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Stochastic Regular Approximation of Tree Grammars and

Its Application to Faster ncRNA Family Annotation

Kazuya Ogasawara† and Satoshi Kobayashi†

Tree Adjoining Grammar (TAG) is a useful grammatical tool to model RNA secondary
structures containing pseudoknots, but its time complexity for parsing is not small enough
for the practical use. Recently, Weinberg and Ruzzo proposed a method of approximating
stochastic context free grammar by stochastic regular grammar and applied it to faster genome
annotation of non-coding RNA families. This paper proposes a method for extending their
idea to stochastic approximation of TAGs by regular grammars. We will also report some
preliminary experimental results on how well we can filter out non candidate parts of genome
sequences by using obtained approximate regular grammars.

1. Introduction

Biological sequences contain both of stochas-
tic and structural information. Formal gram-
mars are quite useful tools for modeling, with
high accuracy, such stochastic and structural
features of biological sequences. Covariance
Model 7),24), CM for short, is one of the most
successful grammatical model for RNA fam-
ilies, in which stochastic context free gram-
mar is used to model RNA primary and sec-
ondary structures. This seminal grammatical
technique makes it possible to produce reliable
RNA databases 26).

A secondary structure of an RNA sequence
w = a1 · · · an (ai ∈ {A, C, G, U}) is base pair-
ing information between bases in w , which is de-
scribed as a finite set of integer pairs (i, j) with
i and j (1 ≤ i < j ≤ n) indicating i -th and j -th
bases in w , respectively. It is recognized as an
important issue to deal with secondary struc-
ture of a given RNA sequence, since its struc-
ture has strong relation to its biological func-
tion. However, one of the difficulties in the CM
approach is that it can not model the secondary
structure, called pseudoknot, which commonly
appear in various RNA molecules and play var-
ious roles in biological functions 5),16).

When an RNA secondary structure contains
base pairs (i, j) and (i′, j′) such that i < i′ <
j < j′ or i′ < i < j′ < j, it is called a
pseudoknot (See Fig. 1). Since the crossing
dependency in a pseudoknot can not be rep-
resented by context free grammars, in order
to deal with pseudonot, it is necessary to pre-
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pare a grammatical model whose generative ca-
pacity is beyond context freeness. There are
several candidate grammars proposed, includ-
ing Tree Adjoining Grammar (TAG) 13),30),31),
RNA Pseudoknot Grammar 22), Multiple Con-
text Free Grammar 11),12), CFG based Parallel
Communicating Grammar 3), etc.

A Tree Adjoining Grammar (TAG) is a gram-
matical device to generate a set of trees rather
than a set of strings, which was first proposed
by Joshi and Takahashi 10). It is known that
the string languages generated by TAGs are
between context sensitiveness and context free-
ness, and can model pseudoknotted structures.

Although TAG has enough computational
capacity to precisely analyze pseudoknots, its
time complexity for parsing is not small enough
for the practical use. Recently, Weinberg and
Ruzzo proposed a method of approximating
stochastic context free grammar by stochas-
tic regular grammar and applied it to faster
genome annotation of non-coding RNA fami-
lies using CM method 32). The idea is to use
such an approximate stochastic regular gram-
mar to filter total genome sequences and find
out candidate positions of the target family.
CM is applied only to such candidates, which
drastically reduces the total time of annotation
of ncRNA families. This paper extends their
idea and applied it to approximating stochas-
tic tree grammars by regular grammars. We
will also report some preliminary experimental
results on how well the obtained approximate
regular grammars can be used to filter out non

Preliminary version of this paper appeared in Proc.
of 1st international Conference on Language and
Automata Theory and Applications (LATA’2007).
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Fig. 1 The graphical representation of pseudoknot.

candidate parts of genome sequences.
The purpose of this paper is to show the effec-

tiveness of the proposed approximation method
to filter out non candidate positions of ncRNA
families in total genome sequences. The compu-
tational experiment of the ncRNA family anno-
tation by TAG still requires much computation
time. But, the authors believe that the tech-
nique used in this paper can also be extendedly
used in the parsing process of TAG itself. Thus,
the results reported in this paper is a challeng-
ing first step toward the goal where we can effi-
ciently and effectively use TAG for the genome
annotation with high accuracy.

In Section 2, we will give definitions and nota-
tions of tree adjoining grammars and describe
how we can model RNA secondary structures
including pseudoknots using TAGs. Inspired
from the results by Weinberg and Ruzzo, in
Section 3, we will propose a method of approx-
imating a given stochastic tree adjoining gram-
mar for RNA modeling to a stochastic regular
grammar. We will also explain a method of tun-
ing stochastic parameters. In Section 4, some
preliminary experimental results are reported,
in which we will show the effectiveness of the
proposed method. In Section 5, we will show
related works. Finally, Section 6 gives some
concluding remarks.

2. Tree Adjoining Grammar for RNA
Secondary Structure

2.1 Tree Adjoining Grammar
A TAG is a grammatical device for generat-

ing trees. Let us consider a tree labeled with
symbols in the alphabet V = N ∪ Σ where N
and Σ are disjoint. Symbols in N are called
nonterminals , and those in Σ are called termi-
nals . By τV , we denote the set of trees whose
internal and leaf nodes are labeled by symbols
in N and V , respectively. A TAG G is defined
by G = (V, C, A), where V is an alphabet, and
C and A are finite subsets of τV such that ev-
ery t ∈ C does not have a leaf node with a
label in N , every t ∈ A has exactly one leaf
node with a label in N . Elements of C and
A are called center trees and adjunct trees , re-
spectively. Elements of C ∪ A are called ele-

Fig. 2 Split γ1 at n into γ
′
1 and γ

′′
1 .

mentary trees . By definition, the leaf node of
an adjunct tree whose label is nonterminal is
determined uniquely and is called a foot node.
Furthermore, an additional requirement for an
adjunct tree is that the label of the foot node
should be equivalent to that of the root node.
The path from the root to the foot node of an
adjunct tree is called a spine. It is often the
case that some constraints are associated with
each node n of elementary trees. In this paper,
we will consider the following constraints:
( 1 ) Null Adjoining (NA): No adjunct trees

can be adjoined at n.
( 2 ) Obligating Adjoining (OA): a member of

the set A must be adjoined at n.
A node without NA constraint is said to be ac-
tive. These constraints play an important role
in defining the derivation process of tree gram-
mars.

Let G = (V, C, A) be a TAG. An adjunct tree
α is adjoinable to a tree γ1 ∈ τV , if γ1 has an
active internal node n whose label is the same
as that of the root node of α. The operation to
adjoin α on n of γ1 is defined by the following
procedure:
Split: Split γ1 at n into two trees so that n is

contained duplicatedly in both of the trees.
Let γ

′
1 be the tree consisting of the nodes

(including n) which are located below the
node n in γ1. Let γ

′′
1 be the tree consisting

of the nodes (including n) which are not
located below n. The tree γ

′
1 is called a

subtree of γ1 at n, and γ
′′
1 is called a su-

pertree of γ1 at n (See Fig. 2).
Merge: Combine γ

′′
1 and α by identifying n

of γ
′′
1 and the root node of α, and then

combine again the resultant tree and γ
′
1 by

identifying the foot node of α and the root
node (i.e. n) of γ

′
1 (See Fig. 3).

We write γ1 �G γ2 if there is an adjunct tree
α ∈ A which is adjoinable to γ1 and γ2 is ob-
tained by adjoining α to γ1. By �∗

G, we denote
the reflexive and transitive closure of �G. We
define:

τ (G) = {t ∈ τV | t0 �∗
G t, t does not contain

a node with OA constraint and t0 ∈ C. }
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Fig. 3 Merge γ
′
1, α, and γ

′′
1 .

L(G) = {Y (t) ∈ Σ∗ | t ∈ τ (G)},
where Y (t) is the yield of a tree t, which is de-
fined as the string consisting of labels of leaf
nodes of t ordered in depth-first and left-to-
right.

2.2 TAGRNA

In this paper, we will focus on a subclass
of TAGs, called TAGRNA, which was pro-
posed by one of the authors in order to model
RNA secondary structures including pseudo-
knots 13),30),31). Although the generative capac-
ity of TAGRNA is strictly weaker than that of
TAGs ☆, it can model various types of existing
RNA secondary structures.

A center tree of a TAGRNA should be of the
form represented in Fig. 4 (a), where S ∈ N
and λ is an empty string. An active node is
indicated by the symbol ‘*’. A center tree used
in a TAGRNA always has only two nodes root
and leaf. The root node is an active node
and the label of the leaf node is always λ.
An adjunct tree of a TAGRNA should be of
the form represented in Fig. 4 (b) or Fig. 4 (c),
where e1, e2, e3, e4 ∈ Σ ∪ {◦} and X, Y, Z ∈ N .
If ei (i=1,2,3,4) is ‘◦’, ei is said to be a blank node
(the blank node indicates that the node doesn’t
exist.). We call an adjunct tree of Fig. 4 (b) a
type-A adjunct tree which has the root node,
the foot node, one active node on the spine,
and four nodes (leaf or blank). In a type-A ad-
junct tree, the root node has three child nodes.
These are located down left (the upper-left node
of the active node), just under (the active node
on the spine), and down right (the upper-right
node of the active node) of the root node re-
spectively. The active node also has three child
nodes. These are located down left, just under
(the foot node), and down right of the active
node, respectively. We call an adjunct tree of
Fig. 4 (c) a type-B adjunct tree which has the
root node, the foot node, and two active nodes.
One of two active nodes is on the spine, and
☆ In TAGRNA, an adjunct tree has at most one ac-

tive node on its spine, which restricts the generative
capacity of TAGRNA, as tree and string languages,
compared to original TAG.

Fig. 4 Elemental trees of TAGRNA.

Fig. 5 The graphical representation of a W-shaped
structure.

the other is located at either upper-left, upper-
right, down-left or down-right of the active node
on the spine. The latter active node has a leaf
node as a child, whose label is always λ. In this
paper, the latter active node is called a branch
active node.

For convenience of the discussion in the se-
quel, we introduce notations of elementary trees
of TAGRNA as follows:
By [S∗−λ], we denote a center tree of TAGRNA

whose root label is S ∈ N . By [X →
Y ∗(e1, e2, e3, e4)], we denote a type-A adjunct
tree of TAGRNA such that root label is X ∈ N ,
active node label is Y ∈ N , the upper-left
node label is e1, the down-left is e2, the down-
right is e3, and the upper-right is e4, respec-
tively (e1, e2, e3, e4 ∈ Σ ∪ {◦}). By [X →
Y ∗(Z∗, ◦, ◦, ◦)], we denote a type-B adjunct tree
of TAGRNA, where X ∈ N is the label of the
root, Y ∈ N is the label of the active node on
the spine, and Z ∈ N is the label of the branch
active node. In this case, the upper-left node
is active, and down-left, down-right, upper-
right nodes are the blank node (See Fig. 4 (c-
1)). Notations [X → Y ∗(◦, Z∗, ◦, ◦)], [X →
Y ∗(◦, ◦, Z∗, ◦)], and [X → Y ∗(◦, ◦, ◦, Z∗)] are
introduced in a similar way (See Fig. 4 (c-2),
Fig. 4 (c-3), Fig. 4 (c-4), respectively).

A TAGRNA can be used to model an
RNA secondary structure including pseudo-
knots. Asakawa characterized the class of RNA
secondary structures represented by TAGRNA.
He proved that TAGRNA pseudoknotted struc-
ture can be characterized by a W-shaped struc-
ture (see Fig. 5), where base pairs are repre-
sented by dotted horizontal lines. Almost all
of the pseudoknot structures in Rfam can be
modeled by a TAGRNA with some exceptions.

For instance, let us consider an RNA sub-
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Fig. 6 The derivation process of w by TAGRNA.

sequence of w = AGACUU with a secondary
structure {(1, 5), (2, 4), (3, 6)}. The set of el-
ementary trees to model this RNA is given
by (c) [X∗

1 − λ], (α1) [X1 → X∗
2 (A, U, ◦, ◦)],

(α2) [X2 → X∗
3 (G, C, ◦, ◦)] and (α3) [X3 →

X∗
0 (◦, A, U, ◦)]. Its derivation process is shown

in Fig. 6.
2.3 Automatic Construction of Sto-

chastic TAG
Takakura, et al., developed a system for gen-

erating stochastic TAG from multiple align-
ment data of RNA sequences with secondary
structure information 28),29). This system is
based on the algorithm developed by Asakawa
which decides whether or not a given secondary
structure can be modeled by a TAG 2). By mod-
ifying this algorithm and collecting stochastic
information of primary sequences in the align-
ment data, Takakura developed an efficient sys-
tem for generating stochastic TAG which mod-
els the given alignment data. This system can
generate stochastic TAG in O(n2m), where n is
the maximum length of RNA sequence and m
is the number of RNA sequences in the given
alignment data ☆.

Although we have not yet developed a learn-
ing algorithm of stochastic TAG like that of
stochastic CFG in CM method, the simple im-
plementation of collecting stochastic informa-
tion from the alignment data works fairy well
for the unknown data classification 28). We will
use Takakura’s system for the experiments in
Section 4.

☆ Theoretically, we can develop an algorithm which
runs in time O(nm), but the current implementation
is O(n2m).

3. Approximating Tree Grammars by
Regular Grammars

3.1 Speed-up by Filtering
Although TAGRNA’s can effectively model

RNA secondary structures including pseudo-
knots, its time complexity for parsing is O(n5)
(n is the length of input string) 31), which makes
it hard to apply TAGRNA’s to the search of
functional RNAs in large genome databases.
In order to overcome the difficulty, we will
propose a method for making a TAGRNA

search efficient without loss of its accuracy
based on Weinberg’s idea. The method con-
structs, from a stochastic TAGRNA, a stochas-
tic regular grammar (SREG), which approxi-
mates the given TAGRNA and filters genome
databases. Stochastic parsing by TAGRNA is
applied only to candidates of functional RNAs
which pass through the filtering process by the
SREG. Since SREG parsing is much faster than
TAGRNA parsing, the good approximation of
TAGRNA by SREG makes the database search
much faster, even if we consider the time of ap-
proximating TAGRNA.

Let P (w | G) be the maximum probability
of all derivations of G which generate w. An
approximate SREG Greg for a TAGRNA Gtag

should satisfy:
P (w | Greg) ≥ P (w | Gtag), (for any w)

(1)

in order to guarantee that we do not loose
any candidate functional RNAs at the filtration
stage.

We will describe the construction of an ap-
proximate SREG for a TAGRNA satisfying the
above constraint in two steps:
( 1 ) Construct a regular grammar from a

stochastic TAGRNA without considering
probabilistic parameters.

( 2 ) Determine the probability of each pro-
duction rule of an SREG.

3.2 Regular Approximation of a Sto-
chastic TAGRNA

The approximation method proposed by
Weinberg and Ruzzo 32) is essentially the same
as that by Nederhof 17). Although it is possi-
ble to apply CFG approximation methods by
Harbusch or Poller 8),19) to a given TAG and
then apply Nederhof’s regular approximation to
it, we will extendedly apply regular approxima-
tion technique similar to Nederhof’s 17) directly
to TAGs for its simplicity.
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We introduce some technical terms before
showing the method of constructing an approxi-
mate SREG for a given TAGRNA. A node with
nonterminal symbol Z is said to be an initial
node if there exists no γ ∈ A such that γ =
[X → Z∗(a, b, c, d)] for some a, b, c, d ∈ Σ ∪ {◦}
and some X ∈ N with X 	= Z.

Let β be an adjunct tree. By UL(β) (DL(β),
DR(β), UR(β), respectively), we denote the
substring of Y(β) which is located at the upper-
left (UL) (down-left (DL), down-right (DR),
upper-right (UR), respectively) segment from
the active node in β.

In order to construct a regular approximation
of a TAGRNA we will convert an adjunct tree
β into four regular production rules each cor-
responding to one of segments UL(β), DL(β),
DR(β), UR(β). For instance, consider a type-A
adjunct tree β denoted by [X → Y ∗(a, b, c, d)]
(X, Y ∈ N, a, b, c, d ∈ Σ ∪ {◦}). Production
rules corresponding to β are as follows:

XUL → aY UL, Y DL → bXDL,

XDR → cY DR, Y UR → dXUR. (2)

However, these production rules are indepen-
dent and not connected to each other. We need
to construct special production rules which con-
nect these production rules. If the node denoted
by X is an initial node, we construct a special
production rule which connects DL and DR seg-
ments: XDL → XDR. In this paper, we call this
special production rule a connecting production
rule.

From the behavior of the adjoin operation,
we know that DL and DR segments of an ini-
tially applied adjunct tree are located consecu-
tively in the yield of a resultant tree. Thus, we
only have to construct a special production rule
which connects DL and DR segments according
to the label of an initial node.

Second, we show how to construct production
rules in the case of a type B adjunct tree. Let
β be a type B adjunct tree denoted by [X →
Y ∗(Z∗, ◦, ◦, ◦)] (X, Y, Z ∈ N). Production rules
corresponding to β are as follows:

XUL → ZUL, ZUR → Y UL,

Y DL → XDL, XDR → Y DR,

Y UR → XUR. (3)
Because the branch active node (in this case,
the node denoted by Z) is always an initial
node, we also construct a connecting produc-
tion rule: ZDL → ZDR.

In cases of [X → Y ∗(◦, Z∗, ◦, ◦)], [X →

Y ∗(◦, ◦, Z∗, ◦)], [X → Y ∗(◦, ◦, ◦, Z∗)], produc-
tion rules are introduced in a similar way.

Third, we show how to construct special pro-
duction rules which connect UL and DL seg-
ments, DR and UR segments respectively. UL
and DL segments, and DR and UR segments are
separated at the active node which was intro-
duced at the final step of the derivation. Thus,
we only have to construct special production
rules according to the label of such a terminat-
ing node X:

XUL → XDL, XDR → XUR.
Also, we call these special production rules con-
necting production rules.

3.3 Constraints on Stochastic Param-
eters

In our RNA secondary structure analysis sys-
tem, a 0th-order Hidden Markov model is used
as a random model to be compared with a
stochastic TAGRNA model, in order to judge
whether a given RNA sequence can be a mem-
ber of the family. Let P (w | Grand) be the prob-
ability of an RNA subsequence w generated by
a random model Grand . Let P (w | Gtag) be the
probability of w generated by a TAGRNA Gtag .
We use a random model as threshold, i.e., w
belongs to an RNA family modeled by Gtag , if
the following inequality Eq. (4) holds:

P (w | Gtag) ≥ P (w | Grand). (4)
In order to construct a stochastic regular gram-
mar Greg which approximates Gtag , it is im-
portant to assign probabilities so that Eq. (1)
holds, since P (w | Grand ) > P (w | Greg) and
Eq. (1) imply P (w |Grand) > P (w |Gtag), which
means that the inequality P (w |Grand) > P (w |
Greg) can be used at the filtration stage.

In this subsection, we use the logarithm of
the probability instead of the probability it-
self. We will show how to construct proba-
bilities of production rules satisfying Eq. (1).
Consider a type-A adjunct tree β denoted by
[X → Y ∗(a, b, c, d)] and let L1 be the logarithm
of the probability of β. According to our al-
gorithm, we obtain the production rules shown
in Eq. (2) from β. Let �1, �2, �3 and �4 be the
logarithm of probabilities of these production
rules, respectively. In order to satisfy Eq. (1),
it suffices to use �1, �2, �3 and �4 satisfying the
following inequality constraint:

�1 + �2 + �3 + �4 ≥ L1.
The probability of connecting production rules
is always assigned to be 1.

Next, we consider a type-B adjunct tree γ
denoted by [X → Y ∗(Z∗, ◦, ◦, ◦)]. Let L2 be the
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logarithm of the probability of γ. We obtain the
production rules shown in Eq. (3) from γ. In a
similar manner as in the case of type-A adjunct
tree, the problem is reduced to the one to find
�5, �6, �7, �8 and �9 satisfying:

�5 + �6 + �7 + �8 + �9 ≥ L2,
where �5, �6, �7, �8 and �9 correspond to
the logarithm of the probabilities of XUL →
ZUL, . . . , Y UR → XUR, respectively. We con-
struct a set of inequality constraints for all ad-
junct trees and denote it by CN .

3.4 Improving Stochastic Parameters
In this subsection, we will show a method

to improve the filtering efficiency. The prob-
abilistic parameters satisfying the set CN of
constraints always meet the filtration condition
(Eq. (1)). However, we aim to remove candi-
dates that can not be a member of the family
modeled by Gtag as many as possible. Follow-
ing the works by Weinberg and Ruzzo, we will
propose a method for tuning probabilistic pa-
rameters based on nonlinear programming to
meet such a requirement.

Parameter tuning method proposed in this
subsection uses two grammar models, Gtag and
Grand bellow, in order to improve the approx-
imation accuracy of an SREG obtained from
Gtag as in the previous subsection. Thus, it is
different from Kullback-Leibler distance mini-
mization approach 18).

For w ∈ L(Greg), let Pr(w | Greg) be the
probability of w generated by Greg . Let π be
a derivation path to generate w by Greg . Let
Pr(w | π) be the probability of generating w
based on the path π. Let Πw be the set of all
paths for generating w. Then, we have:

Pr(w | Greg) =
∑

π∈Πw

Pr(w | π).

We use Grand as a random model for whole
genome sequences (0th order HMM based on
a, g, c, u frequencies). We define the objective
function OB as follows:

OB =
∑

w∈L(Greg )

Pr(w |Greg)Pr(w |Grand).

By minimizing OB subject to the set CN of
constraints, the number of candidate RNAs
might be reduced.

The structure of the grammar Greg can be
explicitly represented by converting it to a cor-
responding automaton M such that L(Greg) =
L(M), where each production rule Si → xSj

is transformed into a transition from Si → Sj

with a label x. The approximate regular gram-
mar Greg has a simple linear structure if we
neglect self-loops of the form Si → xSi

For easy computation of OB , we will restrict
Πw to the set of paths πw such that each self-
loop is contained at most once in πw.

Then, we can efficiently compute OB with a
dynamic proagramming method, as follows:

OB(Si) = OB(Si−1) ×⎛
⎝ ∑

Si−1→xSi∈R

P (Si−1 → xSi)Prand(x)

⎞
⎠×

(
1 +

∑
Si→xSi∈R

P (Si → xSi)Prand(x)

)
,

where R is the set of production rules of Greg ,
and Prand(x) is the probability of the occur-
rence of base x in the genome sequence. OB(Si)
is the value of OB corresponding to the set
of paths from an initial state to the state Si.
Thus, OB = OB(Send) holds for end state
Send of Greg . The time complexity for building
OB is O(n). In order to solve this minimiza-
tion problem, we use a nonlinear optimization
solver CFSQP 14). Note that the probabilities
P (Si−1 → xSi)’s are variables in this optimiza-
tion problem. In conclusion, we can improve
stochastic parameters by solving the following
minimization problem:
Minimize:
OB =

∑
w∈L(Greg )

Pr(w | Greg)Pr(w | Grand).

Subject to:
set of constraints in CN .

4. Experimental Results

The purpose of this paper is to show the
effectiveness of the proposed approximation
method for annotating RNA family in genome
sequences. In this section, we will show some
experimental results on how such approxima-
tion grammars can be used to reduce drastically
the candidate positions of the RNA families.

The procedure of each experiment is given as
follows:
( 1 ) Get alignment data from the Rfam

database 26).
( 2 ) Generate a TAGRNA G1 that models

RNA family by the system developed by
Takakura 28).

( 3 ) Generate an SREG G2 approximating
G1 by the proposed method, whose time
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Table 1 Experimental Results: The column Name is an RNA family name.
The column ID is accession number in Rfam database. The value
Length is the length of genome sequence. The column Start shows
the position where the RNA family appears. The column cp gives
the frequency of candidate positions. The value ratio is defined as
cp/Length, i.e., filtering efficiency. Each column step i (i = 2, 3, 4, 5)
shows the execution time of each step. Est. TAGRNA column shows
rough estimations of the execution time by a TAGRNA. In each ID,
the upper row is the result of optimized SREG, the lower is the
result without optimization.

complexity for building an SREG is
O(n), where n is the size of G1.

( 4 ) Tune probabilistic parameters of G2 by
using nonlinear programming method,
for which we use a solver CFSQP 14).

( 5 ) Filter RNA sequences by using the SREG
G2, whose time complexity is O(lm2),
where l is the length of total genome se-
quence, and m is the size of G2.

( 6 ) Check how much portion of candidate
positions are remained.

The purpose of these experiments is to show
efficiency and accuracy of our method, not to
find new members of target RNA families. We
used six RNA families including pseudoknots
for this experiment:Corona FSE, Corona pk3,

Entero oriR, HDV rybozyme, Tombus 3 IV,
Tymo tRNA-like. Table 1 shows RNA data
and execution time statistics of these experi-
ments.

In order to emphasize on the importance of
tuning stochastic parameters, and show the ef-
fectiveness of the method proposed in Subsec-
tion 3.4, for a given stochastic TAG, we gen-
erated two approximation grammars, one of
which has stochastic parameters after optimiza-
tion, and the other has parameters without op-
timization☆. The experimental results are sum-

☆ Non optimized parameters are obtained by finding
feasible solutions (satisfying CN ) using the software
CFSQP.
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Fig. 7 Corona FSE.

Fig. 8 Corona pk3.

Fig. 9 Entero OriR.

Fig. 10 HDV ribozyme.

marized in Figs. 7, 8, 9, 10, 11, and 12. The
horizontal axis represents standardized position
of RNA sequence in a RNA family, where 1 and
100 correspond to the start and the end of the
sequence. More precisely, for an RNA sequence
of length n, the horizontal value i shows the
sequence segment approximately from the base
((i − 1) · n)/100 to the base (i · n)/100. The
corresponding vertical value shows the number
of positions in that segment found to be the
candidates after the filtration.

Fig. 11 Tombus 3 IV.

Fig. 12 Tymo tRNA-like.

The experiments show that SREGs with op-
timized parameters performs much better than
those with non-optimized parameters, which
shows the effectiveness of the proposed method
in Subsection 3.4. The filtering ratios with op-
timized SREGs show that the proposed method
can have potential ability to drastically reduce
the total time for annotating ncRNA families.

5. Related Works

There are so many algorithms proposed for
predicting RNA secondary structures including
pseudoknots for a given linear RNA sequence
by Akutsu 1), Rivas 22), Reeder 20), Ren 21),
Ruan 23), Uemura 31), etc. Although these stan-
dard prediction algorithms provide the basis for
the analysis of given RNA sequences, they can
not be directly used to find the location of a
target RNA family in a complete genome se-
quence, which is the coverage of this paper.

Grammatical models are quite useful tools for
improving the accuracy of predicting an RNA
family location 7),11)∼13),22),24),28),31). This pa-
per proposed a grammatical technique for
speeding up such analysis by incorporating the
approximation theory of formal grammars. In
this sense, in order to improve the accuracy of
the analysis, it is important to obtain statisti-
cal information of a target RNA family. Thus,
we need a reliable alignment data of RNA sec-
ondary structures. Recent advances in align-
ment algorithms of RNA secondary structures
including pseudoknots will provide such a reli-



Vol. 48 No. SIG 17(TBIO 3) Stochastic Approximation of TAG and Its Application 27

able alignment data 6),9),15),27).
The most related is by Weinberg and Ruzzo,

who proposed a method of approximating
stochastic context free grammar by stochas-
tic regular grammar and applied it to faster
genome annotation of non-coding RNA fami-
lies 32),33). Although CM method is quite ef-
fective for modeling and predicting RNA fami-
lies, it can not model pseudoknotted structures.
This work extends Weinberg and Ruzzo’s ap-
proach to the case of stochastic TAGs by which
we can model pseudoknots.

There are several grammar models proposed
other than TAGs for modeling RNA secondary
structures including pseudoknots, RNA Pseu-
doknot Grammars 22), Multiple Context Free
Grammars 11),12), CFG based Parallel Commu-
nicating Grammars 3), etc. As far as the au-
thors’ knowledge, the current work is the first
attempt of applying approximation method to
the grammars capable of modeling pseudo-
knots. The experimental results of this work
suggest that similar approximation method
might be quite effective also for the grammars
other than TAGs.

Weinberg and Ruzzo’s method has two steps.
In the first step, they apply regular approxi-
mation method to stochastic TAGs. Second,
they improve stochastic parameters. The ap-
proximation method in the first step proposed
by them is almost equivalent to Nederhof’s
method 17). Nederhof proposed approximation
of CFG by REG based on Recursive Tran-
sition Network. Furthermore, we know that
there are some works on approximating TAGs
by CFGs 8),19). Based on these works and
Nederhof’s works, we can approximate a given
TAG by a CFG, and then approximate the ob-
tained CFG by a REG. But, in the current pa-
per, we apply regular approximation technique
similar to Nederhof’s method directly to TAGs
for its simplicity.

In the second step, we improve stochastic pa-
rameters. The tuning method in the second
step is different from Nederhof’s method 18).
Nederhof proposed a method for training finite
automaton on SCFG so that Kullback-Leibler
distance between them could be minimal. But,
we do not use Kullback-Leibler distance for
tuning probability parameters, since its direct
application might loose some candidate loca-
tions of an RNA family which can be found
by TAGRNA. We use two grammar models
Greg and Grand and apply nonlinear program-

ming method in order to optimize parameters
of Greg with the guarantee that we do not loose
such locations found by TAGRNA. It might be
a theoretically interesting future research topic
to extend Kullback-Leibler distance minimiza-
tion method so that it might not loose candi-
date locations which can be found by the target
grammar.

6. Conclusions and Future Works

Inspired from the work by Weinberg and
Ruzzo 32),33), we developed a method for ap-
proximating a given stochastic tree adjoining
grammar to stochastic regular grammar and ap-
plied it to faster genome annotation of ncRNA
families. Parameter tuning based on an opti-
mization technique is applied in order to im-
prove the filtering efficiency. Preliminary ex-
perimental results were reported and the effec-
tiveness of the proposed method was verified by
these experiments.

Although we succeeded in filtering out non
candidate positions of RNA families effectively,
the parsing time efficiency of TAG itself is still
computationally heavy for the practical use. In
actuality, such parsing time inefficiency is cur-
rently a big research obstacle against the at-
tempt of applying these mildly context sensitive
grammars to RNA structure modeling. But, af-
ter the experience of these experiments, the au-
thors believe that this kind of grammar approx-
imation method would be quite effective also for
the efficient parsing itself. We are now develop-
ing such an approximation method for stochas-
tic TAG parsing.
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