of a matrix.

Lexicographical sort of a matrix reorders rows of a matrix in
lexicographical order, where the order of two rows are defined
by comparing whose elements from left-to-right. For example,
lexicographical sort of the rows of matrix

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 4 7 3 0 4
2 4 2 2 0 0
3 4 2 5 8 4
1 3 7 3 8 4
5 7 7 5 8 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10)

produces a sorted matrix

Xlex =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 7 3 8 4
2 4 2 2 0 0
3 4 2 5 8 4
3 4 7 3 0 4
5 7 7 5 8 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11)

Since lexicographical sorting of a matrix preferentially sorts
left-side columns, it sometimes does not much improve the com-
pression rate of the matrix. For instance, Xlex’s compression
rate is worse than the original matrix X’s one. To alleviate this
problem, we introduce Scored-lex-sort method. Scored-lex-sort
method first computes scores of all columns of the matrix, and
then preferentially sorts columns that have high score. Effective-
ness of Scored-lex-sort method highly depends on the definition
of the score. We use 1/Cardinality(x) as the score of a column x,
where the function Cardinality(x) counts the number of distinct
elements in column x. This score definition is based on the in-
sight that a column with low-cardinality contains a lot of same
elements, and preferentially sorting such columns improves the
compression effect of RLE. For example, matrix X in the previ-
ous example is sorted into

Xlex∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 4 2 2 0 0
3 4 2 5 8 4
3 4 7 3 0 4
1 3 7 3 8 4
5 7 7 5 8 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (12)

which has better compression rate than the original matrix X and
the matrix Xlex that is sorted by the normal lexicographical order.

Algorithm 3 shows the algorithm of row comparison function
in Scored-lex-sort method. In the algorithm, xi j indicates the (i, j)
element in the matrix X. For the sorting part, we can use arbitrary
sorting algorithms such as the merge-sort algorithm to reorder a
huge matrix in the external sorting manner.

Scored-lex-sort method runs in polynomial time, and its com-
putational complexity is smaller than the one of the greedy
method. As mentioned before, Scored-lex-sort method can use
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Algorithm 3: Row-compare function in Scored-lex-sort
method

Input: X ∈ RD×J : Input matrix.

p ∈ { 1, ...,D }: Row number of the first input row.

q ∈ { 1, ...,D }: Row number of the second input row.

Output: A numerical number indicating whether p-th row is

bigger/smaller than or equal to q-th row

Data: Q, Priority queue

1 foreach k ∈ { 1, ..., J } do
2 Get the score of k-th column, and add the column number k to the

priority queue Q using the score as the priority.

3 while Q is not empty do
4 k ← Dequeue(Q)

5 if xpk > xqk then
6 return 1, which indicates p-th row > q-th row.

7 else if xpk < xqk then
8 return -1, which indicates p-th row < q-th row.

9 return 0, which indicates p-th row = q-th row.

Algorithm 4: Vector discretization

Input: X ∈ RD×J : Collection of D-dimensional J vectors.

K: Discretization level.

1 foreach d ∈ { 1, ...,D } do
2 foreach j ∈ { 1, ..., J } do
3 Standardize d-th dimension (μd is the mean and σd is the

standard deviation of d-th dimension).

4 Xd j =
Xd j−μd

σd

5 Groups values into k clusters using k-means algorithm, obtaining

centroid ck and cluster assignment zd j ∈ { 1, ...,K } for each value.

6 { ck }Kk=1 , { zd j }D,Jd=1, j=1 ← kMeans({ Xd j }D,Jd=1, j=1 ,K).

7 foreach d ∈ { 1, ...,D } do
8 foreach j ∈ { 1, ..., J } do
9 Replace the value of j-th vector by the centroid of the cluster

the vector belongs to.

10 Xd j = czd j

11 return X

arbitrary general sorting algorithms. General sorting algorithms
are known to sort D records in O(D log D) [5]. In a comparison
operation of two rows, Scored-lex-sort method needs to compare
J elements as described in Algorithm 3. Thus, the computational
complexity of Scored-lex-sort method is O(J D log D), which is
sufficiently applicable to large matrices.

6. Lossy Compression by Discretization

We have targeted discrete-valued vectors. However, real-world
data is not only discrete-valued but also real-valued. Unfor-
tunately, RLE is ineffective for real-valued data, because real-
valued data rarely have same consecutive values. To deal with the
problem, CVS employ discretization technique to convert real-
valued vectors into discrete-valued vectors.

CVS uses a clustering-based discretization approach to im-
prove the compression rate of the vectors as shown in Algo-
rithm 4. In this approach, we first standardize each vector di-
mensions to have zero mean and unit variance, gather all feature
values, and make k clusters from all feature values. Then, val-
ues in each cluster are replaced by the cluster centroid. In doing
so, we can successfully convert real-valued data into k-discretized

data.
One downside of discretization is that it loses the precision of

vectors. Through empirical studies, we found that the data min-
ing results, such as predictive performance in k-NN classifiers,
are not so affected by the precision of vector values. For exam-
ple, in binary image classification task, k-NN classifier on CVS
with 3-level discretization only degrades the F1-Score 0.005 point
while gaining 6× prediction performance improvement (Fig. 1).
We will elaborate on this discussion in the experiments section.

7. Experiments

7.1 Experimental setup
System: All of our experiments were run on a machine that

has 16GB RAM and dual-core 3.6GHz CPU running Linux 3.8.0.
Our proposed system, CVS, is implemented in C++ and compiled
by clang++ 3.8.

Datasets: We used two types of vector sets in our experiments:
sparse vector sets (bag of words) [3] and dense high-dimensional
vector sets [11]. Table 2 shows the information of the datasets we
used.

Methods: We measured the performance of conventional
sparse matrix representation and CVS in several different config-
urations: (Sparse) refers to the conventional sparse matrix rep-
resentation that only holds non-zero values by (position, value)
format, (RLE) refers to RLE/Packbits on vectors, (RLE-Sort)
refers to RLE/Packbits on vectors with dimension-reordering,
(RLEn) refers to RLE/Packbits with n-level data discretization,
and (RLEn-Sort) refers to RLE/Packbits with n-level data dis-
cretization and dimension-reordering. In the rest of this section,
we use these notations to explain the configuration on each result.

7.2 Space-efficiency
First, we demonstrate the space-efficiency of CVS on real-

world vector sets with different configurations including vanilla
RLE, dimension-reordering by Scored-lex-sort method, and data
discretization. Table 3 shows the compression rates of CVS with
different configurations, where the compression rate is defined as
compression_rate = compressed_size / original_size.
Data sizes shown in Table 3 correspond to both the secondary
storage usages of the compressed datasets and memory usages
of data mining algorithms introduced in Section 4 (k-NN classi-
fier, logistic regression with SGD *1 and kernel method) on the
datasets.

From Table 3, we have the following observations:
• Vanilla RLE is effective for sparse matrices because sparse

matrices are mostly filled by zero and RLE effectively repre-
sents such zero sequences.

• Discretization is especially effective for dense matrices.
Without discretization, RLE on dense matrices can increase
the storage usage (e.g., RLE in Madelon).

• Only doing discretization is not enough. Combining dis-
cretization and dimension-ordering can drastically improve

*1 Because SGD is an online algorithm, its memory usage can be reduced
to the size of a vector instead of the whole dataset. However, because
vectors are randomly scanned, loading whole dataset into the memory is
required for efficient computation.
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Fig. 1 F1-scores (harmonic mean of precision and recall) of each classifier (k-NN classifier, logistic re-
gression, and RBF-SVM) on each dataset with discretization. X-axis refers to the discretization
level (# of distinct values) and Y-axis refers to the F1-score. We can observe that the discretization
does not much degrade the predictive performance and sometimes does improve F1-scores.

Table 2 Datasets used in experiments.

Sparse (Bag of Words) [3] Dense [11]

NIPS KOS Enron Madelon Arcene Gisette

# of vectors 1,500 3,430 39,861 2,000 900 6,000
# of dimensions 12,419 6,906 28,102 500 10,000 5,000

Density (Non-zero elements ratio) 0.040 0.014 0.003 0.999 0.540 0.129
# of distinct values 120 33 134 660 899 692

Table 3 Data compression effect on each dataset by conventional sparse matrix representation (position +
value) and our proposed framework CVS. Each number refers to the main/secondary storage us-
age in megabytes and (%) refers to the compression rate. Compression formats with asterisk (∗)
refer to lossy compression. While conventional sparse matrix representation successfully com-
presses the sparse datasets, it fails to compresses the dense datasets. In contrast, our proposed
CVS successfully compresses dense and sparse datasets.

Sparse (Bag of Words) Dense

NIPS KOS Enron Madelon Arcene Gisette

Original 71.06 90.36 4273.12 3.81 3.81 114.44
Sparse Matrix 8.54 (12.01%) 4.04 (4.47%) 42.46 (0.99%) 11.44 (300.26%) 6.19 (162.46%) 44.53 (38.91%)
RLE 10.0 (14.07%) 5.07 (5.62%) 53.69 (1.25%) 3.86 (101.40%) 3.84 (100.90%) 49.92 (43.62%)
RLE-Sort 9.12 (12.84%) 4.75 (5.26%) 51.71 (1.21%) 3.88 (101.79%) 3.20 (83.97%) 39.03 (34.10%)

RLE8∗ 9.94 (13.99%) 5.07 (5.62%) 53.67 (1.25%) 3.55 (93.10%) 2.91 (78.94%) 41.18 (36.31%)
RLE8-Sort∗ 8.88 (12.50%) 4.76 (5.27%) 51.66 (1.20%) 3.51 (92.13%) 2.65 (71.74%) 38.70 (34.13%)
RLE3∗ 9.84 (13.85%) 4.52 (5.00%) 53.36 (1.24%) 2.43 (63.73%) 1.53 (51.33%) 40.40 (35.63%)
RLE3-Sort∗ 8.54 (12.02%) 4.52 (5.00%) 50.34 (1.17%) 2.39 (62.76%) 1.02 (34.16%) 38.79 (34.21%)
RLE2∗ 9.82 (13.82%) 5.04 (5.58%) 53.32 (1.24%) 2.10 (62.26%) 0.83 (42.19%) 38.13 (33.66%)
RLE2-Sort∗ 8.41 (11.84%) 4.49 (4.97%) 49.79 (1.16%) 2.05 (60.75%) 0.48 (24.85%) 35.82 (31.63%)
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Table 4 Runtime speedups of k-NN classifiers with Euclidean distance on compressed data. Compres-
sion formats with asterisk (∗) refer to lossy compression. While conventional sparse matrix
represents in sparse data, our proposed method successfully improves the performance in both
sparse and dense data. Further, sorting vector dimension and discretization drastically improve
the performance.

Sparse (Bag of Words) Dense

NIPS KOS Enron Madelon Arcene Gisette

Sparse 4.68 16.33 132.95 0.18 0.50 1.30
RLE 8.69 23.36 146.97 1.42 1.22 1.97
RLE-Sort 8.99 23.52 202.55 1.31 1.27 3.03

RLE8∗ 8.67 44.47 169.47 1.33 1.27 3.06
RLE8-Sort∗ 18.83 46.56 192.66 2.20 1.62 3.15
RLE3∗ 15.07 45.80 170.65 3.80 2.41 3.38
RLE3-Sort∗ 20.36 46.71 203.52 3.87 6.13 9.33
RLE2∗ 18.32 22.76 151.62 4.13 4.93 3.62
RLE2-Sort∗ 20.82 48.02 218.20 4.26 7.82 8.77

Table 5 Runtime speedups of logistic regression with SGD optimization on compressed data.

Sparse (Bag of Words) Dense

NIPS KOS Enron Madelon Arcene Gisette

Sparse 12.73 41.55 174.21 0.65 1.30 4.81
RLE 16.72 46.24 182.26 1.81 2.38 6.61
RLE-Sort 19.08 51.26 199.80 1.85 2.78 7.92

RLE8∗ 22.65 44.28 165.18 2.64 2.68 7.48
RLE8-Sort∗ 24.98 50.28 187.48 2.69 3.08 8.19
RLE3∗ 23.04 45.61 164.27 4.28 4.10 7.86
RLE3-Sort∗ 26.24 49.57 132.69 4.34 5.36 7.99
RLE2-Sort∗ 25.51 52.24 189.67 5.19 6.31 9.47

Table 6 Runtime speedups of a kernel machine on compressed data.

Sparse (Bag of Words) Dense

NIPS KOS Enron Madelon Arcene Gisette

Sparse 5.15 20.97 182.89 0.16 0.33 1.60
RLE 8.40 24.12 198.21 0.74 0.90 2.51
RLE-Sort 8.94 26.50 205.23 0.75 1.01 3.00

RLE8∗ 8.55 24.17 193.54 1.02 1.31 2.93
RLE8-Sort∗ 9.13 26.61 198.31 1.07 1.48 3.23
RLE3∗ 8.33 22.92 176.66 1.65 2.19 3.15
RLE3-Sort∗ 11.46 27.30 258.16 1.99 3.31 3.38
RLE2∗ 8.77 22.95 188.04 1.96 2.71 3.45
RLE2-Sort∗ 11.70 35.47 306.45 2.81 4.42 3.78

the compression rate (e.g., RLE8 in Gisette).

7.3 Runtime Speedup
Second, we compare the runtime-speedup of our method CVS

and competitive method sparse vector representation on real-
world vector sets. In this experiment, we measured the computa-
tional time of three classifiers we introduced in Section 4: k-NN
classifier, logistic regression by SGD optimization, and a nonlin-
ear kernel machine (support vector machine with RBF-kernel).
7.3.1 Setup

For k-NN, we measured the time of the prediction for test vec-
tors, a computationally intensive process that looks through all
the training vectors. Test vector is randomly picked up from the
vector set, and top-k nearest vectors are selected by its Euclidean
distance. We set k = 5, repeat the procedure 100 times measuring
the elapsed time, and aggregate the results by taking the average.
We used efficient Euclidean distance computation for both sparse
vector representation and CVS, which run in O(Bx + By) time.

In logistic regression with SGD optimization and kernel
method (support vector machine with RBF-kernel), we measured

the time to train the model. Since the model vector w trained is
rarely sparse in both methods, we used ordinary dense vector rep-
resentation for w, and only used the compression method (sparse
vector representation and CVS) for the input vectors { x j }Jj .
7.3.2 Results

Table 4, Table 5, and Table 6 show the performance compari-
son of classifiers. From Tables 4 to Table 6, we have the following
observations:
• In sparse data, both sparse vector representation and our

CVS improve the performance by orders of magnitude.
• While sparse vector representation is ineffective for dense

data, CVS successfully improved the performance on dense
data.

• Dimension reordering gives drastic performance improve-
ments on both sparse and dense vector sets. For example,
in Enron, a sparse dataset, the performance improvement in-
creased from 146.97× to 202.55× by dimension reordering
in k-NN classifier. In Gisette, a dense dataset, the perfor-
mance improvement also increased from 1.97× to 3.03×, al-
most doubled, in k-NN classifier. We can also observe simi-
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lar results in logistic regression (Table 5) and kernel method
(Table 6).

• Data discretization is effective for datasets that have large
number of distinct values (Madelon, Arcene, Gisette). For
datasets that have relatively smaller number of distinct val-
ues (NIPS, KOS, Enron), data discretization does not much
improve the performance.

7.4 Discretization and Accuracy
Third, we discuss the effect of lossy-compression (discretiza-

tion) on accuracy. We measured the predictive performance dif-
ferences that come from data discretization for three classifiers
we introduced in Section 4: k-NN classifier, logistic regression by
SGD optimization, and a nonlinear kernel machine (support vec-
tor machine with RBF-kernel). We used Algorithm 4 for data dis-
cretization and varied discretization level K ∈ { 2, 3, 8, 16 }. For
the distance measure in k-means algorithm, we used Euclidean
distance.

Figure 1 shows the F1-score (harmonic mean of precision and
recall) of each classifier on each dataset. X-axis refers to the dis-
cretization level (# of distinct values) and Y-axis refers to the F1-
score. From Fig.1 (that shows accuracies) and Table 4 (that shows
speedups), we observe that the discretization does not degrade
the accuracy of classifiers much, while it drastically improves the
compression rate and computational performance. Furthermore,
discretization sometimes can improve the predictive performance
classifiers. One may think this phenomena strange but data dis-
cretization is a well adopted feature-engineering technique to im-
prove the predictive performance by reducing the effect of obser-
vation noise and outliers, which is referred to as data binning in
machine learning area.

8. Related Work

CVS relates to vector and matrix computation frameworks that
utilize data sparsity. For example, Eigen [10], a vector computa-
tion library, can represent sparse matrices and sparse vectors by
concise data structures. In contrast to the sparse matrix represen-
tation, CVS targets to not only the sparse vector sets but also the
dense vector sets.

Run-length encoding is widely used in data intensive systems.
For example, MADlib [12], a data analytics system built on top
of a relational database system, uses run-length encoding to han-
dle sparse data efficiently. Also, some columnar database sys-
tems employ run-length encoding its column data [1], [17]. How-
ever, to the best of our knowledge, none of these works addressed
the performance improvement of run-length encoding on data
mining and machine learning tasks and the effect of dimension-
reordering and data discretization.

In machine learning research area, compressing the specific
machine learning models has been actively studied recently.
(Binary features) Tabei et al. studied partial least squares re-
gression (PLS) on compressed data encoded by grammar-based
codes. To assist accessing the elements in the compressed ma-
trix, they proposed a tree-based special data structure. Their ap-
proach targets to use binary-features (so-called fingerprints data),
which differs from our approach that targets to arbitrary real val-

ues. (Relational data) Rendle proposed a method to acceler-
ate machine-learning algorithms by utilizing block structures in
a matrix [22]. In his work, input matrices are assumed to have
special block structures that come from denormalization of re-
lational tables, whereas CVS does not impose any assumptions
on the input data. (Deep neural networks) In deep neural net-
work research community, to reduce the size of huge deep learn-
ing models, DNN model compression has been recently actively
studied. Approaches include low-rank approximation of param-
eter tensors [6], [13], binary representation [21] or ternary rep-
resentation [23] of parameters, and pruning unimportant nodes
from parameters [15].

Brodie et al. tackled the row-reordering problem we have de-
fined in Section 5.2, and proposed a method that is similar to our
greedy method, whose computational complexity is O(D2 J) [4].
In their situation, the greedy method was enough, because their
aim was to compress the state-transition tables of a regular ex-
pression, and commonly such tables are not so large. In database
systems area, the problem of reordering bitmap indices has been
studied to get better compression result, which is equivalent to
our dimension-reordering problem with binary values [16], [20].

9. Conclusion

In this paper, we proposed CVS (Compressed Vector Set), a
general framework for concisely storing vector sets and conduct-
ing mathematical operations on the vector sets efficiently. CVS
holds a set of vectors in a compressed format and conducts math-
ematical operations, such as �p-norm and dot product, without
decompression. We demonstrate that CVS accelerates several
data mining algorithms including k-nearest neighbor algorithm,
stochastic gradient descent algorithm on logistic regression, and
kernel methods. Our experimental results demonstrated that CVS
can process both dense datasets and sparse datasets faster than
conventional sparse vector representation with smaller memory
usage.
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