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Abstract: This paper presents a topic modeling method to retrieve similar music fragments and its application, Music-
Mixer, which is a computer-aided DJ system that supports DJ performance by automatically mixing songs in a seamless
manner. MusicMixer mixes songs based on audio similarity calculated via beat analysis and latent topic analysis of
the chromatic signal in the audio. The topic represents latent semantics on how chromatic sounds are generated. Given
a list of songs, a DJ selects a song with beats and sounds similar to a specific point of the currently playing song to
seamlessly transition between songs. By calculating similarities between all existing song sections that can be nat-
urally mixed, MusicMixer retrieves the best mixing point from a myriad of possibilities and enables seamless song
transitions. Although it is comparatively easy to calculate beat similarity from audio signals, considering the semantics
of songs from the viewpoint of a human DJ has proven difficult. Therefore, we propose a method to represent audio
signals to construct topic models that acquire latent semantics of audio. The results of a subjective experiment demon-
strate the effectiveness of the proposed latent semantic analysis method. MusicMixer achieves automatic song mixing
using the audio signal processing approach; thus, users can perform DJ mixing simply by selecting a song from a list
of songs suggested by the system.
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1. Introduction

Music has the power to liven up, chill out, and change the at-
mosphere. Not only live music performances but also recorded
music has such potential. DJs are people who can maximize the
potential of recorded music by playing it effectively. DJs select
music and mix songs to provide the best music for the atmosphere
continuously.

Playing back prerecorded music is something that anyone can
do, and some who have no experience as a DJ may think that be-
ing a DJ only requires one to play music. Certainly, playing one
song is easy and can be achieved by simply pressing a playback
button; however, DJs mix *1 the songs so that listeners do not no-
tice the songs are being switched. Note that mixing songs is not
the only task that DJs perform but it is the minimum and most
fundamental factor for DJ performance. The inherent difficulty
in song mixing is often difficult to notice because DJs attempt
to make song boundaries seamless, which will not work by just
switching songs using any timing. If we care about beats and
sounds, the suited timing for song mixing is available only for a
moment. On the other hand, there are a myriad of possibilities
for song mixing timings and mixing destinations, and it is almost
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impossible for humans to consider all such possibilities in a lim-
ited time. More specifically, the DJ must decide and set the next
song and the mixing timing before the currently playing song is
finished; thus, many DJs select the next song intuitively. Select-
ing the best mixing option from innumerable possibilities within
a limited time is difficult for DJs and is much more difficult for
the inexperienced. Therefore, computationally determining can-
didate songs such that songs can be mixed naturally is effective
for such users. Thus, we present MusicMixer, a DJ system that
supports a user by automatic song mixing.

Given a list of songs, a DJ selects a song with beats and sounds
that are similar to a specific point in the currently playing song
such that the song transition is seamless. Consequently, the songs
will be mixed as a consecutive song. The beats are particularly
important and should be carefully considered. Maintaining sta-
ble beats during song transition is the key to achieving a seam-
less mix. Computers are good at searching for the most similar
pairs of beats from innumerable possibilities. Hence, it is pos-
sible to solve this problem using a signal processing technique
to extract beats and rely on a computer to retrieve a similar beat
for effective mixing. However, computers handle audio signals
numerically without considering the underlying song semantics;
thus, the resulting mix will be merely a mechanical process if the
system only considers beat similarity. Here, we consider what
factors should be taken into consideration, in addition to the beat,
during song mixing. According to the results of a preliminary
survey that we performed by questionnaire, 15 out of 19 people

*1 The word “mix” means gradually changing a song to another song.
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said that the factor related to beat or tempo is important in song
mixing and 13 out of 19 people said that the similarity of 2 songs
during song mixing is important. From this result, we take the
similarity of songs into account in addition to the similarity of
beats. At this point, we aim to achieve similarity, which is not
described as a numerical value.

Here, we present a method of calculating similarity based on
the latent semantics of a song from the polyphonic audio signal.
By employing a machine learning method called latent Dirichlet
allocation (LDA) [1], we analyze the latent semantics underlying
the song. This analysis method is called topic modeling and the
latent topics that can be analyzed represent latent semantics on
how chromatic sounds in a song are generated (i.e., the semantics
related to the harmonic component). In addition to beat simi-
larity, we consider the similarity of latent topics of songs. This
process corresponds to consideration of how sound is generated
from latent topics in a given song. By using this similarity in
addition to the beat similarity, we aim to achieve seamless song
mixing. We define the similarity measurement composed of beat
similarity and latent topic similarity as “mixability” (i.e., “mix”
+ “ability”). We also present an interface that supports DJ perfor-
mance by employing mixability. As shown in Fig. 1, MusicMixer
automatically mixes songs as naturally as possible.

Given a collection of songs, MusicMixer calculates mixability
between all possible song mixing pairs and their corresponding
timings. When a user selects a song to play, MusicMixer sug-
gests song candidates and the timing to mix the song based on
the calculated mixability. The user can then semi-automatically
perform DJ mixing by selecting a song from the candidates or lis-
ten to the automatic mixing that MusicMixer suggests based on
the best mixability measures.

MusicMixer focuses on song mixing because song selection is
an important task for DJs that is highly dependent on the situa-
tion, atmosphere, and meta-information of the song. Moreover,
the individuality of the DJ’s performance substantially affects the
song selection. Song selection is what human beings are good
at whereas song mixing can be performed better by a computer
system. Therefore, MusicMixer takes advantage of both human
song selection and automatically calculates mixability. Further-
more, MusicMixer enables automatic or semi-automatic DJ per-
formance that can be enjoyed as a song listening experience, i.e.,
the system can be used as a personal DJ.

Fig. 1 Conceptual image of mixing songs with similar latent topics and
beats using MusicMixer. The color of waveform indicates the latent
topic.

2. Related Work

2.1 Music Mixing and Playlist Generation
Ishizaki et al. [2] proposed a DJ system that adjusts the tempo

of songs in song mixing. They defined a measurement function
for user discomfort relative to tempo adjustment based on a sub-
jective experiment. Cliff [3] also presented a system that seam-
lessly mixes music by adjusting both tempo and beat. He also
enabled users to specify the trajectory of tempo in the resulting
mix such that users can influence the entire mix. However, these
systems do not consider factors other than tempo or beat and do
not retrieve a mixing point but instead forcibly change the song
tempo.

Some studies have supported DJs not with song mixing but
rather from the aspect of DJ performance. Laursen et al. [4] pro-
posed a DJ interface for live Internet broadcasting with integrated
remote audience feedback. Kapur et al. [5] presented a music re-
trieval tool for DJs to retrieve music through queries by Beat-

Boxing. Many other music retrieval methods would be useful for
DJs in order to search for the next song to mix. The various stud-
ies supporting DJ performance can be combined with song mix-
ing methods.

DJ performance can be considered as making a music playlist.
Several studies have focused on generating a music playlist [6],
[7], [8], [9], [10]. AutoDJ [6] generates a playlist based on one or
more seed songs using Gaussian process regression. The AutoDJ
project team has also proposed a method of inferring the similar-
ity between music objects and have applied this to playlist gener-
ation [9]. However, these approaches focused on playlist gener-
ation, and the importance of mixing (connecting) songs was not
considered. Goto et al. [11] proposed Musicream, which provides
a novel music listening experience, including sticking, sorting,
and recalling musical pieces. It also provides a playlist genera-
tion function; however, mixing is not considered.

There is another approach to mixing songs, referred to as
mashup. Mashup creates a single song from multiple songs.
AutoMashUpper [12] generates a mashup according to a masha-

bility measure. Tokui [13] proposed an interactive music mashup
system called Massh. Mashups are DJ track composition styles,
however not all DJs can perform mashups live without using pre-
recorded mashup songs. The mainstay of a DJ performance is
song mixing.

Another approach to song mixing is the song morphing method
proposed by Hirai et al. [14]. This method enables song mixing
using a morphing algorithm; however, it can only be applied to
songs in MIDI format.

There has been limited research on DJ mixing compared to re-
search on playlist generation. We believe that a mixing method
combined with playlist generation methods could be a powerful
tool. Therefore, we propose a DJ system for mixing songs that
considers beats and additional information that reflects the sim-
ilarity of songs. Here, we consider the latent semantics, which
can be analyzed by topic modeling and use them as a feature for
calculating similarity of songs.

c© 2018 Information Processing Society of Japan
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2.2 Topic Modeling
In natural language processing research, there is a method

called topic modeling, which estimates the topic of a sentence
from words that appear in the sentence. Those words depend on
the topic of the sentence; thus, the topic can be estimated by ob-
serving the actual sentence. If the topics are the same for two
sentences, the sentences will be similar at a higher semantic level
even if the actual words are not similar. Sasaki et al. [15] pro-
posed a system of analyzing latent topics of music via topic mod-
eling of lyrics. They proposed an interface to retrieve songs based
on the latent topics of lyrics.

Topic modeling can be applied to actual features. In this case,
feature vectors should be quantized (e.g., a bag-of-features [16]).
Nakano et al. [17] applied topic modeling to singing voice tim-
bre. They defined a similarity measure based on the Kullback-
Leibler divergence (KL-divergence) of latent topics and showed
that singers with similar singing voices have similar latent topics.
However, it is difficult to understand the meaning of each topic
explicitly using feature vectors rather than words.

Hu et al. [18] used the pitch classes of a song as words to esti-
mate the musical key of a song using topic modeling. This shows
that topic analysis using pitch classes is effective for inferring
the latent semantics of a song. Hu et al. [19] also proposed an
extended method to estimate musical keys from an audio signal
using a chroma vector (i.e., audio features based on a histogram
of a 12 chromatic scale) rather than pitch classes. This approach
shows that topic modeling using chroma vectors is useful for in-
ferring the latent topics of songs.

3. System Overview

MusicMixer requires preprocesses to analyze song beats and
latent topics. Given a collection of songs to be mixed, beat anal-
ysis is performed using an audio signal processing approach, and
latent topic analysis is performed using a topic modeling ap-
proach. Beat similarity and latent topic similarity will be the cri-
teria for the song mixing. Figure 2 shows the system flow.

First, a low-pass filter (LPF) is applied to the input song col-
lection to extract low-frequency signals. In the low-frequency
signal, important beat information such as bass and snare drums
and bass sounds, is prominent. Thus, beat information can be ac-
quired by detecting the peaks of the envelope of audio waveform
in the low-frequency signal.

The latent topic analysis is performed by using LDA [1]. First,
the system constructs a topic model using a music database that
includes various music genres. Thus, a model covering various
music genres can be constructed. The latent topics for a new in-
put song can be estimated using the constructed model. Our goal
is to find a good mixing point rather than analyze the topics of
an entire song; thus, we analyze the topics of segmented song
portions.

The length of data for latent topic analysis is set to 5 s; hence,
the similarity will be calculated for all existing pairs of 5 s seg-
ment of songs. Finally, the system retrieves the most similar song
fragments based on a combination of beat similarity and latent
topic similarity. Once a similar pair of song fragments is re-
trieved, the system mixes songs at the fragment by cross-fading

Fig. 2 System flow.

(i.e., fading in and out). Thus, the songs are mixed naturally
with our method. To mix more songs for endless playback, the
similarity-based retrieval is applied to the mixed song and the
next song will be chosen by the system.

4. Beat Similarity

There are many factors related to beat in music. In particu-
lar, the sound of the bass drum plays a significant role (e.g., the
rhythm pattern called four-on-the-floor is composed of intermit-
tent bass drum sounds). In addition to the bass drum, the snare
drum and other bass sounds are important for expressing detailed
rhythm. The sound of the bass also plays an important role. These
are all included in the low-frequency audio signal. Note that we
assume that none of the other sounds affect the beat. To ignore
other audio signals, we apply an LPF, which passes signals with
frequencies below 500 Hz. This LPF passes the attack sounds of
a general snare drum. By analyzing the peaks of the envelope
of a low-frequency signal, dominant sound events in the low-
frequency spectrum, such as the attack of drums can be detected.

For the low-pass-filtering and peak picking process, we used
mirToolbox 1.6.1, which is a musical signal processing tool pro-
vided by Lartillot et al. [20]. The LPF signal is extracted from
an original audio waveform by using Gammatone filterbank de-
composition. In this LPF signal, the envelope is extracted by the
infinite impulse response (IIR) filtering process. Peaks are picked
by calculating the local maxima. At this point, the local max-
ima will be considered as a peak if the difference with respect to
both the previous and successive local minima is higher than the
threshold. We set the threshold value as 10% of the local max-
imum value which is focused on. The distances between peaks
correspond to the length of the beat. Figure 3 shows an example
of the envelope of low-frequency audio signal.

Beat similarity is calculated by comparing the distances be-
tween N peaks of the envelope. Here, N is the number of dis-
tances to consider. The peak distance feature Dpeak is an N-
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Fig. 3 Extracting peak distance features from the envelope of low-
frequency audio signal. The red circle indicates the extracted peaks.

dimensional vector composed of distances between peaks. The
beat similarity S beat between fragment i and fragment j is calcu-
lated as follows:

S beat(i, j) =
1

∑N−1
k=1 ||Di

peak(k) − Dj
peak(k)|| + 1

. (1)

Here, larger N values attain better matching relative to beats.
However, the number of candidate songs to be mixed will be ex-
cessively reduced if the N value is extremely large. At the current
implementation, the parameter N is user-defined.

5. Latent Topic Similarity

This section describes the method of analyzing a latent topic
of a song using topic modeling. In particular, we propose a topic
modeling method that considers the latent topic of a song by ex-
pressing the audio signal symbolically.

5.1 Topic Modeling
The topic model is constructed by extracting the features of

songs and applying LDA [1] to the features. We extract the
chroma vector from the audio signal and represent the feature
symbolically, which we refer to as “ChromaWords.”
5.1.1 Feature Extraction

Topic analysis using audio feature values makes it difficult to
understand the meaning of topics explicitly. For example, if the
chroma vector value is 1.0, 0.1, 0.1, 0.0, 0.2, 0.1, 0.0, 0.4, 0.2, 0.1,
0.0, 0.3, ChromaWords expresses the feature as “CGB,” whose
meaning is much easier to understand. It is difficult to determine
the meaning from a high-dimensional raw feature value; there-
fore, conventional topic modeling methods could not always de-
scribe the meaning of each topic clearly. To improve the inter-
pretability of topic clustering results, we express the audio sig-
nal symbolically and represent them as a maximum of 4-letter
word. There are symbols in music that are represented in a musi-
cal score, i.e., pitch classes. Because a letter is assigned to each
musical note, we can use the letters to construct a word for topic
modeling. Here, we employ an audio feature referred to as a
chroma vector, which is a histogram of 12 musical scales. Each
bin of the chroma vector represents a musical note. By sorting the
chroma vector by dominant notes, a word can be generated (e.g.,
[CADE], [BAD#]) which we refer to as ChromaWords. Typi-
cally, a chroma vector includes noise caused primarily by disso-
nant sounds. To avoid the effects of noise, we use the top 70%

Fig. 4 Extraction of ChromaWords from chroma vector.

power of notes. Here, we set the maximum length of the word
to four letters. Thus, we can represent polyphonic audio signals
symbolically with natural language processing. Figure 4 shows
an example of ChromaWords (bottom) acquired from the chroma
vector of an actual song (top). Note that “#” is not counted as a
single letter. Because of space limitations, we only display three
ChromaWords per 0.5 s. These three ChromaWords are sampled
at equal intervals. The leftmost letter is the most dominant com-
ponent, and the less dominant components are to the right.

ChromaWords are acquired per audio frame. Here, the au-
dio sampling rate is 16,000 Hz monaural, and the frame length
is 200 ms, shifting every 10 ms. One hundred words can be ac-
quired from 1 second audio signal.
5.1.2 Latent Dirichlet Allocation

By acquiring ChromaWords from a song, topic modeling can
be applied similar to the methods in natural language processing.
MusicMixer employs LDA [1] for training of latent topic analy-
sis. The number of topics is set to 100 in order to express seman-
tics that are more complex than those of basic Western tonality.
The vocabulary of ChromaWords is 13,345 (= 12P4+12P3+12P2+

12P1 + 1), including perfect silence.
Training is required prior to latent topic analysis. We use 100

songs from the RWC music genre database [21], which comprises
songs of various genres. The parameters and algorithm for LDA
is the same as the topic modeling method employed for the latent
topic analysis of lyrics by Sasaki et al. [15].

Table 1 shows the top 5 representative ChromaWords for each
topic learned from the RWC music database (12 topics out of 100,
sorted by probability). These 12 topics are the representative top-
ics learned with the RWC music database. The leftmost letter in a
ChromaWord indicates the dominant note in the sound. Because
many initial letters in ChromaWords for the same topic are the
same, the topic model constructed by LDA reflects the semantics
of chromatic notes, which is difficult for conventional methods to
explicitly express.

Using the constructed model, the latent topics for a new in-
put song can be estimated by calculating a predictive distribution.
The latent topics for the new input song are represented as a mix-
ing ratio of all 100 topics. Figure 5 shows an example of topic
analysis for the first 7 s fragment of the song “Let It Be” by The
Beatles. In this result, topic 41 includes ChromaWords “DB,”
“GB,” and “AC” as dominant words, and the dominant letters in
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Table 1 Examples of top 5 ChromaWords allocated to each topic.

Topic22 Topic90 Topic7 Topic98 Topic78 Topic52 Topic9 Topic79 Topic43 Topic80 Topic50 Topic63
CBC#A silent AG CFG AA#BC ED AFB silent AEA# DAA#C DGG# EB
CC#BA GDCA AA#G CFGD ABA#C E AA#BF GA AEA#B DACA# CGB BE
CC#AB GCDA AGA# CGFA BAA#C F silent CF silent ADA#C AEA# BEG
CBAA# GDAC ADGA# CGFD AA#CB DE AA#GB CFAG AEA#G DACC# CFA EBG
CABA# DA ADA#G CGF ABCA# EF AA#FB FC AEA#C AA#BC CGE EA

Fig. 5 Results of latent topic analysis applied to the first 7 s fragment of the
song “Let It Be” by The Beatles.

the ChromaWords of topic 31 are “F,” “C,” and “A.” In fact, the
chord progression for this part of the song is “C, G, Am, F,” which
shows that topics mostly reflect the notes in these chords. This
indicates the relevance between chords and ChromaWords. Note
that chords or harmony affects the ChromaWords, but the topics
themselves do not directly represent chords or harmony.

Here, our goal is to find a good mixing point rather than an-
alyze the topics of an entire song. Therefore, MusicMixer ana-
lyzes latent topics every 5 s to acquire the temporal transition of
the topic ratio.

5.2 Calculation of Latent Topic Similarity
The mixing ratio of latent topics for each 5 s song fragment

is acquired by the above-mentioned method. The mixing ratio
is extracted as 100-dimensional feature vectors, and we use the
mixing ratio as the latent topic feature f .

The latent topic similarity S topic between fragment i and frag-
ment j is calculated in the same form as the beat similarity:

S topic(i, j) =
1

∑K
k=1 || fi(k) − f j(k)|| + 1

, (2)

where K is the number of topics (100).

5.3 Evaluation
We performed a subjective evaluation experiment to evaluate

the effectiveness of latent topic analysis using ChromaWords. We
compared the proposed method to a latent topic analysis method
using mel-frequency cepstral coefficient (MFCC) feature values
and raw chroma vector feature values to investigate the effective-
ness of our ChromaWords expression. MFCCs are commonly
used audio features for measuring similarity. The topic model-
ing method for the compared methods is based on the method
proposed by Nakano et al. [17], which uses k-means clustering
to describe feature values in a bag-of-features expression. The

Table 2 Evaluation items and the corresponding scores.

Evaluation item Score
Pair B is more similar than A 5
Pair B is bit similar than A 4

both pairs are equal in terms of similarity 3
Pair A is bit similar than B 2

Pair A is more similar than B 1

Fig. 6 Result of subjective evaluation experiment.

number of clusters for k-means is 100. Note that we do not use a
similarity calculated from raw feature values so that we can focus
on the effects of ChromaWords.

A total of pop, rock, and dance songs were used in the exper-
iment, and 2,192 segments were generated by cutting the songs
into 5 s fragments. We calculated the latent topic similarity for all
pairs between the 2,192 fragments.

The subjects were asked to listen to two pairs of songs and indi-
cate which pair was more similar. A pair was generated based on
the latent topic similarity using each feature. We selected three
pairs of songs per method (nine pairs in total). The three pairs
were selected from the top 30 latent topic similarity. Note that
song repetition was avoided in this experiment. To avoid the ef-
fects of beat, we did not mix the songs but played each one sepa-
rately.

Eight subjects (ages 22 to 24) with no DJ experience partic-
ipated in the experiment. The subjects listened to a 2 song-
fragment pair generated by method A first, and then a 2 song-
fragment pair generated by method B. They then rated the pairs
from 1 (Pair A is more similar than B) to 5 (Pair B is more sim-
ilar than A) as indicated in Table 2. A score of 3 is the baseline,
indicating that “both pairs are equal in terms of similarity.” The
pairs were presented randomly. Two out of three methods will be
compared by one score.

Figure 6 shows the results of the experiment. Each score is
the average of all eight subjects and all nine compared pairs (72
scores per comparison). Comparing the proposed topic model-
ing method with that using raw chroma vector feature resulted
in a score of 3.58, which indicates that the proposed method ex-
presses similarity better. Comparing the proposed method with
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Fig. 7 Psychological scale constructed using Scheffe’s method of paired
comparison.

one with MFCC resulted in a score of 4.01, which also indi-
cates that the proposed method performs better. The rightmost
plot shows a comparison of MFCC and chroma vector methods,
which are not related to the proposed method. As can be ob-
served, the topic model using the chroma vector outperforms the
MFCC method. We also tested the result using Scheffe’s multi-
ple comparison method. As a result, we obtained a psychologi-
cal scale as shown in Fig. 7. The psychological yardstick for the
constructed scale was 0.361 (p < 0.01). This result shows the
following statistical significance: proposed > chroma, proposed
> MFCC, and chroma > MFCC. In other words, the proposed
method using ChromaWords outperformed the other methods in
terms of music fragment similarity.

6. Mixing Songs

MusicMixer mixes songs based on the similarity measure-
ments described above. The combined similarity S between frag-
ments i and j can be calculated as follows:

S (i, j) = w × S beat(i, j) + (1 − w) × S topic(i, j), (3)

where w denotes the weight parameter used to change the balance
of the beat and latent topic similarity, which was defined previ-
ously as mixability.

The length of each song fragment depends on the number of
peaks in the beat similarity calculation, i.e., the parameter N. Al-
though the length of each fragment differs, beat similarity en-
sures that fragments with similar lengths are selected as similar
beat fragments. In addition, the fragment lengths are not 5 s (the
length for topic analysis). Therefore, we assume that the fragment
within a 5 s fragment is similar relative to the latent topic feature
of 5 s fragments. Thus, we use the same latent topic feature even
though the length of the fragment is not 5 s.

A user can specify the scope as to when mixing can occur. For
example, we do not want to switch to a new song at the beginning
of the currently playing song or start the next song at the end. In
the current implementation, a song will not change until the latter
half, and a song will start no later than the first half.

7. Implementation of MusicMixer

7.1 System Design
We implemented a DJ system based on the aforementioned au-

tomatic song mixing method. As described above, the objective
of the MusicMixer is to support a DJ primarily from the aspect
of song mixing. Therefore, as shown in Fig. 8, we designed the
MusicMixer system to automatically mix songs; however, we al-
low users to select a song from songs that the system considers
as well mixed. As shown in Fig. 8, once the similarity matrix is
obtained, MusicMixer works in real-time.

Fig. 8 The system design of MusicMixer.

Input songs are songs that a user might play as a DJ. In this
situation, we need to determine the order in which we play these
songs and how we mix each pair of songs. The input songs are
preprocessed and the system generates a similarity matrix that
contains information regarding good mixing points. After prepro-
cessing, DJs can select the first song from a list of input songs.
The system then immediately suggests song candidates and cor-
responding timings. This candidate song suggestion corresponds
to supporting DJ mixing with MusicMixer. From the candidates,
a user selects the next song. This is the song selection task that the
user takes charge of. Note that song selection is not mandatory
because the system can automatically mix the next song based on
calculated mixability if the user does not directly interact with the
system. Thus, MusicMixer supports fully automated DJ perfor-
mance as well as song mixing support.

7.2 Interface
Figure 9 shows the interface of MusicMixer. The leftmost

song list is where users select the first song to play. The selected
song then starts immediately; on the timeline at the bottom of the
interface, five timings with good mix destinations are displayed.
Selected based on point-wise summation of mixability, these five
timings will be candidates when mixing occurs. For each mixing
timing, the top five mixing destination songs are then displayed
as candidates for the next song to be played. Users can either
select the next song from the candidates or simply leave the sys-
tem alone so that the next song will be automatically selected and
mixed based on the maximum similarity value. After mixing,
the next set of candidate songs will be suggested and the same
steps are repeated until the user stops the music. To immediately
suggest mixing candidates from such a large similarity matrix,
MusicMixer preconstructs the underlying database.

To prevent the five mixing timings from gathering too close to a
specific point, candidates are not selected if there is already a can-
didate that exists within 5 s of the point. Moreover, to prevent the
same songs with different destinations within the suggested song
from appearing in the same mixing timing, we have restricted the
display to no more than three destinations within the same song.
Most songs have a repeating structure. Therefore, such a bias of-
ten occurs and these constraints are necessary. We also prevent a
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Fig. 9 MusicMixer user interface.

song from changing until somewhere within the latter half of the
song; similarly, we prevent a song from starting in the latter half.
This will prevent songs from switching in too short a time.

The upper-right toggle in the interface enables the user to alter-
nate the weight between beat similarity and latent topic similarity
(the parameter w in Eq. (3)). If a user selects the leftmost toggle,
candidate songs will be suggested based only on beat similarity,
which is effective for songs that have clear beats, such as dance
music; conversely, topic similarity is effective for songs without
beats, such as classical music.

Finally, the good and poor buttons shown on the interface en-
able users to personalize their automatic song mixing results from
user mixing preferences, which we describe in the next section.

7.3 Personalization to the Mixing Preference
Because MuxicMixer does not consider factors other than sim-

ilarity, it might suggest weird song mixes in some instances. To
address this, we include a functionality for remembering “good”
mixing and ignoring “bad” mixing; this should help the system
become a good automatic DJ.

Good and poor buttons are the means by which a user can pro-
vide feedback regarding mixing. If a user selects good, the mixa-
bility value for the corresponding mix will be increased, and vice
versa, if the poor button is pressed. This function is achieved by
preparing a bias matrix. The size of the matrix is the same as the
similarity matrix and the values are 0 at the initial state. When
a user pushes good button, the bias value will be added to the
bias matrix for the mixing. This bias matrix will be added to the
similarity matrix when the user wants to consider the preferences.

By mixing songs with MusicMixer and providing such feed-
back, the mixing made by MusicMixer will be personalized to
the user’s preferences. Because the sense of good and bad music
differs from one individual to another, this functionality helps the
system adapt to the user’s likes and dislikes.

Moreover, this personalization function can be used to learn
the preferences of other DJs. If a professional DJ uses the Music-
Mixer system, inexperienced individuals can then play the music
just as a DJ would by applying the learned preferences. Currently,
this functionality depends on a database. We intend to learn the
user’s preferences by modeling the relations between audio fea-

tures and user feedback in a future implementation. Liebman et
al. [22] proposed a reinforcement learning to recommend music
playlists that are adapted to users and such an approach might
also be effective for our task.

7.4 Users’ Feedback
We demonstrated our system at a workshop of a special inter-

est group for music and computers in Japan. More than 20 people
enjoyed the resulting mixes that the system automatically played.
Some users however found it difficult to understand how to oper-
ate the system without any explanation. Moreover, some felt that
the system would be more attractive if there were functions for
performing more complicated DJ techniques such as scratching
or tempo modifications.

Some individuals noted that the effect of latent topic similarity
was not clear compared to the effect of beat similarity. In addi-
tion, many people pointed out that they did not know what latent
semantics in music meant. This indicates that the latent seman-
tics our method acquires are still not explicit enough. Further user
study will be conducted in our future research.

8. Limitations and Applications

8.1 Limitations
MusicMixer considers both beat and latent semantics. How-

ever, latent semantics are limited to the chromatic audio signal.
Therefore, other types of high-level information such as instru-
ment variations or dynamics within a song cannot be considered
in the current implementation. In the future, we will explore the
possibility of semantic topic analysis using the symbolic repre-
sentation acquired from audio signals.

MusicMixer does not consider lyrics or their semantics. There-
fore, a summer song may be selected after a winter song, which
is undesirable. A user may possibly compensate for such flaws
by utilizing a user interface.

As MusicMixer focuses primarily on song mixing, there are
limitations in terms of DJ performance. For example, DJ scratch-
ing, which is another key DJ technique, cannot be performed us-
ing MusicMixer. We currently assume that MusicMixer users are
people with no experience on DJ mixing. Therefore, after acquir-
ing a sense of song selection and song mixing with MusicMixer,
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it might be easier to use actual turntables.
One strict limitation on the current version of MusicMixer is

that the user cannot control the timing of song mixing. The
switching timing is disregarded since the five mixing candidates
are displayed based on similarity. To make the interface closer
to the actual DJ turntable, we will make it possible for the user
to control the timing of song mixing by visualizing the similarity
information more effectively in future implementation.

Another limitation as an interface is that we do not change
the tempo of existing songs. In practice, DJs often change the
playback speed to make natural mixes, even though the tempo of
two songs may be drastically different. We will implement such
tempo alterations to MusicMixer in the future update.

8.2 Applications of MusicMixer
MusicMixer’s applications are not limited to being an auto-

matic DJ tool. There is a style of DJ performance referred to as
“back-to-back,” which is collaborative based on play among mul-
tiple DJs. In a back-to-back session, a partner DJ selects the next
song while one DJ’s song is playing. Thus, the partner DJ’s play
may be unpredictable. Although the back-to-back style cannot be
performed alone, a DJ system such as MusicMixer could act as
a partner DJ for a back-to-back performance. This is similar to
playing a video game against the computer serves to improve the
player’s technique. Furthermore, collaboration with a computer
might produce a new or unexpected groove.

It is also possible for inexperienced people to practice DJ per-
formance using MusicMixer. For example, mixing songs is the
difficult part of a DJ’s performance, but song selection might be
easier for inexperienced people. In this case, the connection of
songs could be performed by the system, and the user can focus
on song selection. A DJ performance requires significant skills
that can only be acquired from practical experience.

9. Conclusion

We present a topic modeling method to retrieve similar mu-
sic fragments and its application. Our method allows mixing
songs naturally by considering both beat and latent topic simi-
larity. Our main contribution is the application of topic modeling
using ChromaWords, which are audio signal-based symbolic rep-
resentations. Previous topic modeling methods have analyzed the
latent topics of audio or images using features represented as a
bag-of-features; hence, the meaning of the topic was not clear.
We have improved its interpretability by using ChromaWords.
Furthermore, the results from a subjective evaluation indicate that
our topic modeling method outperforms other methods in terms
of music similarity. Topic modeling is primarily used to analyze
latent semantics in observed data. The proposed method makes
it possible to employ the latent semantics of chromatic sounds.
However, the semantics of chromatic sounds do not cover all the
semantics of a song. Thus, in the future, we plan to consider other
semantics such as timbre. We have also presented MusicMixer,
which is a computer-aided DJ system based on the music retrieval
using above-mentioned similarity.

This study focuses on song mixing without changing the orig-
inal songs. In a future implementation, the proposed system will

do song modulation to allow free connection of any type of song
pairs. For example, by using a song morphing method [14], it
may be possible to embed such a function.

MusicMixer takes advantage of computing power to calculate
good mixing points of input songs and enables the user to select
the next song from the suggestions provided by the system. This
can be regarded as one style of collaborative content generation
between humans and computers.

MusicMixer not only supports people who are performing DJ
mixing but also enhances the listening experience. As it is dif-
ficult to hire personal DJs for all events, particularly on a day-
to-day basis, MusicMixer can serve as a user’s personal DJ fully
integrated within an existing music player as an application.

We plan to explore further possibilities of human–computer
collaboration for DJ performance as well as the possibility of
human–computer complementation.
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