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Abstract: Current embedded systems are usually based on real-time operating system (RTOS). In the near future, em-
bedded systems will include parallel applications for tasks like autonomous driving, and adopt many-core processors
to satisfy the performance requirements. However, traditional RTOSes are not designed for high performance applica-
tions and whether they can scale well on many-core processors remains unclear. Meanwhile, research has shown that
Linux can provide good scalability for processors with tens of cores. In this paper, an experiment environment based
on a traditional multi-core RTOS (TOPPERS/FMP) and an off-the-shelf 72-core many-core processor (TILE-Gx72) is
presented. By a comparative analysis of RTOS based and Linux based runtime systems, several bottlenecks in RTOS
are identified and the methods to avoid them are proposed. After that, the PARSEC benchmark suite is used to evaluate
the performance of RTOS and Linux. The results show that the optimized RTOS runtime system tends to deliver better
scalability than Linux in many cases. Therefore, we believe that traditional RTOS like TOPPERS/FMP can still be a
good choice for embedded many-core processors in the near future.
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1. Introduction

Multi-core processors have been used in many embedded sys-
tems to satisfy the increasing performance requirements with a
reasonable power consumption. Most of the embedded systems
are based on a multi-core real-time operating system (RTOS) be-
cause they usually include applications with real-time constraints.
Previous studies of multi-core RTOS have been mainly focused
on the schedulability and response time analysis of task sets on
multi-core processors [1], [2]. Meanwhile, many researchers have
claimed that high-end embedded systems in the near future will
also include high-performance parallel applications in order to
support complex tasks like autonomous driving of vehicles [3].

Current mainstream embedded multi-core processors are not
suitable for those parallel applications since they only have a
small number of cores. Several off-the-shelf many-core pro-
cessors aiming for future embedded systems, which contain
tens (or even hundreds) of cores, have been released in recent
years. Examples of those processors include the 72-core Mel-
lanox TILE-Gx72 processor [4] and the 288-core Kalray MPPA
(Multi-Purpose Processor Array) [5]. However, it remains un-
clear whether traditional RTOS can allow parallel applications to
scale well on many-core processors, since they are not designed
to provide high scalability for these applications.

In the field of high-performance computing (HPC) and cloud
computing, on the other hand, the scalability problems in tradi-
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tional general-purpose operating system (GPOS) have been ac-
tively researched for decades. Linux, the de facto standard ker-
nel for HPC and cloud servers, has been considered as a bottle-
neck for processors with a huge number (hundreds to thousands)
of cores. Some OS kernels specially designed to avoid scala-
bility bottlenecks, such as Barrelfish [6], Corey [7], and fos [8],
have been proposed. However, these kernels with new designs
require different methodologies for implementing user applica-
tions (e.g., explicitly control sharing), which can make the de-
velopment much more complicated than the traditional approach.
Meanwhile, researchers have also shown that Linux can actually
provide good scalability on many-core processors with tens of
cores (or at least on a 48-core machine) and thus “there is no
scalability reason to give up on traditional operating system orga-
nizations just yet” [9].

In this paper, we focus on the scalability of traditional multi-
core RTOS on many-core processors with less than 100 cores.
We believe those processors are very likely to become the main-
stream embedded processors in the near future. The analysis is
conducted by comparing an RTOS based runtime system with the
well optimized Linux based one. The word “runtime system”
means the OS kernel and all necessary middleware required by
the user application. If RTOS shows close (or better) scalabil-
ity comparing to Linux in parallel benchmark, we can say that
traditional RTOSes are, at least potentially, suitable for scaling
parallel applications on embedded many-core processors.

The main contributions of this paper are as follows. At
first, a traditional multi-core RTOS kernel called the TOP-
PERS/FMP kernel [10] is ported to the 72-core TILE-Gx72 em-
bedded many-core processor [4]. A runtime system based on the
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TOPPERS/FMP kernel that allows developers to execute parallel
applications has been built and released [11]. We believe that it is
the first publicly released open source testbed for evaluating tradi-
tional RTOS on an off-the-shelf many-core processor. The second
contribution is that several bottlenecks in RTOS have been identi-
fied by comparing with Linux. Those problems actually have al-
ready been addressed in Linux and we have proposed the methods
to avoid them in RTOS. Finally, we have evaluated and analyzed
the scalability of RTOS and Linux by the PARSEC benchmark
suite [12]. To our knowledge, no previous studies have compared
the performance of traditional RTOS and Linux on a real many-
core processor. The results suggest that traditional RTOS tends to
deliver better performance than Linux, and thus it is still a great
choice for embedded many-core systems in the near future.

The rest of the paper is organized as follows. In Section 2,
we overviews the RTOS based experiment environment. In Sec-
tion 3, bottlenecks in RTOS based runtime system are addressed
by comparing with Linux. The performance of RTOS and Linux
is evaluated and analyzed using the PARSEC benchmark suite in
Section 4. Finally, this paper is concluded in Section 5.

2. Experiment Environment Overview

The biggest obstacle before going any further into the analy-
sis is the lack of an open source testbed that allows us to eval-
uate a traditional RTOS on a many-core processor with high-
performance parallel applications. Although an open source
RTOS kernel called Erika Enterprise RTOS v3, which supports
the Kalray MPPA many-core processor, has been announced by
Evidence SRL, its source code has not been released yet as of this
writing [13]. Therefore, we have to build an experiment environ-
ment from the ground up for further analysis.

Our experiment environment is based on the TILEncore-
Gx72 [14] platform which is an off-the-shelf development board
equipped with a 72-core embedded many-core processor called
TILE-Gx72 and 32 GByte DDR3 memory. We have ported a
multi-core RTOS kernel called the TOPPERS/FMP kernel to the
TILE-Gx72 processor, and developed a runtime system based on
the TOPPERS/FMP kernel with middleware required for execut-
ing parallel applications. PARSEC, a popular benchmark suite
composed of multithreaded applications, is used for evaluating
the performance and scalability. Experiments are performed both
on the RTOS based runtime system and a Linux 4.5 based run-
time system for comparison analysis. The source code of our
experiment environment has been made publicly available [11].

In this section, three most basic elements in our experiment
environment—the TILE-Gx72 processor, the TOPPERS/FMP
kernel and the PARSEC benchmark suite—are overviewed.

2.1 TILE-Gx72 Embedded Many-core Processor
TILE-Gx72 is a 72-core processor from the TILE-Gx many-

core processor family which aims for delivering high per-
formance and energy efficiency to embedded systems and
servers [4], [14]. Cores (called tiles) in TILE-Gx72 are intercon-
nected with a 2D mesh NoC (network-on-chip) named iMesh as
shown in Fig. 1. iMesh uses a dimension-ordered (X-Y) routing
algorithm and the latency is 1 clock cycle per hop. Each core is

Fig. 1 iMesh NoC in TILE-Gx72 processor.

a full-featured, 64-bit processing unit working at 1 GHz, includ-
ing 32 KByte private L1 instruction cache, 32 KByte private L1
data cache, 256 KByte L2 cache, and a full-blown memory man-
agement unit (MMU). There are 4 memory controllers and each
of them is directly connected to a single core. Although other
cores need to use iMesh network to access memory, the process
is transparent to system developers.

TILE-Gx72 can provide hardware cache coherence by a tech-
nology called dynamic distributed cache (DDC). The basic idea
of DDC is to use the union of all of the L2 caches as a distributed
virtual L3 cache. Each physical memory address in TILE-Gx72
is associated with a home tile, which is set in the corresponding
page table entry. The coherence information for a particular phys-
ical address is always tracked and maintained by its home tile. If
a core wants to cache an address homed remotely into its local
L2, it requests the data from the home tile instead of the memory
controller. Likewise, if a core modified a L2 cache line, it will
also send the new data to the home tile and the home tile will
invalidate all the other copies for consistency. In this way, the
L2 cache in a home tile can be viewed as a coherent L3 cache,
and thus the TILE-Gx72 can be logically treated as a traditional
shared memory system despite its NoC architecture.

Since a memory page is much larger than a cache line (e.g.,
small page is 64 KByte and L2 cache line is 256 Byte), it could
by very inefficient to home an entire page with a single core
in some cases. TILE-Gx72 provides a strategy called hash-for-
home to maximize the average performance by effectively utiliz-
ing L2 cache and NoC bandwidth of the entire chip. If a page
is marked as hash-for-home, its addresses will be distributedly
homed across multiple cores (e.g., 1st L2 cache line by core 1,
2nd L2 cache line by core 2, ...). The hash-for-home strategy is
recommended as the default homing policy because it can gener-
ally deliver excellent throughput.

2.2 TOPPERS/FMP Multi-core RTOS Kernel
TOPPERS/FMP kernel (or “FMP” for short) is the multi-core

RTOS kernel in our experiment environment [10]. It is an open-
source traditional RTOS based on the popular µITRON specifica-
tion [15]. FMP is short for Flexible Multiprocessor Profile, and as
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its name implies, FMP has a flexible implementation which can
support both symmetric multiprocessing (SMP) and asymmetric
multiprocessing (AMP) architectures [16].

Only the most common basic functionalities such as multi-
tasking and time management are provided in FMP itself, since
the services required by different embedded systems can vary
widely. Advanced features (e.g., file system or networking) are
supported by optional middleware implemented with the APIs of
FMP. Therefore, when evaluating the performance of applica-
tions, we must take the whole runtime system into consideration.

FMP uses a static system design which will generate all kernel
objects during compile time. Although the static design is less
flexible than the dynamic design in GPOS kernel, it tends to have
lower overhead because of its simplicity.

Like most multi-core RTOS kernels, the target systems of FMP
are embedded systems with a small number (usually less than 10)
of cores. In the original implementation of FMP, the maximum
number of cores are dependent on the word length of the pro-
cessor. Although it is enough for current mainstream processors,
for the 64-bit TILE-Gx72 processor, only 64 of the 72 cores can
be used by the kernel. We have investigated into this limitation
and found it can be easily fixed. The original data type of pro-
cessor affinity mask, which determines the set of cores a task can
run on, is uint t whose size is equal to the word length. Each
bit in the mask represents a single core, and hence the number
of cores is limited. We have modified the source code to use
uint32 t[�CoreNumber

32 �] for these masks. Because the new data
type can scale with the actual core number, FMP in our experi-
ment environment can, at least theoretically, support many-core
processors with an arbitrary number of cores.

2.3 PARSEC Benchmark Suite
The Princeton Application Repository for Shared-Memory

Computers (PARSEC), is a benchmark suite for evaluat-
ing the performance of shared-memory Chip-Multiprocessors
(CMPs) [12]. TILE-Gx72 can be viewed as a shared-memory
CMP because all cores can coherently access the same memory
system via iMesh. The most important reason for choosing PAR-
SEC is that it focuses on next-generation applications for future
CMPs [17]. Key characteristics of PARSEC are listed as follows.

Multithreaded. All applications in PARSEC have been par-
allelized to utilize resources of multi-core processor as possible.
Various programming models such as fork-join and pipeline are
covered for analyzing from different perspectives.

Emerging. PARSEC includes workloads which are considered
important in the near future but not commonly used yet. It can be
very helpful for figuring out to what extent a processor can meet
the demands of emerging applications.

Diverse. PARSEC does not focus on some specific application
domain (e.g., HPC). Instead, it includes a wide spectrum of ap-
plications, such as those for desktop and servers. Owing to this
diversity, PARSEC tends to trigger more performance bottlenecks
than those domain-specific benchmarks.

PARSEC 3.0 is used to evaluate our experiment environment.
The original build system provided by PARSEC creates applica-
tions as executable files (e.g., ELF file in Linux) to be executed by

the OS. As a static RTOS, FMP does not have a loader to execute
application file at run time. We have extended the build system
of PARSEC to allow an application to be created as a static li-
brary. The generated library file of PARSEC application can be
linked together with the RTOS to form a single image which can
be directly executed by the boot loader.

3. Runtime System Analysis and Optimization

Most user applications cannot directly run on OS kernels.
Instead, runtime environments (RTEs) built above the kernels,
which include necessary middleware and libraries, are required
to execute them.

In this section, the characteristics of the runtime systems for
FMP and Linux are analyzed. Some performance problems in the
FMP based runtime system have been identified and our solution
for each problem is explained and evaluated.

3.1 OS Kernels
FMP and Linux have many differences in design and imple-

mentation because they are not targeting the same systems. In
this section, we will focus on comparing the factors which can
have impact on the performance of applications.
3.1.1 System Design: Static vs. Dynamic

The primary function of an OS kernel is to manage hardware
and software resources in the system and provide services to ac-
cess them. This function can be implemented either in a static or
a dynamic approach, depending on the target systems.

For most embedded systems, the required and available re-
sources are predetermined since these systems are designed to
perform some specific tasks. In FMP, kernel objects (e.g., tasks,
semaphores, data queues) are statically configured, by defining
them in configuration files at design time. All necessary data
structures for these objects, such as control blocks, will be gener-
ated by a configurator during compile time. Each kernel object is
associated with an ID for accessing with system calls.

Linux, on the other hand, has a dynamic design in order to pro-
vide the flexibility demanded by general purpose computer sys-
tems. Kernel objects are created and initialized at run time with
Linux in-kernel APIs such as kthread create(). Usually, these
creation APIs will return a pointer of the data structure dynami-
cally allocated for that object, which is needed for accessing.

Since the number of kernel objects in FMP is fixed at run time,
they can be simply stored in arrays and referenced by using in-
dex as ID. Meanwhile, data structures of kernel objects in Linux
are managed using linked lists of dynamically allocated mem-
ory blocks, because their number is considered to be unbounded.
This kind of complexity introduced by a dynamic design can lead
to higher overhead compared to the straightforward implementa-
tion of a static design. Previous studies have also shown that static
kernel, while has limited flexibility, can achieve smaller footprint,
better real-time performance and greater reliability [18], [19].
3.1.2 Basic Services and Device Drivers

From the viewpoint of application developers, an OS kernel
consists mainly of basic services and device drivers, whose func-
tionalities are usually provided as system calls.

Basic services are minimal, yet essential, elements which can
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be found in most OS kernels. Typical examples include mem-
ory management, time management, interrupt handling, kernel
locking, and multitasking with primitives for synchronization and
communication. Although both FMP and Linux support these
functions, the implementations differ due to their system designs.
Generally, accessing services in FMP has lower overhead while
Linux is optimized to achieve better throughput and scalability.

The duties of device drivers, meanwhile, are not alike inside
FMP and Linux. Since hardware of an embedded system is highly
specialized for certain application domain, it is difficult for the
kernel to assume what device drivers should be provided. FMP
itself only includes the minimum necessary device drivers, such
as those for timer, interrupt controller and serial port (if syslog is
used). Other devices are supported by optional middleware com-
ponents implemented on top of the kernel which are considered to
be part of the RTE. Developer is required to use dedicated APIs
of each middleware to control corresponding device.

On the contrary, Linux, as a GPOS kernel, must support most
of the common devices, such as networking and file systems, out
of the box and provide a universal approach to access them. Linux
has a system call interface which has been kept stable over the
decades in order to ensure portability of applications. Drivers are
modules inside the kernel and interact with applications via that
system call interface. More specifically, devices in Linux are ab-
stracted as special files called device files and can be accessed
with file I/O system calls like write(). Although this mecha-
nism in Linux unifies interaction of device drivers using standard
file operations, it also introduces overhead in the file system.
3.1.3 Task Scheduling Disciplines

Scheduler is one of the most important module in a kernel to
support multitasking. Its discipline can greatly influence the scal-
ability of an application in some cases. The objective of schedul-
ing in multi-core systems is to determine how tasks are mapped
to different cores and how CPU resources are allocated to tasks
on each core, in order to meet the goals like maximizing through-
put or minimizing response time. Since it is an active area of
research and still has many challenges ahead [20], we will not fo-
cus on state-of-the-art methodologies in this paper. Instead, some
simple but effective disciplines are used for evaluation.

In FMP, tasks in user applications are scheduled by a method
called Round-robin then FIFO (RtFIFO). Tasks are assigned to
cores in a round-robin fashion at creation. Figure 2 shows an
example of how 74 tasks are assigned to the TILE-Gx72 proces-
sor. The core indexes in this figure correspond to those in Fig. 1.
Each core will get a task in turn until all tasks have been assigned.
Tasks on the same core (e.g., task 1 and task 73 in the example)
will be handled by the default fixed-priority preemptive sched-
uler. All tasks are set to the same priority so they will be served in
FIFO fashion on each core. RtFIFO is a straightforward schedul-
ing discipline without any dynamic load balancing mechanism. It
is very effective for those parallel applications using the fork-join
model with no load imbalance problems.

Linux, by default, uses the Completely Fair Scheduler (CFS)
which aims to maximize overall CPU utilization. CFS periodi-
cally runs a complex load-balancing algorithm to keep the run-
queues of all cores roughly balanced. It can improve the CPU

Fig. 2 Example of mapping tasks in a round-robin fashion.

utilization for applications using the pipeline model which often
has load imbalance issue [21]. However, thread migrations be-
tween cores can be extremely expensive and may significantly
hurt cache locality in some cases [22].

Since it is not fair to compare two runtime systems with dif-
ferent scheduling disciplines, we have also implemented RtFIFO
method on Linux. The pthread attr setaffinity np()
function is used to bind a thread to a specific core. Threads are
set to the SCHED FIFO policy so they will be handled by the fixed-
priority preemptive scheduler [23].

Traditionally, task assignment policy in distributed shared
memory (DSM) and cache coherent NUMA (ccNUMA) systems
must also consider the cost of memory access from different core.
Interconnects in those systems have limited bandwidth and high
latency compared to on-chip communication, which can often be-
come a bottleneck. On the other hand, the latency of iMesh on-
chip network is only 1 cycle per hop and the bandwidth of each
core is over 1 terabit/s. The fast NoC allows TILE-Gx72 proces-
sor to provide the hash-for-home memory homing policy, as de-
scribed in Section 2.1, which can distribute memory access across
all cores in granularity of L2 cache line size. Since this policy can
achieve great throughput in general and is unlikely to be a bottle-
neck in average case, the distance between core and memory con-
troller is not considered by schedulers for TILE-Gx72 processor.
Instead, for situations with special memory access pattern, the
throughput could be further improved by controlling the home of
a memory page, such as the optimization in Section 3.1.4.
3.1.4 Memory Management

Memory management is supported by most OS kernels, includ-
ing static OS kernels like FMP, since there are many applications
requiring the flexibility of dynamic resource management. Its
function mainly consists of two parts: management of objects
in kernel and management of data in user applications.

For kernel objects, the mechanisms used by FMP and Linux to
manage them are quite similar. Although FMP does not support
dynamic allocation of memory, it does allow user to statically
define objects like memory pools for fixed-size blocks with pre-
determined maximum number. Therefore, dynamic management
of kernel objects can be easily implemented by using the object
pool design pattern [24]. In Linux, a mechanism called slab al-
location [25], which is also based on object pools, is used for the
efficient memory allocation of kernel objects.

For processor like TILE-Gx72 which uses paged MMU, dy-
namic allocation of data for user applications technically means
associating page table entries with free physical memory. In
FMP, all page tables are statically generated with unused phys-
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ical memory defined as a pool which can be accessed from user
application. That is to say, from the viewpoint of pages, all free
physical memory has already been allocated to user application
in advance. The preallocated pool of free memory can be log-
ically managed by a memory allocator middleware and there is
no need to dynamically change page tables at run time. Mean-
while, Linux has an extremely complex implementation for page
table management with advanced features including demand pag-
ing and swapping [26]. Modifying page tables dynamically could
be a bottleneck in some cases and has been actively studied and
optimized over many years [27]. Consequently, if an application
frequently requests the memory management services from ker-
nel, it may have better performance on FMP than Linux.

As mentioned in Section 2.1, hash-for-home strategy for pages
can provide higher throughput in general. However, there do ex-
ist some situations where homing an entire page with a single
core is likely to deliver better performance due to data locality.
For example, the stack of a task is usually considered as a private
memory area which will be heavily used by its owner but barely
be accessed from other tasks. A task will have to frequently com-
municate with other cores via iMesh if its stack is distributedly
homed by hash-for-home strategy. Memory manager in Linux
includes an optimization which will home data structures like
stacks locally, in order to improve performance for these cases.

We have also introduced a similar optimization to the process
of page table generation in FMP. Firstly, each core has its own
section (e.g., “.local cached prc1” for core 1) to store local
data. While generating source code for kernel objects, data struc-
tures such as task stacks, interrupt stacks, task control blocks and
processor control blocks will be placed into the section of its lo-
cal core, using the section attribute supported by the compiler.
At last, page table entries for each section will be generated with
home set to the corresponding core. The effectiveness of this op-
timization is difficult to quantify since it is heavily dependent on
how these data structures are specifically used by application. An
example of its effect on spinlocks will be shown in Section 3.1.5.
3.1.5 Kernel Locking

Locking is an essential mechanism in multi-core OS kernels
to support inter-core synchronization and communication. The
granularity of locking model in a kernel has a great impact on
the overall throughput, since almost all the shared resources are
required to be protected by locks.

In FMP, there are three levels of granularity to choose from:
giant lock (G KLOCK), processor lock (P KLOCK) and fine-grained
lock (F KLOCK). In giant lock mode, all kernel objects share a soli-
tary global lock and thus kernel services like system calls can only
be accessed serially. This mode requires least memory space but
has highest resource contention. In processor lock mode, kernel
objects on the same core share a single lock and thus requests of
kernel services on different cores can be processed concurrently.
In fine-grained lock mode, each kernel object has its own lock so
kernel services can be provided as parallel as possible. This mode
has the lowest resource contention but will use much more mem-
ory than other modes if there are a large number of kernel objects.
Since our experiment environment has lots of available memory,
we uses the fine-grained lock mode to maximize parallelism.

Fig. 3 Spinlock throughput of different implementations.

In previous versions of Linux, there used to be a Big Kernel
Lock (BKL) which is just like the giant lock in FMP. From Linux
2.6.39, the BKL has been completely removed and replaced by a
fine-grained locking scheme [28]. The granularity of locking in
current Linux kernel is a bit coarser than the fine-grained lock
mode in FMP because Linux is more complex and includes many
components consisting of multiple kernel objects.

Spinlock is the most basic primitive for locking and advanced
locks like semaphores are implemented using spinlock APIs.
Therefore, spinlock implementation in kernel can heavily influ-
ence the scalability of the whole system. Typically, test-and-set
(TAS) spinlock and one of its optimized variant called test-and-
test-and-test (TATAS) spinlock [29] are used in RTOS for embed-
ded systems like FMP. TAS and TATAS spinlocks have extremely
simple implementations (usually several lines of C code) and only
require the hardware to support a single atomic operation—the
test-and-set instruction—which can be found in most multi-core
processors. Although they can provide excellent performance on
embedded systems with only a few of cores due to the simplicity,
the throughput can dramatically collapse on many-core proces-
sors because the implementations are not scalable [30]. In Linux,
a ticket spinlock with exponential backoff (hereinafter “BACK-
OFF spinlock”) is used for TILE-Gx72 processor. The BACK-
OFF spinlock is not scalable either but considered to have better
throughput than TAS and TATAS spinlocks [29].

In order to evaluate the scalability of different spinlocks on
TILE-Gx72, we have implemented BACKOFF spinlock in FMP
and TAS and TATAS spinlocks in Linux. We have also imple-
mented K42 spinlock [31], which is a variant of the scalable MCS
spinlock with compatible APIs, to compare the difference be-
tween scalable and non-scalable implementations.

We have measured the throughput of different spinlocks on
FMP and Linux with a microbenchmark, and the result is shown
in Fig. 3. In our microbenchmark, each core will loop for 100,000
times to acquire a shared spinlock, read and write 4 shared cache
lines, and then release the lock. The throughputs of TAS and
TATAS spinlocks are indeed better than others when the core
number is small (less than 6) but will decrease rapidly. BACK-
OFF spinlocks have a much slower speed of throughput decreas-
ing than TAS and TATAS and can still provide a relatively ac-
ceptable performance when all cores are used. K42 spinlocks can
maintain good scalability as core number increases, but have the
worst performance when less than 3 cores compete for the shared
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Fig. 4 Spinlock throughput in FMP with and without page optimization.

resource. Generally, FMP shows better performance than Linux
when the same spinlock implementation is used. We believe that
it is mainly because background system tasks in Linux can some-
times preempt the execution of our microbenchmark application.

When comparing FMP with Linux, the page table optimiza-
tion introduced in Section 3.1.4 is always enabled for the sake of
fairness. We have also measured the throughput of spinlocks for
FMP when the optimization is disabled and the result is shown
in Fig. 4. It can be seen that this optimization barely has any ef-
fect on TAS, TATAS and BACKOFF spinlocks. However, it does
increase the scalability of K42 spinlocks for about 20%. It is be-
cause that K42 is the only implementation in them which actively
uses the task stacks (for spinlock queue node).
3.1.6 Getter Function for Thread ID

One of the easiest and most effective methods to enhance scal-
ability is replacing a globally shared data structure with a thread-
local one. Since each thread has its own copy for that variable,
they do not need to use a lock for synchronization and cache line
contention can also be reduced.

In order to access a thread-local variable, a thread must be
aware of its identifier. Thread libraries and OSes usually provide
a function to get the ID of a thread (e.g., pthread self() in
pthread, gettid() in Linux and get tid() in FMP). If a pro-
gram frequently accesses thread-local data, the overhead of the
getter function will become important. In Linux (and its pthread
library) for TILE-Gx72, a special register named tp is used to
store the thread ID, and getter functions can just read and return
the value in tp register with a few instructions. Meanwhile, the
getter function in FMP has a generic and safe implementation. It
does not depend on any detailed hardware specification, but in-
stead, has to lock the core before reading the value from memory.
Further, an error code will be returned if it is not called from the
task context. Consequently, the default getter implementation in
FMP has larger overhead than the optimized one in Linux.

To avoid the bottleneck caused by getter, we have optimized
the getter function in FMP with two methods: the FAST method
and the SPR method. The FAST implementation is still hardware
independent but has all error checking code in the getter function
removed. Developer is responsible for calling this FAST function
properly. The SPR implementation is, on the other hand, using a
special register just like the optimization approach in Linux. It
only works on TILE-Gx72 but has the minimal overhead. An ex-
ample of how different implementations can affect the throughput

of a scalable middleware will be shown in Section 3.2.5. In fur-
ther performance comparison with Linux, FMP always uses the
SPR implementation of the getter function for thread ID.

3.2 Middleware in Runtime Environment
In this section, we analyze necessary middleware in FMP and

Linux used to execute the PARSEC applications.
3.2.1 In-memory File System

Most applications in PARSEC use files for data input and out-
put. The speed of storage devices can always be a bottleneck but
it is not related to the runtime system. In order to rule out the
factor of disk I/O, in-memory file systems are usually used when
evaluating the performance of applications. In fact, the develop-
ment board in our experiment environment does not even have
any non-volatile storage such as hard disk drive.

For Linux, the in-memory tmpfs file system is used by default.
For FMP, we use an in-memory file system middleware called
RAMfs. The fmpfs and RAMfs have almost the same throughput
since both of them are just redirecting the file I/O system calls to
simple memory operations.
3.2.2 POSIX Thread Library

PARSEC applications use POSIX threads (pthreads) for multi-
threading functionality. As defined in its specification, a library
for pthreads mainly consists of functions for thread management
(e.g., creating, joining) and synchronization (e.g., mutex, condi-
tion variable, lock, barrier).

For Linux which is a POSIX-conformant kernel, a library
called Native POSIX Thread Library (nptl) is used. For FMP
which is not based on the POSIX standard, we have implemented
a compatible layer called POSIX4FMP to provide pthreads sup-
port. Both nptl and POSIX4FMP are basically the wrapper for
system calls. Although they are provided in libraries as part of
the RTE, they are more like extension of the OS kernel. There-
fore, their performance are actually dependent on the kernels.
3.2.3 C Standard Library

The C standard library (or “libc”) is the standard library for C
language which provides the most commonly-used functions as
specified in the ANSI C standard [32]. All applications in PAR-
SEC heavily depend on it so its implementation can hugely influ-
ence the performance.

The SDK of TILE-Gx72 provides two libc implementations:
Newlib [33] for RTOS and bare metal environment, and the GNU
C library (glibc) [34] for Linux. Newlib and glibc are imple-
mented with different system call interfaces, which means, un-
fortunately, we cannot use the same libc for FMP and Linux.

A libc mainly consists of functions for string handling, I/O
operations, mathematical computations, and memory allocation.
String handling functions are just trivial so Newlib and glibc have
very close performance for them. I/O operation functions for files
are basically wrappers of relative system calls in both Newlib and
glibc. Other I/O functions like printf() are rarely used by PAR-
SEC applications. Therefore, functions for mathematical compu-
tations and memory allocation are the most critical functions in
libc which can greatly affect the performance.

In fact, both Newlib and glibc provide the mathematical func-
tions as a separate library called libm. These libraries barely
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Fig. 5 Benchmark execution time of different mathematical libraries.

depend on system calls and thus we can effortlessly use them in
both FMP and Linux. The mechanism to replace the functions
of memory allocation is also provided by Newlib and glibc. If
a library of memory allocator is linked before libc, the default
memory allocator inside libc will just be overridden.

In performance evaluation, we use the same libm and mem-
ory allocator for FMP and Linux, which will be described later.
Hence, the influence by different libc libraries is very small.
3.2.4 Mathematical Library

The mathematical library (libm), as mentioned above, can
have an impact on the performance, especially for those compute-
intensive applications.

Usually, RTOS like FMP just uses the libm in Newlib because
Newlib is basically the only libc targeting for embedded systems.
However, we have found that although glibc only works on Linux,
the libm in glibc can actually be easily used in FMP.

We have measured the performance of mathematical functions
in Newlib and glibc with a microbenchmark, and the result of
some functions with relatively large difference is shown in Fig. 5.
For logarithm functions log() and log10(), glibc is about 30%
faster than Newlib. The atan() in glibc is about 6% slower. For
most other functions, glibc shows slightly (≈5% on average) bet-
ter performance than Newlib. If an application frequently calls
functions like log(), the libm in Newlib which is currently used
by most embedded systems, can become a bottleneck.
3.2.5 Scalable Memory Allocator

The performance of memory allocator has been studied for
decades [35], [36] because it can be very important for applica-
tions requiring dynamic memory management.

In current RTOS based embedded systems, usually two mem-
ory allocators are used: the default memory allocator in Newlib
and the TLSF memory allocator [36]. The allocator in Newlib is
an implementation of Doug Lea’s Malloc (dlmalloc) [37] which
aims for maximizing average performance and minimizing frag-
mentation. TLSF, meanwhile, has higher fragmentation but can
guarantee bounded response time which is essential for hard real-
time applications. However, both TLSF and Newlib use global
locking for thread safety and thus they are not scalable.

In Linux, glibc has already used a scalable memory allocator
called ptmalloc by default. Since ptmalloc is implemented with
Linux API in mind, we cannot use it in FMP.

To our knowledge, there is no scalable memory allocator tar-
geting for embedded systems currently. In order to avoid the bot-

Fig. 6 Memory allocator throughput of different implementations.

Fig. 7 Memory allocator throughput in FMP with different optimizations.

tleneck caused by non-scalable allocator, we have ported a scal-
able allocator called Hoard [38] to FMP. Hoard is designed to
be cross-platform but only works on Linux, Solaris, Mac OS X,
and Windows out of box. It is developed in C++ while most
RTOS kernels are in C language. We have created a C language
interface for RTOSes to use Hoard. Our interface only requires
8 functions, which can be easily implemented in most RTOSes,
such as acquiring or releasing a lock, to be provided.

Figure 6 shows the throughput of different memory allocators.
Both TLSF and Newlib will collapse quickly since they are not
scalable. Allocator in glibc scales excellently but the absolute
throughput is only about half as good as Hoard. Hoard shows
similar scalability in FMP and Linux and has the best throughput.
In most cases, Hoard in FMP has better absolute performance
than Linux, and we believe it is because, as mentioned in Sec-
tion 3.1.4, FMP need not to update pages at run time like Linux.

Hoard can also be a good example to evaluate the effectiveness
of different optimization methods for the thread ID getter function
described in Section 3.1.6, since it has a scalable implementation
which actively uses thread-local variables. Figure 7 shows the
throughput of Hoard with different getter function implementa-
tions. All of them have similar trends in scalability but the generic
one without any optimization shows the worst performance. The
hardware-independent FAST optimization has about 40% better
throughput than the generic. The SPR optimization using a spe-
cial register on TILE-Gx72 has about 15% better throughput than
the FAST. It is suggested that our two optimization methods can
be very effective for scalable implementations like Hoard.

4. Performance Evaluation

In this section, we will evaluate and analyze the scalability of
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Table 1 Runtime system settings for FMP-Base and Linux-Base.

FMP-Base Linux-Base
Spinlock BACKOFF

Scheduling RtFIFO
File System RAMfs tmpfs

POSIX Thread POSIX4FMP nptl
C Standard Library Newlib glibc

Mathematical Library libm from glibc
Memory Allocator Hoard

FMP and Linux using four representative PARSEC applications
with different runtime system settings.

4.1 Runtime System Settings
Four runtime system settings, FMP-Base, Linux-Base, FMP-

K42 and Linux-CFS, are used to run applications for evaluation.
FMP-Base and Linux-Base settings, which are shown in Ta-

ble 1, are used to analyze the performance difference caused by
different kernel implementations. For other elements in the run-
time system, the same conditions are used as possible. Although
file systems are different, both of them are in-memory file system
and, hence, have almost the same throughput. As discussed in
Section 3.2.3, the most important functions in C standard library
which can have significant impact on performance are those func-
tions for mathematical operations and memory allocation. Since
the same mathematical library and memory allocator are used,
the influence of different C standard library implementations is
very small for PARSEC. POSIX thread libraries are considered
as extension of the OS kernel so we should always analyze them
together with the kernel. Therefore, FMP-Base and Linux-Base
settings are suitable for comparing different OS kernels.

FMP-K42 is the setting that replaces BACKOFF spinlock in
FMP-Base with K42 spinlock. By comparing FMP-Base and
FMP-K42, we can evaluate how different spinlock implementa-
tions can affect the performance. Linux-CFS is the setting that
replaces RtFIFO scheduling in Linux-Base with CFS. By com-
paring Linux-Base and Linux-CFS, we can evaluate how different
scheduling disciplines can affect the performance.

4.2 Blackscholes
Blackscholes is a mathematical finance application that calcu-

lates the price of options with the Black-Scholes partial differen-
tial equation. It is the simplest application in PARSEC and has
negligible communication between threads. It is a data parallel
application using the fork-join model.

Figure 8 shows the scalability of blackscholes. Both FMP-
Base and Linux-Base can scale well but FMP-Base is a bit better.
K42 spinlock and CFS have negligible influence on this applica-
tion.

In order to analyze the reason of performance difference in
FMP and Linux, we have broken down the execution time of the
critical path for blackscholes. The critical path is the longest exe-
cution path of a parallel application which can determine the per-
formance of the whole application. As a fork-join application, the
critical path of blackscholes can be easily found. The execution
time is broken into four parts—work for computing, sync for syn-
chronization and communication, file for file I/O operations and
allocator for memory allocation—as shown in Fig. 9 (with some

Fig. 8 Scalability of blackscholes with different runtime system settings.

Fig. 9 Breakdown of blackscholes execution time.

unimportant data omitted to make the figures easy to read). We
can see that work in blackscholes scales well but execution time
for file does not scale at all. In fact, blackscholes handles file se-
rially and this bottleneck has already been reported by previous
study [39]. FMP can deliver better performance for blackscholes
because the file operations in FMP cost less time than in Linux.

Although the in-memory file system modules in FMP and
Linux have almost the same throughput, the overhead costs for
accessing them are different. For example, in Linux, as described
in Section 3.1.2, device drivers are abstracted as special files and
also use the standard file operation system calls to interact with
user applications. Meanwhile, those functions in FMP are only
for accessing the in-memory file system. Therefore, file opera-
tions in FMP can be faster than in Linux due to the simplicity.

4.3 Swaptions
Swaptions is an application which uses Monte Carlo simulation

to compute the prices of swaptions. It is compute-intensive and
has a little synchronization (e.g., tens of locks) between threads.
It is a data parallel application using the fork-join model.

Figure 10 shows the scalability of swaptions. All the run-
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Fig. 10 Scalability of swaptions with different runtime system settings.

Fig. 11 Scalability of streamcluster with different runtime system settings.

time system settings have almost the same scalability. FMP does
have a very slightly (about 5%) better performance than Linux
in some cases, but the differences are too small for analysis. It
is suggested that FMP and Linux have very close scalability for
compute-intensive applications with little communication.

4.4 Streamcluster
Streamcluster is an application to solve the online clustering

problem which is widely used in data mining. It has more than
100,000 barriers for synchronization between threads. It is a data
parallel application using the fork-join model.

Figure 11 shows the scalability of streamcluster. Linux-Base
has much better scalability than FMP-Base. The scalability of
Linux-CFS is very close to Linux-Base when thread parameter
is less than 64, but it will decline quickly at last. The difference
between FMP-Base and FMP-K42 is ignorable.

Figure 12 shows the breakdown of execution time. The work
in all settings scales well but the time for sync differs a lot. Pre-
vious study has shown that the inefficient barrier implementation
in streamcluster can be a bottleneck [40]. Streamcluster uses a
spin-then-block strategy for barrier by default. However, stream-
cluster does not have load imbalance problem, which means spin-
ning can be much better than blocking in most situations. The
barrier in streamcluster is implemented using mutexes and condi-
tional variables provided by the POSIX thread library. In fact, the
mutex implementation in Linux also uses a spin-then-block strat-
egy. That is to say, although FMP and Linux use the same source
code for barriers in streamcluster, the barriers in Linux can actu-
ally spin longer than FMP. Consequently, Linux can show better
scalability than FMP. The collapse of scalability in Linux-CFS
is caused by the load balancing. Since streamcluster is not im-

Fig. 12 Breakdown of streamcluster execution time.

Fig. 13 Scalability of streamcluster with spin barriers.

balanced, load balancing cannot increase its performance at all.
On the contrary, expensive thread migrations can harm the per-
formance of synchronization.

To rule out the difference caused by the inefficient barriers, we
have measured the scalability again with spin barriers. As shown
in Fig. 13, the scalability is greatly improved with spin barriers
and the trends for all the settings have become very similar.

4.5 Dedup
Dedup is an application for multithreaded data compression. It

is communication intensive and uses the pipeline model. More
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Fig. 14 Scalability of dedup with different runtime system settings.

than 150,000 locks and thousands of conditional variables are
used for synchronization. Unlike those fork-join applications, the
number of threads running simultaneously in dedup can be as 3
times as the thread parameter.

We have found that Linux-Base setting cannot be used for
dedup due to a CPU starvation caused by spinlock. We believe
that it is because Hoard for Linux is not designed to work under
fixed-priority preemptive scheduling. For fork-join applications,
it is fine since there is only one worker thread for each core. For
pipeline application like dedup, if a thread spins to wait a lock
held by another thread on the same core, the starvation can hap-
pen. Therefore, we use another setting called Linux-Base-pt for
dedup. In Linux-Base-pt, the Hoard memory allocator in Linux-
Base is replaced by the ptmalloc from glibc.

Figure 14 shows the scalability of dedup. Although dedup uses
many spinlocks for synchronization, FMP-K42 has worse perfor-
mance than FMP-Base. It is because that most spinlocks in dedup
are used to protect elements in a hash table. Typically, an element
in that hash table will not be accessed by multiple threads at the
same time. As described in Section 3.1.5, K42 actually has the
worst throughput if there are less than 3 threads acquiring the
same lock. The Linux-Base-pt shows the worst scalability and
it is suggested that the ptmalloc memory allocator has become a
bottleneck. The scalability of FMP-Base is about twice as good as
Linux-CFS when the thread parameter is smaller than 50. Linux-
CFS has the best performance at last.

The analysis of scalability for pipeline application is very com-
plex because it is not determined by a single path like fork-join
applications [21]. Though, we can still shed some light by break-
ing down the execution time. We have summed up the average
execution time of every pipeline stages and the result is shown in
Fig. 15. The time in file and allocator is much short in FMP-Base,
which should be the main reason why FMP has better scalabil-
ity in most cases. The load balancing mechanism in Linux-CFS
keeps the sync time to a relatively small value, and we believe
that is why Linux-CFS can provide better performance at last.
However, we can also see higher work time in Linux-CFS and it
is suggested that thread migrations can slow down the execution.

5. Conclusion

We have presented an experiment environment based on the
TOPPERS/FMP kernel and the 72-core TILE-Gx72 processor.
It is the first, to our knowledge, publicly released open source

Fig. 15 Breakdown of dedup execution time.

testbed for evaluating traditional multi-core RTOS on an off-the-
shelf embedded many-core processor. By a comparative analy-
sis of RTOS based and Linux based runtime systems, we have
identified several bottlenecks in traditional RTOS, such as non-
scalable spinlock and memory allocator implementations. These
bottlenecks have already been addressed in Linux and the meth-
ods to avoid them in RTOS are proposed in this paper. Finally,
performance evaluation on RTOS and Linux is performed using
the PARSEC benchmark suite. The results show that, although
traditional RTOS is not designed for executing high performance
applications, it can deliver better scalability than Linux in many
cases, with the optimization methods in this paper. Therefore,
since previous study has shown that Linux can scale well on
many-core processors with tens of cores, we believe that tradi-
tional RTOS like TOPPERS/FMP can also be a good choice for
embedded many-core processors.

In the future, we are planning to further evaluate the scalability
of RTOS with applications using different parallel programming
models such as OpenMP and message passing. We also want to
investigate the load balancing on RTOS since it can be important
for pipeline applications.
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