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Abstract: Modern vehicles are equipped with Electronic Control Units (ECUs) and external communication devices.
The Controller Area Network (CAN), a widely used communication protocol for ECUs, does not have a security mech-
anism to detect improper packets; if attackers exploit the vulnerability of an ECU and manage to inject a malicious
message, they are able to control other ECUs to cause improper operation of the vehicle. With the increasing popularity
of connected cars, it has become an urgent matter to protect in-vehicle networks against security threats. In this paper,
we study the applicability of statistical anomaly detection methods for identifying malicious CAN messages in in-
vehicle networks. We focus on intrusion attacks of malicious messages. Because the occurrence of an intrusion attack
certainly influences the message traffic, we focus on the number of messages observed in a fixed time window to detect
intrusion attacks. We formalize features to represent a message sequence that incorporates the number of messages
associated with each receiver ID. We collected CAN message data from an actual vehicle and conducted a quantita-
tive analysis of the methods and the features in practical situations. The results of our experiments demonstrated our
proposed methods provide fast and accurate detection in various cases.
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1. Introduction

Modern vehicles are equipped with multiple Electronic Con-
trol Units (ECUs) that control the main operations of vehicular
components, such as the engine or the brakes. There are about
100 ECUs in a present-day vehicle, each of which communicates
with the others over a bus-topology in-vehicle network. The vehi-
cles are also equipped with external communication devices that
allow them to update the firmware and interact with mobile de-
vices such as the drivers’ smartphones. These communication
devices act as an interface between the in-vehicle network and
the out-vehicle network.

Although the external network connectivity offers various ben-
efits, it also increases the security risk within the in-vehicle net-
work. The Controller Area Network (CAN), a widely used com-
munication protocol for ECUs, does not have a security mecha-
nism to detect improper packets. If attackers exploit the vulnera-
bility of an ECU and manage to inject a malicious message, they
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will be able to control other ECUs to cause incorrect operations
within the vehicle. A CAN bus network and an attack on it is
illustrated in Fig. 1. In 2010, Koscher et al. reported the ability
of malicious CAN messages to adversarially control several op-
erations, such as unlocking the doors and stopping the engine.
Another experiment demonstrated that it was possible to override
the operations of the steering wheel and the brakes [12]. In 2015,
it was demonstrated that one could identify the software vulner-
ability of a Jeep Cherokee and wirelessly hack the operations of
the vehicle through a cellular network *1. After this revelation,
Chrysler announced that it would recall 1.4 million vehicles *2.

Fig. 1 A CAN bus network and an intrusion attack on it through out-vehicle
networks.

*1 https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
*2 https://www.wired.com/2015/07/jeep-hack-chrysler-recalls-1-4m-

vehicles-bug-fix/
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Fig. 3 The proposed pipeline for detecting malicious message sequences by using ID-Counting features.

With the emergence of telematics services and intelligent navi-
gation systems, and the increasing popularity of connected cars,
it has become an urgent matter to protect in-vehicle networks
against security threats.

In this paper, we study the applicability of statistical anomaly
detection methods to identify malicious CAN messages in in-
vehicle networks. We focus on intrusion attacks of malicious
messages, which is one of several standard attacks wherein an at-
tacker need not investigate the message patterns on the CAN bus
network nor conduct a reverse-engineering investigation of vehi-
cle functions. We define a malicious message as a message which
is sent by an attacker for causing incorrect operations within the
vehicle.

In particular, we aim to detect malicious message sequences,
each of which has at least one malicious message in a fixed time
window. Owing to the fact that an intrusion attack invariably in-
fluences message traffic, we focus on the message frequencies
to detect the attack. We assume that a sequence is more likely
to contain a malicious message if the number of messages in
the sequence is higher. To implement this concept, we design
the Total-Counting feature to represent the characteristic of a se-
quence. The Total-Counting feature is a count of the number of
messages in a sequence, in other words, the inversed message fre-
quency. We assume that the number of messages in a sequence
follows a Gaussian distribution, and we use a statistical testing
method to detect whether the sequence is contaminated or not.

Next, we consider that the ID of each message is valuable for
discovering a malicious message sequence. A CAN message is
associated with the ID field, which determines the priority or the
receiver of the message, and we introduce the ID-Counting fea-

ture by using this ID information. The ID-Counting feature is
a vector, each of whose elements is the number of messages as-
sociated with each ID. Given a dataset containing only normal
messages, we generate the feature for each normal sequence and
calculate the distance between the vector corresponding to a tar-
get sequence and that corresponding to its nearest neighbor in the
normal messages. We assume that the distance follows a nor-
mal distribution, and we use a statistical testing method to detect
whether the sequence is contaminated or not.

There is a huge demand for real-time intrusion detection in
vehicle networks because malicious messages may cause unex-
pected improper operations of the target vehicle, and therefore,
we need to take actions such as stopping the vehicle or sending a
warning to the driver as soon as possible. Keeping in perspective
such requirements, we propose a pipeline to speed up the detec-
tion process by applying a k-d Tree and a dimension reduction
method. The proposed two features are illustrated in Fig. 2, and

Fig. 2 The proposed message sequence features: Total-Counting feature
and ID-Counting feature.

the pipeline is shown in Fig. 3.
All of the aforementioned approaches are designed for unsu-

pervised cases, where we do not have any examples of malicious
messages. However, when we have cases involving malicious
messages, we can apply the two features to build a classifier to
detect the attack by using supervised learning methods.

We collected CAN message data from an actual vehicle and
simulated four attack scenarios by injecting fake CAN messages.
We conducted experiments by using two types of malicious mes-
sages: one is randomly injected to the network, and the other is
mimicking the transmission cycles of the normal messages. By
applying our methods to each scenario, we observed that both the
Total-Counting and the ID-Counting features accurately detected
malicious message sequences and achieved an AUC of over 0.999
in the cases where a large number of malicious messages were
injected (i.e., over 50% of the total messages were malicious).
The results of the experiments also showed that the ID-Counting
feature with supervised learning achieved high detection perfor-
mance with an AUC of more than 0.95 even when the number
of malicious messages was small (i.e., less than 1% of messages
were malicious). We further confirmed that our methods take less
than 3 ms for detecting whether a message sequence is malicious
in almost all the cases.

Several statistical approaches have been proposed for detecting
malicious CAN messages. Although many methods used pay-
load (i.e., contents) information of each message [5], [10], [11],
[13], [16], there has been another line of research aiming to de-
tect malicious messages by only using the timestamp and ID of
each message [2], [4], [15]. Our work contributes to this line by
proposing methods which focus on the nearest neighbor distance
between the target sequence and the normal sequences.

Our key contributions are summarized as follows:
• We formalize two basic features to represent a CAN message

sequence. These features can be extracted from the time-
stamp and the ID information in each message.

• We propose a pipeline for quickly detecting malicious mes-
sages in the in-vehicle network.

• We conducted a quantitative analysis of the methods and the
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features in practical situations by using actual CAN mes-
sage datasets and in supervised and unsupervised cases, and
demonstrate that our proposed methods provide fast and ac-
curate detection in various cases.

2. Intrusion Detection in In-vehicle Networks

2.1 Controller Area Network (CAN)
The CAN protocol was developed by Robert Bosch GmbH.

It is used not only in in-vehicle networks, but also in applica-
tions such as the controlling of industrial machines and so on ow-
ing to its excellent noise resistance. ECUs are interconnected in
the CAN bus network. Each ECU is assigned a specific CAN
ID in advance, which is regarded as the receiver, and it deter-
mines whether a data frame is received by the specified CAN ID.
The decision whether a data frame is received or not is realized
through a dedicated hardware called the CAN controller.

2.2 Possible Attacks on CAN Networks
CAN has a broadcasting system whereby all the ECUs can re-

ceive any message because CAN uses the bus network. In other
words, there are vulnerabilities that we can easily exploit by inter-
cepting and exchanging messages and sending the modified mes-
sages to any ECU in the network. The attackers in the abovemen-
tioned cases [8], [12] accessed the CAN network through an On-
Board Diagnostics II (OBD-II) port, which is available in most
standard cars, and sent malicious messages to the vehicle. In the
Jeep’s case, a cellular network was used to intrude into the in-
vehicle network. Following the literature, we focus on intrusion
attacks on CAN networks through out-vehicle networks.

2.3 Intrusion Detection Problem
In this study, we aim to detect a malicious message sequence,

which includes at least one malicious message. When we detect a
malicious message sequence, we can take several actions such as
stopping the vehicle or sending a warning to the driver. We start
with a formulation of the CAN data. Let us assume there are T

messages and each message is associated with its ID. By regard-
ing the CAN data as a time series data, we can formulate the CAN
data D as D = (m(1), · · · ,m(T )), where the messages are ordered
according to the received time. We assume that we are given the
ID of the i-th message m(i)

id ∈ I, where I = {id1, id2 . . . , idl} is a
set of CAN IDs.

We then assume that the messages are divided into W message
sequences by using the width of time window w. The message
sequences are represented as S = (s(1), · · · , s(W)), where s( j) is the
j-th sequence of messages. Our goal is to detect whether each
message sequence s( j) is a malicious one or not.

3. Proposed Methods

3.1 Analysis of the Normal Behaviors of CAN Messages
We first analyze the typical normal behaviors of CAN mes-

sages in terms of their message frequencies. Figure 4 illustrates
the intervals of arrival times for a particular message ID. The fig-
ure shows the messages with this particular ID arrive with a quite
stable frequency. We found that many other message IDs also
had such stable frequencies, and, therefore, we hypothesize that

Fig. 4 Analysis of the transmission cycle; the intervals of arrival times for
a particular message ID are shown. The vertical axis and the hori-
zontal axis correspond to the time differences between consecutive
messages and the order of the arrivals, respectively. The messages
with this particular ID arrive with a quite stable frequency.

injections of malicious messages cause temporal changes in the
message frequencies, which makes it possible to detect them by
finding changes in the message frequencies.

3.2 Unsupervised Detection Using the Total-Counting Fea-
ture

The observation in Section 3.1 suggests that the number of
messages in a sequence can be used as a clue to detect a malicious
message sequence. Thus, we design the Total-Counting feature to
represent a message sequence. The Total-Counting feature of the
j-th message sequence, x( j)

tc , is given as x( j)
tc = n j, where n j indi-

cates the number of messages in the j-th sequence.
We then introduce a detection algorithm based on a statisti-

cal test. We assume that each x( j)
tc follows the normal distribution

N(μtc, σ
2
tc). The mean μtc and the variance σ2

tc of normal distribu-
tion are estimated by the maximum likelihood estimation. Note
that we build the model by using a dataset that possibly contains
malicious messages because the effect of these messages on esti-
mating the parameters can be limited.

The obtained normal distribution N(μ̂tc, σ̂
2
tc) is a model repre-

senting the probability of the number of messages in a message
sequence. To detect whether a message sequence is malicious,
we perform a statistical test and obtain the p-value by using the
model. If the value is less than a predefined threshold, we deter-
mine that the message sequence is a malicious one.

3.3 Unsupervised Detection Using the ID-Counting Feature
The Total-Counting feature just counts the number of messages

in each sequence and the information of the CAN ID is not taken
into account. We next present another feature, called the ID-

Counting feature, that is constructed from the number of mes-
sages associated with each ID. The ID-Counting feature of the
j-th message sequence, x( j)

ic , is defined as x( j)
ic =

(
n j1, n j2, . . . , n jl

)
,

where n jk is the number of messages associated with idk in the
j-th sequence.

Whereas the Total-Counting feature is represented by a scalar
value, the ID-Counting feature is a multi-dimensional vector.
Therefore, we apply a different detection approach for the ID-
Counting feature. Instead of considering the feature value itself,
we assume that the nearest neighbor distance between a message
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Table 1 Statistics about the datasets used in the experiments.

Data No. of messages No. of malicious messages Time length
Small-Parked 62,015 144 60.9 s
Large-Parked 64,518 2,905 60.6 s
Small-Moving 49,625 819 46.3 s
Large-Moving 218,024 118,152 95.7 s

sequence and normal message sequences follow a normal distri-
bution. Let us assume that we have a set of ID-Counting features
of the normal message sequences, XN . Our algorithm first cal-
culates the nearest neighbor distance between the ID-Counting
feature of each message sequence x( j)

ic and XN , which is denoted
by d j, and obtains the maximum likelihood estimate of the mean
and the variance of the normal distribution, namely, μ̂ic and σ̂2

ic.
To detect whether a message sequence is malicious, we calculate
the nearest neighbor distance between the sequence and XN , and
perform a statistical test and compute the p-value by using the
model. If the value is below a predefined threshold, the message
sequence is detected as malicious.

Since we focus on an intrusion detection in in-vehicle net-
works, there is a demand for detecting a malicious message se-
quence as fast as we can so that we can stop the vehicle or send a
warning to the driver before an accident occurs. For implement-
ing a real-time detection, we propose a pipeline combining a k-d
Tree data structure and a dimension reduction method for effi-
ciently calculate the nearest neighbor distances to detect whether
a message sequence is malicious. k-d Tree is a data structure hav-
ing an average computational complexity O (log |S|) for finding
the nearest neighbor in a vector set S [1], [6]. This data structure
allows us to calculate the nearest neighbor distance efficiently
even when we have a large number of normal messages. The
ID-Counting feature of a message sequence is an l-dimensional
vector, and l (i.e., the number of unique CAN IDs) is typically
around 100; however, a k-d Tree is not suitable for such high-
dimensional vectors. We thus apply principal component analysis
(PCA) to reduce the dimension of the feature vectors for speeding
up the nearest neighbor calculation.

4. Experiments

4.1 Setting
To evaluate the accuracies of our methods, we prepared ac-

tual CAN message datasets and compared the detection accura-
cies of the two features. The accuracies were evaluated using the
area under the ROC curve (AUC). Although we introduced un-
supervised detection methods in Section 3, when we are given
the ground truth of malicious and normal message sequences, we
can build a detector in a supervised manner. We applied L2 reg-
ularized logistic regression to learn the detectors and investigated
their performance as well as the performance of the unsupervised
detectors.

4.2 Datasets
We collected CAN messages sent into the in-vehicle network

of an actual automobile. We generated datasets with malicious
messages by simulating attack scenarios. We prepared four
datasets called Small-Parked, Large-Parked, Small-Moving,
and Large-Moving. The datasets differed in the amount of mali-

cious messages (Small or Large) and in the status of the vehicle
(Parked or Moving). A summary of the datasets is described in
Table 1. These scenarios were simulated in the following ways:
• Large-Parked and Large-Moving: A large number of ma-

licious messages were randomly injected into the network.
These datasets simulate DoS attacks, which attempt to flood
the target network and to prevent other ECUs from send-
ing normal messages. Specifically, we set several attack se-
quences and inserted a large number of malicious messages
to each sequence. In both datasets, the numbers of the in-
serted messages per unit time are almost the same; how-
ever, the number of the attach sequences is smaller in the
Large-Parked dataset then in the Large-Moving dataset, and
thus the total number of malicious messages is smaller in the
Large-Parked dataset.

• Small-Parked and Small-Moving: A small number of mali-
cious messages were injected. Each malicious message was
injected right after a normal message having the selected
IDs. We assumed that attackers knew the cycle of normal
messages *3 and that they managed to inject malicious mes-
sages in accordance with this cycle.

We had 97 IDs in our dataset and three of them were selected
for sending malicious messages. The three IDs were related to
the operations of the steering wheel, and, therefore, we simu-
lated the attacks wherein the vehicle could be steered to an un-
expected direction. We prepared another dataset for each attack
dataset for applying the supervised learning method. We pre-
pared a normal dataset as well, which contained about 380,000
messages recorded while the vehicle was parked for 6 min. This
normal dataset was used for our unsupervised method with the
ID-Counting feature.

4.3 Parameters
We varied the width of the time window among values of 10,

20, 50, 100, and 200 ms in the experiments. It would be more
beneficial in a practical situation if our methods could detect a
malicious sequence of a shorter time width to deal with the at-
tacks immediately. When we apply the ID-Counting features with
PCA, we need to establish the dimension size. Our initial exper-
iment with varying dimension size from 1 to 18 showed that the
performance improvement tended to saturate when the dimension
size was about 10 or more. As a large dimension size causes more
computational costs, we found that setting the dimension size to
10 was a reasonable choice and we fixed the dimension size to 10
in the experiments.

4.4 Results
Table 2 shows the AUCs of the unsupervised learning method

*3 This can be done by plugging an OBD-II scanner tool to the target vehi-
cle, and analyzing CAN message logs.
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Table 2 AUCs of the unsupervised learning method with the Total-Counting feature and the ID-Counting
feature for the four datasets. The ID-Counting feature showed better performance than the Total-
Counting feature when the time width was small.

Time width
Large-Parked Large-Moving Small-Parked Small-Moving

Total ID Total ID Total ID Total ID
Counting Counting Counting Counting Counting Counting Counting Counting

10 ms 0.996 0.987 0.999 1.000 0.602 0.991 0.634 0.707
20 ms 0.999 0.989 0.999 1.000 0.626 0.964 0.658 0.679
50 ms 0.999 0.986 0.999 1.000 0.885 0.987 0.900 0.630

100 ms 0.999 0.970 0.999 1.000 0.944 0.967 0.978 0.567
200 ms 0.999 0.954 0.999 1.000 0.960 0.952 0.987 0.566

Table 3 AUCs of the supervised learning method with the Total-Counting feature and the ID-Counting
feature for the four datasets. The ID-Counting feature outperformed the Total-Counting feature
in almost all the cases.

Time width
Large-Parked Large-Moving Small-Parked Small-Moving

Total ID Total ID Total ID Total ID
Counting Counting Counting Counting Counting Counting Counting Counting

10 ms 0.996 0.998 0.999 1.000 0.706 0.839 0.751 0.860
20 ms 0.999 0.998 0.999 1.000 0.772 0.980 0.798 0.950
50 ms 0.999 0.999 0.999 1.000 0.928 0.997 0.937 0.997

100 ms 0.999 0.999 0.999 1.000 0.965 0.998 0.987 0.995
200 ms 0.999 0.999 0.999 1.000 0.977 0.994 0.987 0.991

Table 4 Average computation time of the unsupervised method for detecting whether each message se-
quence is malicious or not. Although the ID-Counting features have more dimensions than the
Total-Counting features, the computation time was comparable in all the cases except the Large-
Moving dataset.

Large-Parked Large-Moving Small-Parked Small-Moving
Total ID Total ID Total ID Total ID

Counting Counting Counting Counting Counting Counting Counting Counting
1.043 ms 2.542 ms 1.327 ms 8.423 ms 0.789 ms 0.578 ms 0.886 ms 0.797 ms

with the Total-Counting feature and the ID-Counting feature.
We observed that both the Total-Counting feature and the ID-
Counting feature accurately detected malicious sequences in
cases consisting of a large number of malicious messages (i.e.,
Large-Parked and Large-Moving) even when the time width was
small. The performance achieved an AUC = 0.999 in most of the
cases.

When the time width was over 100 ms, the Total-Counting fea-
ture achieved an AUC of over 0.90 in cases consisting of a small
number of malicious messages (i.e., Small-Parked and Small-
Moving). However, its performance was relatively inferior when
the time width was small. This is because the number of mali-
cious messages in a short sequence is small, and, therefore, the
number of messages in a malicious sequence does not greatly
differ from that in a normal sequence. The ID-Counting feature
showed higher AUCs than the Total-Counting feature in these two
datasets when the time width was small.

Table 3 shows the AUCs of the supervised learning method
with the Total-Counting feature and the ID-Counting feature. As
one can easily expect, the supervised learning method demon-
strated better performance than the unsupervised learning method
in most cases. Exceptions were the cases where the time width
was small such as in the Small-Parked dataset; this might have
been caused by the mismatch between the malicious message pat-
terns in the training samples and those in the test samples. It is no-
table that the unsupervised learning method with the ID-Counting
feature achieved an AUC of over 0.95 in this dataset. The ID-
Counting feature generally outperformed the Total-Counting fea-
ture even when the time width was short. This highlights the ef-

fectiveness of the ID information in detecting malicious messages
in the in-vehicle network.

We further investigated the computation time for detection.
The experiments were run on Intel Core i5 dual-core processors
at 2.9 GHz with 16 GB RAM. The time width of each message
sequence was fixed to 10 ms. Table 4 shows the average computa-
tion time of the unsupervised methods for detecting whether each
message sequence is malicious or not. Although the ID-Counting
features have more dimensions than the Total-Counting features,
the computation time with the ID-Counting feature was compara-
tive to that with the Total-Counting feature in almost all the cases.
This result supported the efficiency of our proposed pipeline in-
cluding the nearest neighbor calculation and the dimension reduc-
tion to speed up the detection. Because of the variety of messages
in the Large-Moving dataset, our method with the ID-Counting
feature required more time for detection; however, it is still less
than 10 ms. We conclude that our proposed methods are not only
accurate but also fast for detecting malicious message sequences.

5. Related Work

Several studies have reported the possibility of injecting ma-
licious packets into in-vehicle networks and adversarially con-
trolling several operations. For example, Koscher et al. pre-
sented several attack approaches including understanding the
CAN messages and reverse-engineering the functionality, and
demonstrated the capability of these attacks [8]. Their results
showed that various operations such as stopping the engine, pre-
venting the brakes, displaying a false speedometer, and disabling
the headlights and the brakelights can be controlled by the at-
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tacks. Another experiment demonstrated that one could override
the operation of the steering, the brakes, the accelerators, and the
displays [12].

These reports have motivated research for improving the CAN
message security. Nilsson and Larson categorized the security
approaches into four layers: (1) prevention of the modification,
reading, and injecting messages in the in-vehicle network; (2) de-
tection of malicious messages; (3) diverting attackers to trick
them into believing that they are interacting with a real in-vehicle
network; and (4) collecting physical and digital evidence of the
attacks to apply forensic approaches [14]. Our study belongs to
the second group.

Malicious message detection approaches can be divided into
two main categories: one requires a modification of the CAN
protocols and the other does not. An example of the first ap-
proaches is CANAuth [17]. CANAuth is a message authentica-
tion protocol for the CAN bus network, which is lightweight and
does not require any reconfiguration of existing ECUs; however,
all the ECUs have to share a key to use this authentication proto-
col. The second category is further grouped into rule-based ap-
proaches and other approaches. A rule-based approach has been
proposed by Ref. [9]. This method generates protocol-level se-
curity specifications from the values appearing in each message
field and the field dependency, and creates ECU-behavior secu-
rity specifications by inspecting the communication patterns of
each ECU. The method identifies a message to be malicious if its
structure is different from the specifications.

Several statistical approaches have been proposed for detecting
malicious messages without a modification of the CAN protocols.
The methods are categorized into two groups: payload-based
and timestamp-based. Muüter and Asaj presented an entropy-
based anomaly detection method for detecting malicious mes-
sages by using payload information [13]. They demonstrated that
the entropy-based method would have a capability to detect at-
tacks by measuring how a message conforms to the expected
normal behavior of CAN messages. Marchetti et al. presented
the effectiveness of the entropy-based method by applying the
method to real CAN traffic gathered from an unmodified licensed
vehicle in real driving conditions [10]. Markovitz and Wool pro-
posed a method for detecting malicious messages by considering
the types of payload information [11]. The authors demonstrated
that there were five types of payload fields: constant, multi-value,
counter, sensor, and one that did not match any of the types. They
built a classifier to identify the field types and the boundaries, and
showed its applicability in malicious message detection. Taylor et
al. applied Long Short-Term Memory (LSTM) for malicious mes-
sage detection [16]. The neural network was trained to predict the
payload of the next message, and its prediction errors are used as
a signal for detecting malicious messages. Kang and Kang con-
sidered the detection problem as classification, and employed a
deep neural network [5].

There have been a few methods aim to detect malicious mes-
sages by only using timestamp information of each message.
Based on the fact that most in-vehicle messages are sent peri-
odically, Cho and Shin proposed to estimate a model on normal
clock behavior, and detected a message is malicious if its behav-

ior deviates from the normal one [2]. Hamada et al. proposed a
similar approach; they represented the interval between messages
by a Gaussian mixture model, which was used for malicious mes-
sage detection [4]. These two methods aim to detect malicious

messages, whereas our method focuses on detecting malicious

message sequences. The closest work to ours is that by Ref. [15].
The authors studied statistical methods for detecting malicious
message sequences. Their methods assume that a message se-
quence is malicious if the time intervals of the messages in the
target sequence and those in the historical sequences are drawn
from independent normal distributions. In contrast, we focus on
the distribution of the nearest neighbor distance between the tar-
get sequence and the normal sequences; that is, we only focus the
normal sequence that is the most similar to the target sequence
instead of considering all the normal sequences. Our approach
would be more robust in a case where the normal sequences are
diverse. In addition, we evaluate our method in both supervised
and unsupervised learning cases while they only considered un-
supervised cases.

6. Conclusion

In this paper, we proposed statistical anomaly-detection meth-
ods for the CAN bus network. Our methods focus on injection at-
tacks, which can control several operations of a vehicle while one
can easily implement the attacks. We proposed two types of fea-
tures: the Total-Counting feature, which represents the number
of elements within each message sequence, and the ID-Counting
feature, which represents the frequencies of each ID to recog-
nize a slight change in message frequency. We further introduced
the unsupervised learning method and the supervised learning
method for detecting malicious messages. The presented unsu-
pervised learning method finds the nearest neighbor of a target se-
quence from the normal data and uses the distance between them
to detect malicious messages. Because the ID-Counting feature
is likely to be highly dimensional, we proposed using a dimen-
sion reduction method and a k-d tree data structure to speed up
the nearest neighbor discovery.

We conducted experiments to investigate whether these fea-
tures are effective for anomaly detection of the CAN data. We had
four types of datasets that included an attack message and were
collected from an actual car. The datasets were broadly classified
into data that showed that a large number of malicious messages
were injected and data that showed a small number of malicious
messages were injected, and there were two situations that indi-
cated whether the vehicle was moving or parked. By applying the
proposed methods to our datasets, we indeed demonstrated that
these methods can detect anomalous messages. We also found
that the ID-Counting feature was more effective than the Total-
Counting feature in most cases.

The result of our experiments showed that the supervised
method, which requires training data, outperformed the unsuper-
vised learning method in many cases. However, the supervised
learning method requires data that cover the actual variety of at-
tacks. When we apply our methods to an actual system, the de-
tection performance would rely on the preparation of the training
datasets. We consider the unsupervised method to be more prac-
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tical, which showed comparable performance to the supervised
method in several cases in our experiments.
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Vázquez, E.: Anomaly-based network intrusion detection: Tech-
niques, systems and challenges, Computers & Security, Vol.28, No.1,
pp.18–28 (2009).

[4] Hamada, Y., Inoue, M., Horihata, S. and Kamemura, A.: Intrusion de-
tection by density estimation of reception cycle periods for in-vehicle
networks: A proposal, Proc. Embedded Security in Cars Conference
(ESCAR) (2016).

[5] Kang, M.-J. and Kang, J.-W.: Intrusion detection system using deep
neural network for in-vehicle network security, PLOS ONE, Vol.11,
No.6, pp.1–17 (2016).

[6] Kim, S., Cho, N.W., Kang, B. and Kang, S.-H.: Fast outlier detec-
tion for very large log data, Expert Systems with Applications, Vol.38,
No.8, pp.9587–9596 (2011).

[7] Kolter, J.Z. and Maloof, M.A.: Learning to detect malicious exe-
cutables in the wild, Proc. 10th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD), pp.470–478
(2004).

[8] Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T.,
Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H.
and Savage, S.: Experimental security analysis of a modern auto-
mobile, Proc. IEEE Symposium on Security and Privacy, pp.447–462
(2010).

[9] Larson, U.E., Nilsson, D.K. and Jonsson, E.: An approach to
specification-based attack detection for in-vehicle networks, Proc.
IEEE Intelligent Vehicles Symposium (IV), pp.220–225, IEEE (2008).

[10] Marchetti, M., Stabili, D., Guido, A. and Colajanni, M.: Evaluation
of anomaly detection for in-vehicle networks through information-
theoretic algorithms, Proc. 2016 IEEE 2nd International Forum on
Research and Technologies for Society and Industry Leveraging a bet-
ter tomorrow (RTSI), pp.1–6 (2016).

[11] Markovitz, M. and Wool, A.: Field Classification, Modeling and
Anomaly Detection in Unknown CAN Bus Networks, Proc. Embed-
ded Security in Cars Conference (ESCAR) (2015).

[12] Miller, C. and Valasek, C.: Adventures in automotive networks and
control units, available from 〈http://www.ioactive.com/pdfs/IOActive
Adventures in Automotive Networks and Control Units.pdf〉 (2013).
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