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Abstract: Protein production in plants is a hot topic because there are many benefits relative to bacteria, yeasts, and
animals, but the amount of protein expression in plants is less. It is argued that editing 5’UTRs increases the amount of
translated proteins. However, obtaining such 5’UTRs is difficult due to the cost, time and effort required in experiments.
To solve this, we predict the amount of translated proteins by machine learning. In this paper, we propose a method,
named “R-STEINER”, that generates 5’UTRs that increase the amount of proteins of a given gene. The proposed
process involves building a model for predicting the amount of translated proteins, generating 5’UTRs, selecting them
and increasing the proteins according to the model. This method enables us to obtain 5’UTRs that increase the amount
of translated proteins without real synthesis experiments, resulting in reduced cost, time and effort. In our study, we
built a prediction model for Oryza sativa and synthesized the 5’UTRs generated by R-STEINER. We confirmed that
the model can predict the amount of translated proteins with a correlation coefficient of 0.89.
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1. Introduction
Protein production by plants is a hot topic [14]. There are op-

tions for platforms used to produce proteins, and each platform
has advantages and disadvantages. We take the example of de-
veloping a vaccine. Obviously, safety is most important. If we
develop a vaccine by using human cells, the vaccine has the possi-
bility of containing matter that is harmful to human beings. How-
ever, if we use plants or plants’ cells, this possibility becomes
infinitesimally small [30].

The protein expression of a plant is less than that of other hosts,
e.g., bacteria, yeasts and animals [10], [24], [30]. As a solution,
we focus on the area 5’UTR (5’-untranslated region). It is known
that gene expression is affected by 5’UTR sequence [29], and
some researchers have tried to discover 5’UTR sequences that
increase the amount of translated proteins of certain genes. How-
ever, real experiments done to discover the translation enhancer—
referring to the 5’UTR sequences which increase the amount of
translated proteins—involve significant costs and require time
and effort.

As a solution, we propose a method, R-STEINER, that enable
us to obtain the translation enhancers of a given gene without
real experiments, resulting in reduced cost, time and effort. The
proposed process is composed of the following parts: building a
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model for predicting the amount of translated proteins, generating
5’UTR sequences randomly and selecting those that increase the
amount of proteins according to the model. The parts of sequence
generation and selection involve performing the real experiment;
conventionally, we could obtain the amount of translated proteins
only in real experiments, but the model gives us the predicted
amount of proteins.

With R-STEINER, we build a model for predicting the amount
of translated proteins. We have to evaluate the model not only
in the traditional way of evaluating a machine learning model
but also through real synthesis experiments because the 5’UTR
sequences generated in the generation part are completely artifi-
cial. As the model built in R-STEINER is learned by natural se-
quences, there is the possibility that it cannot predict the amount
of translated proteins from artificial sequences. In addition to this
concern, we are concerned that it might not be possible to syn-
thesise some artificial sequences; presumably, 5’UTR sequences
are made by some unknown rule, but sequences generated by
R-STEINER are not. Given the above two concerns, we have
to evaluate whether the model can predict the amount of trans-
lated proteins even for artificial 5’UTRs. For this evaluation, we
performed real synthesis experiments and evaluated the model in
Sect. 6.

2. Basic Knowledge
We will introduce basic knowledge to aid in understanding our

study.
We show the process from a gene to proteins in Fig. 1. “Trans-

lation” indicates the process from mRNA to proteins. An mRNA
consists of three areas: 5’UTR, CDS (coding DNA sequence) and
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Fig. 1 Process from the gene to proteins

Fig. 2 Structure of mRNA

3’UTR (3’-untranslated region) (see Fig. 2). Then, the mRNA is
decoded in a ribosome to produce a specific amino acid chain or
protein. Strictly, only some combinations in CDS are decoded to
amino acids; for example, the combination CAU is decoded to
C6H9N3O2 (see Fig. 2). More details on translation are given in
Alberts et al. [1].

In our study, we aim to make a large amount of proteins from
one mRNA. If any mRNA is decoded to protein actively, many
ribosomes are attached to the mRNA, and the ribosomes and
mRNA form a complex called a “polysome”. In other words, as
the ratio of mRNAs that form polysomes increases, the amounts
of proteins generated from the mRNAs increase. Therefore, we
use the ratio of mRNA as the criterion of the amount of translated
proteins, i.e., how many proteins are generated from an mRNA.
We call the ratio the “PR-value” (polysome ratio value).

It is known that an area of 5’UTR affects the amount of trans-
lated proteins [25]. According to this report, we assume that it is
possible to increase the amount of translated proteins by control-
ling the sequence of 5’UTR.

We have two reasons for controlling only the 5’UTR sequence.
First, controlling CDS is not reasonable for applications. If we
change the CDS sequence, the proteins produced by mRNA are
changed. This is not desirable for applications. Second, control-
ling the 3’UTR sequence is almost impossible. 3’UTR contains
information on where it will break. Therefore, if we try to control
the 3’UTR sequence, the synthesised 3’UTR may be an unex-
pected sequence. For these two reasons, we do not change the
CDS and 3’UTR sequences.

We introduce one more piece of basic knowledge on mRNA.
mRNA usually makes a secondary structure, i.e., mRNA does not
lie on a straight line but makes a complex structure (see Fig. 3).
We can estimate the possible forms and free energy of them from
the nucleotide sequence. Free energy indicates how strongly a nu-
cleotide sequence makes a secondary structure—as the nucleotide
sequence makes the secondary structure stronger, free energy in-
creases. In this study, we calculated the free energy by using the
ViennaRNA Package [11].

3. Related Work
In this section, we introduce related work on the relationships

among features of the mRNA sequence and the amount of trans-
lated proteins.

Kawaguchi and Bailey-Serres [9] analysed the relationships

Fig. 3 Example of secondary structure

between ribosome loading*1, three features, the length of 5’UTR,
CDS and 3’UTR, and the contents of A, U, G, C, AU, GC, CU,
AG, GU and AC. Ribosome loading represents the amount of
translated proteins. However, they analysed the relationships be-
tween only one feature and the amount of translated proteins.
Therefore, they could not reveal the relationships among the
amount of translated proteins and some features.

Matsuura et al. [13] built a model for predicting relative F-
Luc activity that uses PLS regression. The relative F-Luc activity
represents how strongly heat-stress conditions affect the amount
of translated proteins. The PLS regression model can take into
account the relationships between some features; therefore, the
problem that remains by Kawaguchi et al. [9] is solved. However,
the prediction precision is not sufficient in the case of predicting
the PR-value.

4. R-STEINER: Proposed Method
In this section, we propose our method, R-STEINER (gener-

ate nucleotide sequences Randomly and Select a TrEmendous 5’-
untranslated region that Increases the amount of traNslated pro-
tEins of a ceRtain gene) to discover the translation enhancers.
R-STEINER is split into two steps: the B-step where we build
a model for predicting PR-value and the G-step where we yield
the translation enhancers followed by selecting top-k sequences
that increase the amount of translated proteins of a given gene.
Details on B-step and G-step are given in Sect. 4.1 and Sect. 4.2,
respectively.

4.1 B-step
The B-step consists of two steps:

(B1) feature engineering,

(B2) building the prediction model.

In step (B1), we transform an mRNA sequence to a feature vector
that we can throw into machine learning models (Sect. 4.1.1). In
step (B2), we build a model for predicting the PR-value by us-
ing an ensemble of random forest [3], gradient boosting [8], and
XGBoost [4] (Sect. 4.1.2).

We have two datasets that are in two conditions. The first
dataset is for a normal condition. In this condition, the cells pro-
liferate activity, and their matter production is active. We repre-
sent this dataset as Con. The second dataset is for a heat-stress

*1 Ribosome loading is one criteria of the amount of translated proteins.
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Table 1 Summary of Con dataset (NCon = 24915)

Gene ID 5’UTR CDS 3’UTR PR-value
1 GUU. . . GAG AUGU. . . AUGA UGA. . . UGC 0.9229
2 GAA. . . UAU AUGA. . . GUAA GAG. . . GUC 1.0054
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

NCon s5′UTR
NCon

sCDS
NCon

s3′UTR
NCon

yNCon

Table 2 Summary of HS dataset (NHS = 21786)

Gene ID 5’UTR CDS 3’UTR PR-value
1 GAA. . . UAU AUGA. . . GUAA GAG. . . GUC 1.1293
2 AGG. . . GCC AUGG. . . UUGA GUG. . . UUC 0.7600
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

NHS s5′UTR
NHS

sCDS
NHS

s3′UTR
NHS

yNHS

condition. In this condition, the activities of cells are restrained,
and, in general, their matter production is also reduced. We repre-
sent this dataset as HS. Summaries of the datasets for our analysis
are shown in Table 1 and Table 2. Generally, the lengths of each
area are different, i.e., the length of 5’UTR of gene n is differ-
ent from that of gene n + 1. We split the datasets into a training
set (50%), validation set (25%) and test set (25%). We trained
predictors with the training set and tuned hyperparameters with
the validation set. Then, in the aggregation step, we aggregate
the three models, random forest, gradient boosting and XGBoost,
because there is no difference among the prediction precision of
these models (Sect. 5.2).
4.1.1 (B1) Feature Engineering

In (B1), we engineer features for regression models. We use
three types of features:

(F1) lengths of 5’UTR, CDS and 3’UTR,

(F2) secondary energy of 5’UTR, CDS and 3’UTR,

(F3) counts of 3-gram acids of 3’UTR, CDS and 3’UTR.

It is known that (F1) and (F2) affect the amount of translated pro-
teins [9] under experimental settings. Using these features, we
construct the following feature vector:

x = concat
[
xF1 xF2 xF3

]
∈ R238, (1)

where

xF1 =
[
len(5′UTR) len(CDS) len(3′UTR)

]
∈ R3, (2)

xF2 =
[
G(5′UTR) G(CDS) G(3′UTR)

]
∈ R3, (3)

xF3 = concat
[
c5′UTR cCDS c3′UTR

]
∈ R232. (4)

Here, we use following notations. len(R) and G(R) represent the
length of any area R and the free energy of R, respectively. c5′UTR

and c3′UTR contain counters of A, U, G, C, AA, AU, . . . , UU,
AAA, AAU, AAU, . . . , UUU on 5’UTR and 3’UTR, respectively.
cCDS represents AAA, AAU, . . . , UUU on CDS.

In CDS, three continuous codons correspond to an amino acid;
therefore, we assumed that the counters of two continuous codons
and one codon do not need to be counted. Kawaguchi et al. [9]
also analysed the relationships between A, U, G and C contents
and the amount of translated proteins. In our study, we use more
various count features than the features used by Kawaguchi et al.
[9].

4.1.2 (B2) Prediction Models
We build a model predicting the PR-value by using an ensem-

ble model of six models comprising random forest models, gra-
dient boosting models and XGBoost models, i.e., we estimate the
PR-value of a given mRNA by using Eq. (7).

ĥ(HS) (x∗) =
1
3

(
h(HS)

rf (x∗) + h(HS)
gb (x∗) + h(HS)

xgb (x∗)
)
, (5)

ĥ(Con) (x∗) =
1
3

(
h(Con)

rf (x∗) + h(Con)
gb (x∗) + h(Con)

xgb (x∗)
)
, (6)

ĥ (x∗) =
1
2

(
ĥ(HS) (x∗) + ĥ(Con) (x∗)

)
, (7)

where x∗ ∈ R238 is a feature vector of the given mRNA,
h(HS)

rf (·), h(HS)
gb (·), h(HS)

xgb (·) mean the prediction model built by ran-
dom forest, gradient boosting and XGBoost in HS, respectively
and h(Con)

rf (·), h(Con)
gb (·), h(Con)

xgb (·) also mean the prediction models in
Con vice versa.

4.2 G-step
The G-step is also split into three steps: random generation,

selecting good feature vectors, and selecting sequences. In the
random-generation step, we generate ℓ nucleotide acids (A, U,
G or C) randomly and concatenate them, resulting in obtaining
5’UTR sequences on a computer. In the step for selecting good
feature vectors, we transform the sequences obtained in the pre-
vious step into the feature vectors and predict the PR-value by
using the ensemble prediction model Eq. (7). Then, we select the
top k feature vectors whose PR-values are largest. In the step of
selecting a sequence, we select sequences corresponding to the
selected feature vectors.
4.2.1 Algorithm of Sequence Generation

In the G-step, we generate B 5’UTR sequences and combine
them with certain CDS and 3’UTR. Then, for the combined
mRNA, we predict the PR-value by using the prediction model
and select the top k mRNA sequences. We cannot use sub-
sequences AUG and AAUAAU. Thus, we generate 5’UTR by
using Algorithm 1. In this paper, we use B = 2 × 106.

Algorithm 1 Algorithm of mRNA Generation
Require: ĥ(·): prediction model defined by Eq. (7)
Ensure: k sequences of 5’UTR s5′UTR

1: make one part of feature vectors xF2 and xF3

2: for t = 1, 2, · · · , B do
3: fix L ∈ N randomly in interval (22, 49)
4: generate acids { sℓ }Lℓ=1, where sℓ is selected from {A,U,G,C } ran-

domly
5: S 5′UTR

t ← concat { sℓ }Lℓ=1

6: make one part of feature vector xF3 of S 5′UTR
t

7: make the feature vector x∗t by concatination of xF1 , xF2 and xF3

8: estimate PR-value of the sequence S 5′UTR
t at current step by

ŷt = ĥ
(
x∗t
)

9: end for
10: sort { S 5′UTR

t }Tt=1 in descending order of { ŷt }Tt=1

11: return top k sequences of { S 5′UTR
t }Tt=1
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5. Preliminary Evaluation of Prediction Mod-
els

In this section, we compare models developed with random
forest, gradient boosting and XGBoost with the models devel-
oped by linear regression, PLS regression [27], linear lasso [26],
[5], [6] and neural network [15]. Then, we declare that the tree-
based prediction models are better than the others. As the feature
vector x contains both—discrete and continuous—variables, tree-
based models will show better performance than the other models
[7].

5.1 Hyperparameter Tuning
Here, we explain how to tune the hyperparameters of the mod-

els. Each prediction model has hyperparameters. The PLS re-
gression model has the hyperparameter η, which represents the
number of principal components. The feed-forward neural net-
work has many hyperparameters for the architecture of the model
such as the number of layers, the number of units in each layer
and the activation functions in each layer. In addition to these
hyperparameters, we should decide the learning rate, the way of
optimization, whether should we drop out some units and so on.
Generally, such an architecture, hyperparameters and various net-
work tunings are determined on the basis of previous research of
the same domain. However, we could not find such research;
therefore, we used a simple feed-forward neural network as our
prediction model. The hyperparameters of random forest, gra-
dient boosting and XGBoost that we tuned were the number of
regression trees M and the maximum depth of each regression
tree dmax.

These hyperparameters were determined by using the valida-
tion set. There are various methods for optimizing hyperparam-
eters, such as grid search, random search [19], [21], [22] and
Bayesian optimization [16], [17], [18]. Generally, for some loss
function that is not represented clearly, we cannot obtain a strictly
optimal solution for minimizing the function. Therefore, we seek
the hyperparameter in a given search area, i.e., even if we adopt
any of the above methods, we have to determine the area where
hyperparameters are searched. If the search area is out of focus,
the selected hyperparameters are far from the true optimal hyper-
parameters. Specifically, at the worst, we were concerned that the
selected hyperparameters will not even be a local minimum point
along one axial direction. To avoid such an unfortunate situation,
we sought hyperparameters with the following steps.

step 1. Set initial value of hyperparameters as
(
θ1, θ2, · · · , θp

)
=(

θ̂1, θ̂2, · · · , θ̂p

)
.

step 2. Update θ1 = θ̂1 such that it satisfies

θ̂1 = arg min
θ1∈I1

1
|Dvali|

∑
xn∈Dvali

l (h(xn), yn) , (8)

whereDvali represents the validation set, l is the squared
loss, the other hyperparameters contained in the loss
function l are fixed and interval I1 contains the local min-
imum point along the θ1 axial direction.

step 3. Update θ2 = θ̂2, · · · , θp = θ̂p in a similar manner to pre-
vious step.

step 4. Finally, determine θ1, θ2, · · · , θp by grid search in area∏p
i=1[θi − εi, θi + εi].

By following these steps, we can focus narrowly on the area that
contains at least one (local) minimum point, i.e., we can avoid
the situation where the searched area does not contain any (local)
minimum points. Certainly, if the prediction model has only one
hyperparameter, all you need to do is search for the optimal value
along the θ1 axial direction.

If the prediction models have hyperparameters, they are tuned
in the previous steps, except for the neural network. The areas
for grid search and determined values in each prediction model
are shown in Table 4. We adopted the Bayesian optimization to
determine each hyperparameter, the number of units and dropout
rates in each layer, because the combination pattern is too large
to adopt the grid search in the neural network. The architecture
of the neural network is described in Table 3.

5.2 Evaluation of Prediction Models
Here, we evaluate the prediction models by training the mod-

els with the training set, tuning the hyperparameters in the man-
ner described in Sect. 5.1 with the validation set and comparing
the models with the test set. The results are shown in Fig. 4. As
is shown, the tree-based prediction models were better than the
other prediction models. In addition, we apply a statistical test:
Null Hypothesis H0 ρrf = ρgb = ρxgb,
Alternative Hypothesis H1 ¬H0,
where ρrf , ρgb, and ρxgb mean the correlation coefficients obtained
by using random forest, gradient boosting and XGBoost, respec-
tively. We cannot reject the null hypothesis, i.e., there is the po-
tential for no differences in the correlation coefficients. There-
fore, we aggregated all three models in Sect. 4.1.2.

6. Synthesis Experiment
In the G-step, we selected 5’UTR sequences by using the pre-

diction model as the utility function, i.e., we selected the top-k
5’UTRs that maximized the predicted PR-values in the generated
sequences. However, the prediction model is learned to fit the nat-
ural 5’UTRs, so the model does not always predict the PR-value
of the artificial 5’UTRs accurately. Therefore, we had to conduct
synthesis experiments in order to make sure that the predicted PR-
values of the artificial 5’UTRs were close to the true amounts of
translated proteins. If the predicted PR-values are close to the true
amounts of the proteins, we can obtain high-performance 5’UTRs
by increasing the iterations of sequence generation in Algorithm
1.

In the experiments, we adopted the criterion F/R-luc activity,
which represents the translated proteins of the 5’UTR. It is known
that log10(F/R-luc activity) bears a linear relationship with PR-
value [23]. Hence, we evaluated whether the predicted PR-values
were close to the observed log10(F/R-luc activity) with the corre-
lation coefficient. We chose 5’UTRs that were made in the exper-
iments as follows.
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Table 3 Hyperparameters of neural network

layer hyperparameter candidate area selected (HS) selected (Con)
input activation None tanh tanh

hidden number of units { 256, 512, 1024, 2148 } 2048 512
drop out rate [0, 0.5] 0 0.27

activation function None relu relu
hidden number of units { 256, 512, 1024, 2148 } 1024 512

drop out rate [0, 0.5] 0 0
activation function None linear linear

output number of units None 1 1

Table 4 Hyperparameters

Model hyperparameter searched area (HS) determined value (HS) searched area (Con) determined value (Con)
PLS regression η { 2, 3, · · · , 221 } 123 { 2, 3, · · · , 221 } 90

linear lasso α { 2i | i = 1, 0, · · · ,−4 } 2−4 { 2i | i = 1, 0, · · · ,−4 } 2−4

random forest M { 10, 20, · · · , 100 } 94 { 270, 275, · · · , 285 } 285
dmax { 1, 6, · · · , 31 } 20 { 11, 12, · · · , 20 } 16

gradient boosting M { 35, 40, · · · , 50 } 50 { 180, 185, · · · , 195 } 195
dmax { 9, 10, · · · , 14 } 9 { 1, 2, · · · , 10 } 5

XGBoost M { 2i | i = 11, 12, · · · , 15 } 211 { 974, 984, · · · , 1074 } 1054
dmax { 1, 6, · · · , 46 } 11 { 1, 2, · · · , 10 } 3

(S1) Generate 5’UTR sequences as use R-STEINER, i.e., exe-
cute the algorithm until the 9-th line.

(S2) Select three 5’UTRs whose PR-values are highest, two
5’UTRs whose PR-values are lowest and four 5’UTRs ran-
domly. Note that these four 5’UTRs are not same as previ-
ous three and two 5’UTRs.

We show the 5’UTR sequences that were in the above way in Ta-
ble 5. We synthesised the selected 5’UTRs and calculated the
correlation coefficient between the predicted PR-value and ob-
served log10(F/R-luc activity).

We clarify how the synthesis experiments were performed in
6.1 - 6.7. Then, we show the evaluation in 6.8.

6.1 Plant Materials, Culture Conditions, and Growth Con-
ditions

Oryza sativa L. cv. Nipponbare suspension cells [20] were cul-
tured in R2S medium with rotary shaking at 90 rpm at 30◦C in a
dark condition. For genome-wide analysis of the polysome asso-
ciation, cells cultured for three days and cells cultured for three
days and incubated at 41◦C for 15 min were collected as the con-
trol (Con) sample and heat-stress (HS) sample, respectively. In
addition, Oc suspension cells from roots of Oryza sativa L. acces-
sion C5924 [2], that is, the suspension cells of the easy-to-isolate
protoplast, were cultured under the same condition, and Oc cells
cultured for three days were used for transient expression assay.
Both suspension cell cultures were maintained with sub-culturing
every week.

6.2 Polysome Fractionation Assays and RNA Isolation from
Sucrose Gradients

Polysome fractionation analysis was performed according to
the previously described method in Yamasaki et al. [28]. Cell
extracts were layered on a 26.25–71.25% sucrose density gra-
dient and centrifuged. After centrifugation, the gradients were
separated into two fractions by using a piston gradient fractiona-
tor (BioComp Instruments, Fredericton, NB, Canada). The sec-
ond fraction of the bottom half (polysome fraction) and both

fractions (total fraction) were individually collected and pooled
into tubes containing guanidine hydrochloride (final concentra-
tion, 5.5 M). RNA was precipitated by the addition of an equal
volume of ethanol, overnight incubation at −20◦C and centrifuga-
tion at 10, 000 rpm for 45 min in a JA-20 rotor (Beckman Coulter,
Fullerton, CA, USA). The resulting precipitate was washed with
85% ethanol. RNA was purified by using an RNeasy kit (Qiagen,
Hilden, Germany) with on-column DNase I treatment according
to the manufacturer’s instructions. RNA was eluted with 100 µl of
RNase-free water, and the RNA integrity was examined with an
Agilent Bioanalyzer 2100 (Agilent Technologies). We prepared
RNA in two independent biological replicates.

6.3 Cap Analysis of Gene Expression (CAGE) and Data
Analysis

nAnT-iCAGE libraries preparation, sequencing, filtering, map-
ping and gene annotation were performed on the basis of the pre-
viously described methods in Yamasaki et al. [29]. For this anal-
ysis, to more accurately identify the transcription start site (TSS),
additional quality control was performed to remove tags with mis-
matches within three bases from the 5’end. In addition, tag counts
were converted to tag per million (TPM) values at each TSS level
as TPM TSS and averaged between two replicates. Finally, we
calculated the polysome ratio at each TSS level (PR TSS) as an
indicator of polysome association by using the following formula
Eq. (9). To obtain more reliable data, we used a limited TSS that
mapped more than 50 tags in the total fraction data in both repli-
cates for calculating PR TSS. Genome information from IRGSP-
1.0 in The Rice Annotation Project Database*2 was used as a ref-
erence for rRNA tag removal, mapping and annotation.

PR TSS =
TPM TSS in polysome fraction data

TPM TSS in total fraction data
(9)

6.4 Plasmid Construction
A reporter plasmid for transient expression assay with

PEG-mediated protoplast transformation using in vitro syn-
thesised RNA was constructed by modifying plasmid pFL-

*2 http://rapdb.dna.affrc.go.jp
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Fig. 4 Correlation coefficients between observed and predicted value. Left is in HS; right is in Con.

Table 5 Gene-specific primers for in vitro synthesised RNA

5’UTR name Primer sequence (5’ to 3’)
GS1 ATTAATTGTACAGCACAGCAAATTGTCAACTATTTTTTCAGACAGATGGAA
GS2 AAGTATCATTAAGTTTGATTTATTTGTCAAGGAACAAGTATCTTAGATGGAA
GS3 ACAAACGAACTCTCATTCACATCATTAGATAAATTAATTTTAATATGGAA
GS3 TTCCGGATCGTACCGGTCAGGATGGAA
GS4 TACCAGCCCTAGGTGGAAACATTCTAGCCGCCATAATGGAA
GS5 ATTTCCCCTTCTATCACGCTCGCGACCTAGGCGTTGGGGCTCGTATGGAA
GS6 TAACGCCCGGGGTCTGTGTGTCGCTCCCTAAATGGAA
GS7 CGGCGCTCCGCGGCCGTTGGAGGGGCCGCCGATGGAA
GS8 CCCGGACGAGCCGGGCCGGCCGGATGGAA

pA [13]. The test 5’UTRs were synthesised by oligonu-
cleotide annealing that included a part of the T3 promoter—
AATTAACCCTCACTAAAGG—with NcoI site: CATGG, and a
part of the F-luc coding region with the AatII site: GACGT. In
other words, 5’UTRs actually synthesised are sequences concate-
nated as follows:

concatenate [NcoI, T3 promoter, GSi, AatII],
where GSi represent the generated sequence in Table 5. Each
annealed oligonucleotide was introduced into pFL-pA at the
NcoI/AatII sites to generate the plasmids pT3-5’-UTR-FL-pA.
Insert DNA fragments were verified by sequencing.

6.5 Synthesis of Reporter mRNAs In Vitro
RNA synthesis was performed in vitro from plasmids pT3-

5’UTR-FL-pA containing the test 5’UTR and pT3-RL-pA [12]
as described previously [13].

6.6 Protoplast Isolation
Three-day-old Oc suspension cells were collected and gently

shaken in protoplastization enzyme solution (4% Cellulase RS,
1% macerozyme R10, 0.1% CaCl2 · 6 H2O, 0.1% MES, 0.4 M
mannitol, pH 5.6) at 30◦C for 3 h. The isolation solutions contain-
ing crude protoplasts were filtered through a 40-µm nylon sieve,
and the same volume of W5 solution (154 mM of NaCl, 125 mM
of CaCl2, 5 mM of KCl, 2 mM of Mes-KOH, pH 5.6) was added
to the solutions. After centrifugation for 4 min at 800 rpm, pel-
leted protoplasts were collected and washed once more in the W5
solution by centrifugation. Pelleted protoplasts were added into

the W5 solution and incubated on ice for 30 min. The final pro-
toplast density was adjusted to 1 × 106 protoplasts ml−1.

6.7 Protoplast Transient Expression Assay
Two µg of capped F-Luc mRNAs harboring a 5’UTR that

contained 0.4 µg of capped R-Luc mRNAs (internal control)
were mixed with 1.9 × 106 protoplasts, and an equal volume of
polyethylene glycol-CMS (PEG-CMS) solution [200 mM man-
nitol, 0.1 M Ca(NO3)2, 40% PEG 4000] was then added to each
sample. The protoplast mixture was incubated at room temper-
ature for 20 min, and 1 ml of protoplast medium (400 mM of
mannitol supplemented with R2S) was added. The transiently
transfected protoplasts were then incubated at 30◦C for 20 min,
lysed in Passive Lysis Buffer (Promega) and assayed for R-Luc
and F-Luc activities by using the Dual-Luciferase Reporter Assay
System (Promega, Madison, WI, USA) and a plate reader (TriStar
LB 941: Berthold Technologies, Bad Wildbad, Germany).

6.8 Evaluation
The results are shown in Fig. 5. The right figure is a result of

a reproductive experiment, i.e., we did the same synthesis exper-
iment twice in order to certain that we did not make mistakes in
the first experiment. Note that the ranges of the vertical axis of
the two figure are not same, because the activities of the cells used
to the real experiments are different—it is impossible to make the
activities even in the experiments—. As shown in Fig. 5, the cor-
relation coefficients were very high (0.89 and 0.91). Therefore,
as predicted, the PR-value became larger, and the true amount
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of translated proteins became larger, i.e., the prediction model
worked well even for the artificial mRNA. In addition, the two
scatter plots were similar to each other; hence, the result of this
synthesis experiment is reproducible.

Considering the synthesis experiments, the prediction model
built in Sect. 4 can predict the amounts of translated proteins of
artificial mRNAs accurately. Therefore, in Algorithm 1, increas-
ing the number B allows us to obtain translation enhancers.

On the other hand, in the each cluster of Fig. 5, there are varia-
tions in each point. Therefore, we cannot obtain the 5’UTR which
maximizes the amount of translated proteins of a certain gene, but
we can obtain the 5’UTRs which increase the amounts of the pro-
teins.

7. Conclusion
We proposed R-STEINER. With R-STEINER, we can discover

the translation enhancers of a certain gene. In the B-step, we built
a model for predicting the PR-value. The best models were three
tree-based ensemble models: the random forest, gradient boost-
ing and XGBoost. This is because tree-based methods are robust
for count features, and all of the features, except for secondary en-
ergy, engineered in Sect. 4.1.1 are discrete-type features. This re-
sult was common between HS and Con; therefore, the fact that the
tree-based ensemble models are the best prediction models does
not depend on the condition. Then, using rice, we clarified that
the prediction model used in R-STEINER can predict the amount
of translated proteins even for artificial mRNA. From this result, it
is clear that the prediction model can predict the amount of trans-
lated proteins of 5’UTRs that are generated in G-step. Therefore,
R-STEINER generates translation enhancers by increasing the it-
eration B in Algorithm 1. Hence, we can perform real synthesis
experiments for the generated 5’UTRs by R-STEINER, resulting
in reduction of the cost, time and effort.

The point that should be improved for R-STEINER is sequence
generation. In the G-step, we generate nucleotides randomly and
yield mRNA sequences by combining the generated nucleotides.
We should solve the optimization problem

x′ = arg max
x

ĥ(x) (10)

and generate a 5’UTR sequence corresponding to x′. However,
for this approach, we have the following two difficulties. The
first is that solving Eq. (10) is difficult. The second is that one
feature vector does not correspond to one 5’UTR sequence. As
can be seen in Sect. 4.1.1, one feature vector corresponds to some
5’UTR sequences.

To solve the first problem, we should develop a method for
solving the optimization problem of the function whose variable
is a 238-dimensional vector and that we cannot write in an explicit
form. After the first is solved, we need a method for generating
one sequence with one feature vector. Specifically, we need to
develop a method for selecting one sequence from candidates of
sequences by using some kind of criterion. If these two prob-
lems are solved, we could generate the translation enhancers of a
certain gene in shorter time.

In addition to the above suggestions, we considered the im-

portance of features that were calculated by using the ensem-
ble predicted model. We calculated the importance by calculat-
ing the sample mean among the three tree-based models: ran-
dom forest, gradient boosting and XGBoost (see Fig. 6). As can
be seen in Fig. 6, the features of 5’UTR affected the prediction
more strongly than the features of CDS and 3’UTR. This result
agrees with the previous research [29], but the second important
feature—the counts of GAC—is not mentioned. Some features
of CDS may affect the amount of translated proteins.
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Fig. 5 Correlation coefficients: x-axis is predicted PR-values, and y-axis is observed
log10(F/R-luc activity). Correlation coefficients on left are 0.89, and those on right are
0.91. Right is result of reproductive experiment.
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