
Electronic Preprint for Journal of Information Processing Vol.26

Regular Paper

A Lost Data Recovery Scheme
for Sensor Data Stream Multicasting

Ei KhaingWin1,a) Tomoki Yoshihisa1,b) Yoshimasa Ishi1,c) Tomoya Kawakami2,d)

Yuuichi Teranishi3,e) Shinji Shimojo1,f)

Received: May 10, 2017, Accepted: November 7, 2017

Abstract: In this paper, we propose a lost data recovery scheme called the synchronized recovery stream merging
(SRSM) for sensor data stream multicasting in the unstable networks of the IoT applications. We propose two types
of SRSM. The first one is “Latency-aware synchronized recovery stream merging (SRSM-L)” for IoT applications
that has restrictions of acceptable latency. The other is “Bandwidth-dependent synchronized recovery stream merging
(SRSM-B)” for the cases in which the network bandwidth for the sender is limited. Our proposed schemes reduce
the number of the streams managed by the sender by waiting for other recovery streams to synchronize the delivery
timing and merging. From our simulation evaluations, we confirmed that our proposed schemes save network band-
width on the sender in the random and burst failure situations. We confirmed that SRSM-L could reduce the network
bandwidth of the sender about 52% in the random failure situation, keeping the acceptable latency. We also confirmed
that SRSM-B could keep the specified number of streams constant and the latency overheads small in the burst failure
situation.

Keywords: lost data recovery, synchronized recovery stream merging, sensor data stream multicasting, sensor net-
work, latency-aware, bandwidth-dependent

1. Introduction

The internet of Things (IoT) [1], [2], [3] has gained popular-
ity due to the proliferation of small devices and sensors such as
camera or temperature sensor. And sensor data stream delivery
technology takes an important role in the IoT applications. In the
IoT applications, there are many cases where multiple receivers
receive sensor data stream generated continuously by a sensor and
utilize the sensor data stream for various objectives. For example,
a video data stream obtained by a camera can be used for suspect
tracking, congestion detection, situation logging, weather analy-
sis, disaster prevention, and so on. In the edge computing envi-
ronment [4], in which many computers run on the network edges
to realize quick-response on IoT applications, a large number of
edge computer devices must receive the sensor data stream. For
efficient data stream delivery for multiple receivers, we assume
to use multicasts. In this paper, we assume that the network has
ability of multicast, such as the ad-hoc sensor networks [5], [6], IP
multicasts [7], and application layer multicasts like pub/sub mes-
saging [8]. The pub/sub messaging is already widely utilized by

1 Osaka University, Ibaraki, Osaka 567–0047, Japan
2 Nara Institute of Science and technology, Ikoma, Nara 630–0101, Japan
3 National Institute of Information and Communications Technology,

Koganei, Tokyo 184–8765, Japan
a) ei.khaing.win@ais.cmc.osaka-u.ac.jp
b) yoshihisa@cmc.osaka-u.ac.jp
c) ishi.yoshimasa@ais.cmc.osaka-u.ac.jp
d) kawakami@is.naist.jp
e) teranisi@cmc.osaka-u.ac.jp
f) shimojo@cmc.osaka-u.ac.jp

many IoT applications [9], [10]. Some existing works implement
publish/subscribe messaging on distributed application layer mul-
ticast [11], [12].

In the IoT applications, we must assume that the applications
are executed on the computer devices that are managed by end
users, such as smartphones or Cloudlet [13] in edge computing
environments. The applications run on the widely distributed de-
vices on such environments. The devices are connected to the In-
ternet via wired or wireless access network but we cannot assume
they are as stable as the network of the datacenters. That is, we
must assume that the data losses can occur because of the unsta-
ble network links, unexpected power on/off of the sender/receiver
devices, electricity black-offs, and some other reasons.

For reliable data usage and data analysis, the lost sensor data by
such failures need to be recovered after the network status or re-
ceiver device is restored. Typically, the sender waits for a request
for recovery and retransmit the lost data to each failure encoun-
tered receiver. As the number of recovery request increases, the
sender needs to prepare more data streams for receivers with dif-
ferent failure conditions. The requirement of each receiver may
differ because the failures may occur asynchronously. As a re-
sult, recovery streams are needed to be prepared for each loss-
encountered receiver. As we assume IoT Applications, the sender
does not have plenty of CPU power nor network ability. That
means the network of the sender is limited in bandwidth. There-
fore, it is important to reduce the number of streams for recovery
to ease the network bandwidth. However, such data loss recovery
in multicast was not studied enough so far.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

To reduce the number of streams and alleviate network band-
width usage on the sender, existing stream merging schemes
(Refs. [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25]) can be applied. Because these existing schemes assume
mainly video-on-demand (VoD) applications, they need to keep
the jitter of the data stream delivery as small as possible for
smooth video playback. However, the jitter is not critical in the
IoT applications which analyze the data in order of arrival. Be-
sides, most of the existing schemes assume that there is a large
size buffer on the receiver. We cannot expect such a large size
buffer on the IoT applications that often deployed as embedded
systems.

Hence, in this paper, we propose a novel lost sensor data re-
covery scheme for sensor data multicasting called synchronized
recovery stream merging (SRSM), which is suitable for IoT appli-
cations. We propose two types of synchronized recovery stream
merging algorithms for different IoT application requirements.
The first one is “Latency-aware synchronized recovery stream
merging (SRSM-L)” for the IoT applications in which the re-
ceivers can tolerate the sender’s data delivery latency as long as
the delivery latency is in the range of their acceptable latencies,
and the other is “Bandwidth-dependent synchronized recovery
stream merging (SRSM-B)” for the cases in which the network
bandwidth for the sender is limited. Our contribution in this paper
is an extensive work of our previous paper [26], which analyzes
the basic behavior of SRSM. The previous paper does not include
the designs of the algorithms that corresponds to the specific re-
quirements (SRSM-L and SRSM-B) and their evaluations. From
our evaluations in this paper, we confirm that our proposed sensor
data recovery algorithms can reduce the number of the streams in
the different failure scenarios.

The paper is organized as follows. Section 2 describes the as-
sumed system model and recovery stream delivery while Sec-
tion 3 recalls the related work. In Section 4, the synchronized
recovery stream merging, the proposed schemes and the detailed
algorithms of the proposed schemes are explained in detail. The
paper shows evaluation by simulations in Section 5. Finally, we
conclude the paper in Section 6.

2. Assumptions

In this section, we describe our assumed system model and re-
covery stream delivery.

2.1 Assumed System Model
Figure 1 shows our assumed system model. For sensor data

stream delivery, the sender has three components: sensor data ob-
tainer, sensor database and sensor data stream generator. Firstly,
sensors sense data from the environment and then forward them
to sensor data obtainer. After sensor data obtainer obtains the
sensed data, it stores them in sensor database. The task of sensor
data stream generator is the generation of new streams for lost
sensor data recovery and dropping of some streams after success-
ful merging. In Fig. 1, we assume that the sender delivers some
multicast streams like sensor data streams 1 and 2, each for mul-
tiple receivers.

Fig. 1 Our assumed system model.

Fig. 2 Recovery stream delivery.

2.2 Recovery Stream Delivery
We define the data stream which delivers the sensor data im-

mediately after they were obtained as the original stream. When
a receiver encountered a failure and then recovered, which means
a receiver encountered a data loss, a new data stream request is
issued to the sender so that the loss-encountered receiver can ob-
tain data which are delivered by the original stream during the
failure.

We call the newly generated data streams for the lost sensor
data recovery as the recovery streams. The recovery stream can
be a larger bandwidth data stream, which includes more data per
unit time than the original stream or a skipped data stream, which
drops some data from the original stream. The sender delivers the
recovery stream according to the receiver’s request. For the re-
covery stream with skipped data, we define a skip rate that means
how much data are skipped within a unit time. The amount of
data to be skipped within a unit time is equal to (skip rate - 1)
× (original data amount), where original data amount means the
amount of data that the sender sends within a unit time in the
original stream. The bandwidth is the data amount that the sender
sends within a unit time. For example, if the skip rate is 2.0 and
bandwidth is 1.0, the sender skips one data within a unit time.

Figure 2 illustrates the basic behavior of the recovery stream
delivery. The x-axis represents the elapsed time and y-axis corre-
sponds to the delivered data amount. In Fig. 2, a receiver recovers
from failure at time (t1) and the sender needs to generate a new
stream by using the receiver’s desired skip rate if there is no exist-
ing recovery stream. When another receiver with different failure
condition requests for recovery at time (t2), the sender has to pre-
pare new recovery stream. Recovery stream with larger skip rate
or larger bandwidth faster catches up with the original stream.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 3 An example of skipped data delivery.

In Fig. 3, we assume that the sender delivers the original data
stream with bandwidth = 1.0 situation. Figure 3 shows the situa-
tion in which the receiver-2 sets skip rate as 2.0 and bandwidth as
1.0 while the receiver-3 sets skip rate as 1.0 and bandwidth as 2.0
for lost sensor data recovery. As the receiver-2 sets skip rate as
2.0, the sender skips one data before choosing one recovery data.
The quantity the sender eliminates the data from the recovery
stream is a parameter and depends on the importance level of the
data specified by the requested receiver. As the eliminated data
increases, the recovery stream can faster catch up with the origi-
nal stream. Although the recovery stream can faster catch up with
the original stream, the number of received data on the receiver
decreases. When the recovery streams catch up with the original
stream, the sender can deliver the same original stream to the re-
ceivers that have already received the lost sensor data. Therefore,
the sender does not need to generate the recovery stream and the
number of the streams is reduced. In Fig. 3, at time 6, the sender
uses total bandwidth 2.0 for the original stream and the recovery
stream. At time 7, the sender has to use total bandwidth 4.0 as the
number of recovery stream increases. Therefore, the bandwidth
of the sender is proportional to the number of recovery streams. If
there are multiple requests for recovery with different failure sit-
uations, the sender may exhaust in bandwidth usage. Therefore,
not only receiver but also sender should be considered in lost data
recovery scheme.

The critical problem in such data delivery is how to allevi-
ate the network bandwidth usage of the sender. When more
loss-encountered receivers with different failure situations are in-
volved in recovery, the sender’s load such as the computational
power, memory usage, communication traffic, etc. increases. In
other words, the sender’s load is proportional to the number of
recovery streams.

3. Related Work

To reduce the senders’ load such as bandwidth, and I/O
overhead, merging schemes have been proposed for VoD
senders. There are stream merging schemes called Batching [14],
Piggybacking [15], Tapping [19], Patching [20], and Dynamic
skyscraper [21].

To reduce the sender’s bandwidth, stream delivery is delayed in
the Batching. Time interval is specified so that the sender needs to
deliver only one stream for all the receivers’ same data requests
that arrived during that time interval. However, Batching intro-
duces delay in receivers. To make the streams merge faster, the
streaming rates for recovery streams are dynamically adjusted in

the Piggybacking. In the Tapping or the Patching, the receiver can
greedily tap into any streams by using buffer capable of storing at
least 10 to 15 minutes. In the Dynamic skyscraper, the sender’s
bandwidth is reduced by allowing the receivers to receive more
than one stream at the same time. The model used in the Tap-
ping and the Dynamic skyscraper is called the receive-two model
where receivers can listen to two streams simultaneously. The re-
ceiver receives two streams: one for immediate viewing purpose
and another for future use. The data for future playback are stored
in buffers. The server drops the streams whose data are in the re-
ceiver’s buffer. The sender informs the receiver processes on the
receivers about the streams to listen to and the duration.

In Ref. [24], efficient dyadic stream merging algorithm has
been proposed by allowing the receivers to receive up to two
streams at any time. Client receive programs are prepared using
recursive dyadic interval partitioning. The Dyadic Tree is con-
structed by assuming the original stream as a root (parent) and
the earliest receiver arrived within the specified intervals as the
children. Streams for children are merged with parent. Moreover,
the streams for later arrival receivers and earliest arrival receiver
within the same interval are merged again. In this way, the num-
ber of streams are reduced. However, the receivers need to have
the buffer to simultaneously accept two streams at any time.

In Ref. [25], five stream merging algorithms for media-on-
demand are compared. Using various distributions for receiver
request pattern, empirical study results are presented for the
dynamic Fibonacci, dyadic and earliest reachable merge target
(ERMT). Simulation results are shown for various performance
metrics. Most of them use the buffer on the receiver.

Because above existing schemes assume mainly VoD applica-
tions, they assume that the length of the data processing interval
or the data delivery interval needs to be almost same, in other
words, the jitter of the processing data interval or data delivery
interval needs to be small so that a person cannot notice for the
smooth video playback. By this jitter limitation, the number of
the streams that the sender can reduce is limited, though the jitter
is not critical in the IoT applications. To obtain the real-time sit-
uations of the real world, the arrival order of the data is important
because the analysis process has its own context, which means
the transitions of the status is decided based on the previous sta-
tus. For example, in the person tracking by video applications,
the movement of a person in the video is calculated by the posi-
tion of the current video frame and the previous video frame. If
the receiver has plenty of buffers to store received data, the order
of the data can be adjusted according to the timestamp of the data
even when the arrival order of the data is not preserved. In this
study, we assume that the receiver does not have such large buffer
to store data because IoT applications can run on small devices
such as smartphones. Reducing the bandwidth is a more critical
issue in the IoT applications.

4. Proposed Method

In this section, we present the synchronized recovery stream
merging (SRSM) firstly. Then, two stream data recovery schemes
called “Latency-aware synchronized recovery stream merging
(SRSM-L)” and “Bandwidth-dependent synchronized recovery

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

stream merging (SRSM-B)” are explained in detail.

4.1 Synchronized Recovery Stream Merging (SRSM)
In our proposed SRSM scheme, we assume that the receiver

specifies an acceptable latency. The acceptable latency is speci-
fied according to the IoT application demands. Example scenar-
ios are:
• For navigation application, the status of congestion (by an-

alyzing street camera video) older than 30 sec has no mean-
ing. In this case, the receiver will specify the acceptable
latency as 30 sec.

• For congestion logging application, the receivers may wait
lost data for a half day. In this case, the receiver’s acceptable
latency is equal to half day.

The acceptable latency may depend on the the receivers. Differ-
ent receivers may have different latency tolerance and different
specification of data importance on the same data.

In our proposed schemes, stream merging occurs when the
recovery stream catches up with the original stream and it is
also performed among recovery streams. Recovery streams are
merged when they reach the same data delivery point. The fol-
lowing notations are used as parameters of the receiver-i for the
recovery.

ri : the acceptable skip rate of the receiver-i.

bi : the acceptable bandwidth of the receiver-i

di : the latest data timestamp that the receiver-i already received

li : the acceptable latency of the receiver-i

ti : the time when the receiver-i recovered from failure

In SRSM, the sender eliminates some lost sensor data to merge
recovery streams faster. In this way, the recovery streams quickly
catch up with the original stream. If there is no existing recovery
stream when the receiver-i recovered from the failure, the pro-
posed scheme creates new recovery stream (s) with the following
parameters.

Rs : the skip rate of the recovery stream s

Bs : the bandwidth of the recovery stream s

As : the data count already delivered by the recovery stream s

Ds : the data that s starts delivery

Ts : the start time of s

Gs : the set of members of the multicast group in s

Then, it adds the receiver-i in Gs. Any receivers that can be
merged to the group are added as group members without creat-
ing new recovery stream. Whether the receiver-i can be added to
the group or not is determined according to the recovery param-
eters, the acceptable latency, the expected catchup time, and the
related latency.

If the data already received by the receiver-i is more than that
of the existing recovery stream (s), the expected catch up time of
stream (s) to the receiver-i (Cs,i) and the related latency (Li,s) can
be calculated as follows:

Fig. 4 Case I. Before merging vs After merging.

Cs,i =
(Di − Ds)
Rs × Bs

+ ti if di > As

Li,s = Cs,i − (di + 1) if di > As

where Di = di + ri × bi and Ds = As + Rs × Bs.
The related latency (Li,s) is the latency of the receiver-i related

to the existing recovery stream (s). In other words, it is the wait-
ing time of the receiver-i to get recovery data when its received
data is more than that of the existing recovery stream (s).

When the data already received by the existing recovery stream
(s) is more than that of the receiver-i, the calculations of the ex-
pected catch up time for the receiver-i and related latency of ex-
isting recovery stream (Ls,i) are as follows:

Ci,s =
(Ds − Di)

ri × bi
+ ti if As > di

Ls,i = Ci,s − Ds if As > di

To continue the existing recovery stream or create new recov-
ery stream by dropping the existing one, one of the following
conditions must be held. Lmin:s is the minimum acceptable la-
tency among the receivers of the existing recovery stream (s).

Li,s ≤ li when di > As

Ls,i ≤ Lmin:s when As > di

If there is one or more recovery streams, the proposed scheme
merges the recovery streams for the following three cases.
4.1.1 Case-I: A Merge-able Stream Exists But Not Reached

to di

In the first case, the proposed scheme adds the receiver-i re-
covered from the failure to the existing recovery stream (s) if the
following conditions are satisfied.

scontains(Rs, ri, Bs, bi) (1)

Ds < Di (2)

Cs,i − (di + 1) ≤ li (3)

The function scontains() checks whether the skip rate and
bandwidth usage of the existing recovery stream s is acceptable
for the receiver-i. The second statement (2) means the existing
recovery stream has not received the data di already received by
the receiver-i. The final condition (3) checks whether the related
latency satisfies the acceptable latency of the receiver-i.

Figure 4 shows the situation in which there is one existing re-
covery stream starting at (Ts). At the recovery request time (t2)
of the receiver-2, the conditions for Case I is fulfilled. Therefore,
the receiver-2 is added to the existing recovery stream without
creating new recovery stream.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 5 Case II. Before merging vs. After merging.

4.1.2 Case II. A Merge-able Stream Exists and Already De-
livered di

Whether the new recovery stream should be generated is
checked using the following conditions.

scontains(Rs, ri, Bs, bi) (4)

Ds > Di (5)

Ci,s − Ds ≤ Lmin:s (6)

The first condition (4) checks whether the skip rate and band-
width usage of the receiver-i is acceptable for the existing recov-
ery stream (s). The second condition (5) means that the exist-
ing recovery stream has already delivered more data than that re-
quired by the receiver-i. The final condition (6) checks whether
the related latency satisfies the acceptable latencies of all re-
ceivers in the existing recovery stream so that all receivers of the
existing recovery stream can wait until new recovery stream de-
livers Ds.

Figure 5 shows the second situation in which the recovery re-
quested by the receiver-2 has less recovery start data count than
that of the existing recovery stream. When the receiver-2 starts
its recovery, there is already one existing recovery stream and
recovery data count status is (Ds > D2). We assume that the fi-
nal conditional statement for latency is also satisfied. Therefore,
the receivers in the existing recovery stream are added as the re-
ceivers of new recovery stream before eliminating the existing
recovery stream. Finally, there is only one recovery stream.
4.1.3 Case III. A Coincidental Merge-able Stream Exists

When the receiver and the existing recovery stream (s) have
the same recovery data to be delivered, and skip rate and band-
width usage of s are acceptable for the receiver-i, the receiver is
added to the group of the existing recovery stream. The follow-
ing conditional statements check whether the coincidental merge-
able stream exists.

scontains(Rs, ri, Bs, bi) (7)

Ds = Di (8)

4.2 Latency-aware Synchronized Recovery Stream Merging
(SRSM-L)

We propose the “Latency-aware synchronized recovery stream
merging (SRSM-L)” algorithm on the basis of SRSM. We as-
sume the latency-aware environment for SRSM-L in which the
receivers specify the acceptable latency to merge the streams. In
SRSM-L, the sender does not create a new stream as long as the

Algorithm 1 Algorithm for SRSM-L
1: procedure subscribe

2: Input: t, i, ri, bi, di, li
3: Initialize empty stream array z

4: Di ← di + ri × bi

5: for all s in streams do

6: Ds ← As + Rs × Bs

7: if (Ds = Di) and (scontains(Rs, ri, Bs, bi)) then

8: li ← li − (t − (di + 1))

9: wi ← (t − (di + 1))

10: s.addReceiver(i)

11: Ls ← Lmin:s

12: return

13: end if

14: if (Ds < Di) and (Li,s ≤ li) and (scontains(Rs, ri, Bs, bi)) then

15: li ← li − (Cs,i − (di + 1))

16: wi ← (Cs,i − (di + 1))

17: s.addReceiver(i)

18: Ls ← Lmin:s

19: return

20: end if

21: if (Rs! = 1.0) and (Ds > Di) and (Ls,i ≤ Ls) and

(scontains(Rs, ri, Bs, bi)) then

22: z.addStream(s)

23: end if

24: end for

25: Create new stream ns

26: li ← li − (t − (di + 1))

27: wi ← (t − (di + 1))

28: ns.addReceiver(i)

29: for all s in z do

30: for all u in s.receivers do

31: wu ← (Ci,s − Ds)

32: lu ← lu − (Ci,s − Ds)

33: ns.addReceiver(u)

34: end for

35: z.deleteStream(s)

36: end for

37: Lns ← Lmin:ns

38: streams.addStream(ns)

39: end procedure

existing recovery stream can satisfy the receiver. Once the sender
receives the request, the sender decides whether to generate a new
recovery stream or add the requested receiver as a receiver of one
of the existing recovery streams.

The algorithm for SRSM-L is shown in Algorithm 1 where
streams represent the streams to be delivered at the current time
t by considering the acceptable latency of each receiver-i.

Firstly, the proposed scheme checks whether the receiver-i
has the same recovery start data count with that of the recov-
ery stream. Conditional statements from line number (7) to line
number (13) checks this situation. If the condition is true, stream
merging is performed.

Although the receiver and the recovery stream have different
recovery start data count, stream merging may occur depending
on the acceptable latency of the receiver-i or the recovery stream.
The proposed scheme always delivers the recovery stream with
the smaller data amount. If the existing recovery stream has de-
livered smaller recovery start data than that required by the recov-

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

ery requested receiver-i, the proposed scheme continues it with-
out generating new recovery stream for the recovery requested
receiver-i. The acceptable latency of the receiver-i with larger
data amount is considered because it has to wait until the existing
recovery stream (s) delivers its recovery start data count. There-
fore, the related latency (Li,s) must be less than or equal to the
acceptable latency (li) so that the receiver-i can be added to the
existing recovery stream (s). The acceptable latency (li) of recov-
ery requested receiver-i is updated for time (t) so that the sender
considers the remaining latency of the receiver-i in merging with
other streams or other receivers at the same time (t). Therefore,
the acceptable latency of the recovery stream (Ls) is modified
with the minimum acceptable latency among the receivers of the
recovery stream (Lmin:s) whenever a receiver is added to the ex-
isting recovery stream. Moreover, the latency (wi) of receiver-i
is needed to be updated to find its maximum latency throughout
its processing time. The conditional statements from line number
(14) to line number (20) are grouping receivers for the existing
recovery stream. The summary of this case can be described like
this:

Gs = Gs ∪ {i} when Li,s ≤ li and di > As

In case of the existing recovery stream with more recovery start
data count (Ds > Di), the proposed scheme generates new re-
covery stream for the recovery requested receiver and eliminate
the existing recovery stream. The acceptable latency of the re-
ceivers from the existing recovery stream needs to be considered.
In checking the acceptable latency, the related latency (Ls,i) must
be less than or equal to the acceptable latency (Ls) so that new re-
covery stream will be generated by dropping the existing recovery
stream. Conditional statements starting from line number (21) to
line number (23) describe the above situation. The summary of
this case is

Gns = Gs ∪ {i} when Ls,i ≤ Ls and As > di

delete Gs

where Gns is the group of receivers in new recovery stream.
The receiver-i and receivers of the existing recovery stream are

added to new recovery stream (ns) before dropping the existing
recovery stream. Then, the existing recovery stream is removed
and the acceptable latency of new recovery stream (Lns) is as-
signed with the minimum acceptable latency among its receivers
(Lmin:ns). The conditional statements described from line number
(25) to line number (38) correspond to new stream generation and
latency assignment of new stream and its receivers.

4.3 Bandwidth-dependent Synchronized Recovery Stream
Merging (SRSM-B)

We also propose the “Bandwidth-dependent synchronized re-
covery stream merging (SRSM-B)” algorithm on the basis of
SRSM. In the real scenario, the available bandwidth of the sender
may dynamically change time by time. Instead of the receiver
requirements, SRSM-B prioritizes the sender. In SRSM-B, the
sender considers the receivers’ latencies as much as possible in
merging streams. Firstly, it performs streams merging by consid-

Algorithm 2 Algorithm for SRSM-B
1: procedure merge

2: Performs subscribe procedure of SRSM-L for all recovery requested

receivers at time t

3: if (nt ≤ at) then

4: break

5: else

6: s1 ← streamt(ori)

7: s2 ← streamt(ori)

8: st .deleteStream(s2)

9: q = nt − 1

10: m = q
at−1

11: for (i = 1 to q) do

12: s3 ← streamt(min)

13: for all s in mergestream do

14: if (scount < m) then

15: add all receivers of s3 to s

16: if (Rs > Rs3) then

17: Rs = Rs3

18: end if

19: if (Bs > Bs3) then

20: Bs = Bs3

21: end if

22: for all u in s3.receivers do

23: wu ← (Cs,s3 − Ds3)

24: lu ← lu − (Cs,s3 − Ds3)

25: end for

26: st .deleteStream(s3)

27: increment scount by 1

28: return

29: end if

30: end for

31: mergestream.addStream(s3)

32: s3count = 1

33: st .deleteStream(s3)

34: increment i by 1

35: end for

36: mergestream.addStream(s1)

37: end if

38: end procedure

ering the receivers’ acceptable latencies. Then, it checks the re-
quired bandwidth and the sender’s available bandwidth. In case of
the larger bandwidth requirement, it agains merges some streams
to adapt to the sender’s available bandwidth. As a result, some
or all portions of the receivers may exceed the acceptable laten-
cies. However, SRSM-B merges the streams with the least la-
tency difference to make latency exceeded value as small as pos-
sible. The sender needs to have the following parameter values
for bandwidth-dependent recovery stream delivery.

at : the number of streams allowed for available bandwidth

st : the streams to be delivered at time t

nt : the number of streams to be delivered at time t

Here, (st, nt) can be determined after performing subscribe pro-
cedure of SRSM-L for all recovery requested receivers at time t.

The algorithm SRSM-B is shown in Algorithm 2. Depending
on the time-variant number of streams (at) allowed by the sender
and the required number of streams (nt), the proposed scheme de-

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

cides whether stream merging should be performed or not. If the
bandwidth requirement for the recovery stream delivery is within
the limit of the sender’s available bandwidth, no further stream
merging is necessary. This situation is described in line number
(3) and (4). Here, we assume that the sender’s allowed number of
streams is always greater than 1.

For situation in which the bandwidth requirement is beyond the
sender’s limit, more than one stream from the (st) are merged into
the new stream. Here, the new stream is denoted as the merged
stream (mergestream). Stream merging is performed among the
streams except the original stream (streamt(ori)). For merging
other streams except the original stream, both the required num-
ber of streams and allowed number of streams are reduced by one
because we assume that the original stream is a merged stream.
Then, the number of streams to be merged into a merged stream
(m) is decided by dividing the reduced number of streams (q)
by the reduced allowed number of stream (at − 1). The condi-
tional statements are described from line number (7) to line num-
ber (10).

Other streams to be merged are chosen according to the data
count already received. In general, different streams with mini-
mum data count difference are merged so that the latency of re-
ceivers is not much larger than their acceptable latencies. We
refer the stream with minimum data count already received at
time t as streamt(min). To achieve the safe delivery, the skip rate
and bandwidth of the merged stream are set using the minimum
skip rate and minimum bandwidth among all the streams to be
merged. Then, the scheme modifies the latency of receivers from
the streams to be merged into a merged stream. The line num-
bers from (11) to (35) shows merging multiple streams. In Algo-
rithm 2, the initialization of a merged stream is described from
line number (31) to (34). Finally, the original stream is added as
a merged stream at line number (36).

5. Evaluations by Simulations

We conducted the simulation evaluations for our proposed
schemes. We evaluated the number of streams, the average num-
ber of streams, the number of receivers that exceed acceptable
latency and average of maximum latency for two different fail-
ure/recovery patterns.

5.1 Simulation Setup
We evaluated the method for two failure/recovery simulation

scenarios: 1) Poisson scenario and 2) Gaussian scenario. We se-
lected these scenarios because they are typical failure situations.
Poisson scenario corresponds to a random failure situation and
Gaussian scenario corresponds to a burst failure situation. For
example, the errors of smartphones (e.g., starting/stopping an ap-
plication) in a wide area may follow the Poisson scenario and
the errors when the receivers in a train that goes into tunnel may
follow the Gaussian scenario.

The common simulation setup is shown in Table 1, where p

is a receiver in the simulation. We used a notion of virtual ‘unit
time’, which can correspond to a second, a minute, or an hour,
in the simulations. The evaluation results can be interpreted to
the various situations by translating the unit time. The acceptable

Table 1 Common simulation setup.

Parameters Value
Simulation time 1,000 (unit time)

Number of receivers 100
rp 2.0
bp 1.0
lp 200 (unit time)
at 2

Number of trials 1,000

Fig. 6 Loss and recovery model of the second trial (Poisson).

bandwidth (bp = 2) is selected because we assume IoT appli-
cations, in which plenty of network bandwidth is not available.
The simulation time (= 1,000 unit time) is decided as an enough
duration for the stable simulation. The number of receivers (=
100) is an enough number that we can reproduce the congested
situation. rp = 2 and lp = 200 are selected as typical parameters
to see the basic behavior. Same as the unit time, both rp and lp

can be translated for various situations. If we want to translate
lp = 200 as a minute, which is a typical interval to analyze sensor
data, then the unit time need to be interpreted as 1/3 second. To
see the basic performance, we assume all receivers have the same
requirements for the recovery.

In the Poisson scenario, a receiver encounters failure multiple
times within the simulation time because the number of receivers
is limited in the simulation. The average number of failure oc-
curred within a unit time is set as 8. Figure 6 shows the fail-
ure/recovery pattern of the second trial for the Poisson scenario.
The x-axis represents the elapsed time and y-axis represents the
number of failure or recovery.

In the Gaussian scenario, a receiver can encounter a failure at
most one time within the simulation time. In all trials, we assume
half of the receivers encounter failure around 500 unit time fol-
lowing the Gaussian distribution. The standard deviation of the
Gaussian distribution is set as 50. The failure interval also fol-
lows the Gaussian distribution. The average failure interval (f i)
is set from f i = 100 to 200 by the increment of 10. The standard
deviation of the average failure interval is set as 10. Figure 7 de-
scribes the assumed loss and recovery model of the second trial
for the Gaussian scenario.

As a comparison method, the simple Piggybacking scheme is
used. In Piggybacking, a slow stream is generated when no slow
stream exists within a time window W. Otherwise, a fast stream
is generated. We assume that the slow stream has Rs = 1.0

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 7 Loss and recovery model of the second trial (Gaussian).

Fig. 8 Number of streams in the Second Trial (Poisson).

Fig. 9 Average number of the streams (Poisson).

and Bs = 1.0 while the fast stream delivers with Rs = 2.0 and
Bs = 1.0. The window size W is set as 40. Another comparison
method is Coincidental merging in which the receiver joins the
existing stream when it has exactly same parameter values of the
existing stream.

5.2 Simulation Results
5.2.1 Poisson Scenario

Figures 8–11 shows the simulation results for the Poisson sce-
nario. We denote λ as the average number of failures within a unit
time and μ as the average number of recoveries within a unit time.
For the Poisson scenario, we set (λ = 1

8) and (μ = 1
h) to define the

average number of failure and recovery respectively. The value

Fig. 10 Number of the receivers that exceed acceptable latency (Poisson).

Fig. 11 Average of the maximum latency (Poisson).

of (h) is set from 0.5 to 7.5 with the incrementing value 0.5. The
comparison of the number of streams resulted from the second
trial is shown in Fig. 8. The parameters for the second trial are
(λ = 1

8) and (μ = 1
7.5). Figure 9 shows the average stream count

by changing the average interval between recoveries, which cor-
responds to 1

μ
. Figure 10 shows the number of the receivers that

exceeds the acceptable latency and Fig. 11 shows the average of
the maximum latency for all simulation trial.

According to these results in Poisson scenario, SRSM-L
showed good performance than Piggybacking and Coincidental
merging, when the average interval between recoveries is large,
which means the number of receivers in simultaneous failure is
large, in terms of the number of streams. The performance of
Piggybacking is worse around the average interval value between
4 and 8. That is because more stream generation occurs in Pig-
gybacking and the random failure gives disadvantage for it. The
average number of streams (i.e., network bandwidth used by the
sender) in SRSM-L is reduced about 52% compared with Piggy-
backing and Coincidental merging when the average interval be-
tween recoveries is 7.5. On the other hand, as expected, the num-
ber of streams of SRSM-B did not exceed 2. However, as Fig. 10
shows, the number of receivers which exceeded 200 unit time in-
creases. As the Fig. 11 shows, the average latency increases to
around 250 when the loss start interval = 7.5.

As a summary, in the Poisson scenario, we can say SRSM-L
can keep good performance even when there are frequent failures
and recoveries. SRSM-L showed balanced results which keep

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 12 Number of the streams in Second Trial (Gaussian).

Fig. 13 Average number of the streams (Gaussian).

the bandwidth usage and the delivery latency small. About the
SRSM-B, we confirmed that the scheme could keep the number
of streams constant, but increased delivery latency. Therefore,
SRSM-B is suitable only when the application does not need to
limit the latency in the Poisson scenario.
5.2.2 Gaussian Scenario

Figures 12–15 shows the simulation results for the Gaussian
scenario. For the Gaussian scenario, the simulation is performed
using different average failure interval (f i) where (f i = 100 to
200) (unit time) with standard deviation 10.

Figure 12 shows the result of stream count for the second trial.
The parameters for the second trial are mean failure start time
(500) with standard deviation (10), and average failure interval
(200) with standard deviation (10). Depending on the average
length of the failure interval, the recovery start time for the re-
ceivers is slightly different. As a result, more recovery stream
generation occurs nearly at the same time. The comparison of all
schemes in terms of the average number of stream is illustrated
in Fig. 13. Figure 14 shows the number of the receivers that ex-
ceeds the acceptable latency and Fig. 15 shows the average of the
maximum latency for all simulation trial.

The Coincidental merging showed worst performance in terms
of the number of streams. The Piggybacking showed better per-
formance than Coincidental merging. It showed similar perfor-
mance with SRSM-L because in the Gaussian scenario, simulta-
neous errors can be accommodated to the merging stream. The
number of streams increases in SRSM-L as the average length

Fig. 14 Number of the receivers that exceed acceptable latency (Gaussian).

Fig. 15 Average of the maximum latency (Gaussian).

of the failure interval increases. That is because the number of
long failure receivers, in which the failure interval exceeds 200,
increases as shown in Fig. 14. The average number of streams in
SRSM-L is nearly equal to that of Piggybacking when the dif-
ference is from 40 to 80. As expected, SRSM-B could keep the
number of streams no more than 2 during the simulation time.
The average number of the receivers that exceed the acceptable
latency and the average max latency becomes larger when the
f i becomes larger in the all schemes. As showin in the Fig. 14
and Fig. 15, SRSM-B showed larger latency than other schemes.
However, the increases in the latency was small.

As a summary, in the Gaussian scenario, we can say SRSM-
B could keep good performance. SRSM-B clould keep the
max bandwidth usage constant and the delivery latency overhead
small. SRSM-L, could not keep the number of streams small,
when the difference is large, that means the failure duration is
longer than the threshold lp.

6. Conclusion

We proposed efficient lost sensor data delivery schemes for
sensor data multicasting. They are “Latency-aware synchronized
recovery stream merging (SRSM-L)” and “Bandwidth-dependent
synchronized recovery stream merging (SRSM-B),” which are
suitable for the IoT applications. We evaluated the performance
in two simulation scenarios that corresponds to the random fail-
ures and the burst failures. Simulation results are shown in terms
of the number of streams, the average number of streams, the

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

number of receivers that exceeds the acceptable latency and the
average of the maximum latency.

According to the evaluation results, we found that the perfor-
mance of SRSM-L can save about 52% network bandwidth on
the sender in the frequent random failure situation, comparing
with existing schemes, keeping the acceptable latency. We also
found that in the burst failure situation, SRSM-B shows best per-
formance even when the failure duration is long. It could keep the
maximum number of the streams constant and the latency over-
heads small.

In the future work, we will do more detailed evaluations to
confirm whether our scheme is applicable for more applications
or situations. Then we will implement the proposal method on
an actual pub/sub multicasting platform for reliable IoT appli-
cations. In addition, further improvement of delivery load re-
duction mechanism, the recovery stream generation scheme us-
ing distributed caches on the network, dynamically applying the
appropriate scheme (SRSM-L or SRSM-B) according to the ob-
servations and feedback, also form part of our future work.

Acknowledgments This research was supported by Grants-
in-Aids for Scientific Research (B) numbered 15H02702.

References

[1] Hodges, S., Taylor, S., Villar, N., Scott, J., Bial, D. and Fischer, P.T.:
Prototyping connected devices for the internet of things, J. Computer,
Vol.46, No.2, pp.26–34, IEEE (2013).

[2] Gubbi, J., Buyya, R., Marusic, S. and Palaniswami, M.: Internet of
Things (IoT): A vision, architectural elements, and future directions,
J. Future Generation Computer Systems, Vol.29, No.7, pp.1645–1660,
Elsevier (2013).

[3] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M. and
Ayyash, M.: Internet of things: A survey on enabling technologies,
protocols, and applications, J. IEEE Communications Surveys and Tu-
torials, Vol.17, No.4, pp.2347–2376, IEEE (2015).

[4] Patel, M., et al.: Mobile-Edge Computing - Introductory Technical
White Paper, ETSI MEC white paper, V1 18-09-14, 36 pages (2014).

[5] Porambage, P., Braeken, A., Schmitt, C., Gurtov, A., Ylianttila, M.
and Stiller, B.: Group key establishment for enabling secure multicast
communication in wireless sensor networks deployed for IoT applica-
tions, IEEE Access, No.3, pp.1503–1511 (2015).

[6] Jiang, D., Xu, Z. and Lv, Z.: A multicast delivery approach with min-
imum energy consumption for wireless multi-hop networks, Telecom-
munication Systems, Vol.62, No.4, pp.771–782 (2016).

[7] Quinn, B. and Almeroth, K.: IP multicast applications: Challenges
and solutions, RFC 3171 (2001).

[8] Eugster, P.T., Felber, P.A., Guerraoui, R. and Kermarrec, A.: The
many faces of publish/subscribe, J. ACM Computing Surveys (CSUR),
Vol.35, No.2, pp.114–131, ACM (2003).

[9] MQTT Version 3.1.1, https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/
mqtt-v3.1.1.pdf

[10] Advanced Message Queuing Protocol, http://www.amqp.org
[11] Banno, R., Takeuchi, S., Takemoto, M., Kawano, T., Kambayashi,

T. and Matsuo, M.: Designing overlay networks for handling exhaust
data in a distributed topic-based Pub/Sub architecture, J. Inf. Process.,
Vol.23, No.2, pp.105–116, IPSJ (2015).

[12] Teranishi, Y., Banno, R. and Akiyama., T.: Scalable and locality-
aware distributed topic-based pub/sub messaging for IoT, Proc. IEEE
GLOBECOM 2015 (2015).

[13] Verbelen, V., Simoens, P., Turck, F.D. and Dhoedt, B.: Cloudlets:
bringing the cloud to the mobile user, Proc. 3rd ACM Workshop on
Mobile Cloud Computing and Services, pp.29–36 (2012).

[14] Dan, A., Shahabuddin, P., Sitaram, D. and Towsley, D.: Channel allo-
cation under batching and VCR control in video-on-demand systems,
J. Parallel and Distributed Computing, Vol.30, No.2, pp.168–179, El-
sevier (1995).

[15] Golubchik, L., Lui, J. and Muntz, R.: Reducing I/O Demand in Video-
on-Demand Storage senders, Vol.23, No.1, Ottawa, Ontario, Canada,
pp.25–36, ACM (1995).

[16] Aggarwal, C.C. et al.: On optimal piggyback merging policies for
Video-on-Demand systems, Proc. ACM Measurement and Modeling

of Computer Systems, pp.200–209 (1996).
[17] Golubchik, L., Lui, J.C. and Muntz, R.R.: On optimal batching poli-

cies for video-on-demand storage servers, Journal of Multimedia Sys-
tems, pp.140–155 (1996).

[18] Aggarwal, C.C., Wolf, J.J. and Yu, P.S.: Adaptive piggybacking: A
novel technique for data sharing in video-on-demand storage servers,
Proc. 3rd IEEE Intl. Conf. Multimedia Computing and Systems,
pp.253–258 (1996).

[19] Carter, S.W. and Long, D.D.: Improving Video-onDemand sender Ef-
ficiency Through Stream Tapping, Proc. 6th ACM Intl. Conf. Com-
puter Communications and Networks, pp.200–207, IEEE (1997).

[20] Hua, K.A., Cai, Y. and Sheu, S.: Patching: A multicast technique for
true video-on-demand services, Proc. 6th ACM Intl. Conf. Multimedia,
Bristol, United Kingdom, pp.191–200, ACM (1998).

[21] Eager, D.L. and Vernon, M.K.: Dynamic Skyscraper Broadcasts for
Video-on-Demand, Intl. Workshop on Multimedia Information Sys-
tems, pp.18–32 (1998).

[22] Lau, S.W. et al.: Merging video streams in a multimedia storage
server: complexity and heuristics, ACM Multimedia Systems Journal,
Vol.6, No.1, pp.29–42 (1998).

[23] Lau, S.W. et al.: Improving bandwidth efficiency of video-on-demand
servers, Journal of Computer Networks, Vol.31, No.1, pp.111–123,
Elsevier (1999).

[24] Coffman, E.G., Jelenkovic, Jr., P. and Momcilovic, P.: Provably Effi-
cient Stream Merging, Proc. Web Caching Workshop, pp.63–74, Cite-
Seer (2001).

[25] Bar-Noy, A., Goshi, J., Ladner, R.E. and Tam, K.: Comparison of
stream merging algorithms for media-on-demand, Multimedia Sys-
tems, pp.411–423, IEEE (2004).

[26] Teranishi, Y., Win, E.K, Yoshihisa, T. and Shimojo, S.: A Sensor Data
Stream Recovery Scheme for Event-Driven IoT Applications, Proc.
IEEE GLOBECOM 2017 (2017).

Ei Khaing Win received her B.C.Sc. de-
gree from University of Computer Studies
(Mandalay), Myanmar, in 2004 and her
M.C.Sc. degree from Computer Univer-
sity (Mandalay), Myanmar, in 2010, re-
spectively. From 2007 to 2009, she was
appointed as a demonstrator of Computer
University (Hinthada), Myanmar. From

2009 to 2015, she became a tutor of University of Technology
(Yatanarpon Cyber City), Myanmar. Since October 2015, she has
been an assistant lecturer of University of Technology (Yatanar-
pon Cyber City), Myanmar. Her research interests include secu-
rity and stream data processing. She is a member of IPSJ.

Tomoki Yoshihisa received his Bache-
lor’s, Master’s, and Doctor’s degrees from
Osaka University, Osaka, Japan, in 2002,
2003, 2005, respectively. Since 2005 to
2007, he was a research associate at Kyoto
University. In January 2008, he joined the
Cybermedia Center, Osaka University as
an assistant professor and in March 2009,

he became an associate professor. From April 2008 to August
2008, he was a visiting researcher at University of California,
Irvine. His research interests include video-on-demand, broad-
casting systems, and webcasts. He is a member of IPSJ, IEICE,
and IEEE.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Yoshimasa Ishi received his B.E. de-
gree from Kyoto Institute of Technology,
Japan, in 2004 and his M.I. degree from
Osaka University, Japan, in 2006, respec-
tively. From 2006 to 2008, and from 2012
to 2015, he was a specially appointed
researcher of Cybermedia Center, Osaka
University. From 2008 to 2012, he was a

specially appointed researcher of Graduate School of Informa-
tion Science and Technology, Osaka University. Since January
2017, he has been a specially appointed researcher of Institute
for Datability Science, Osaka University. His research interests
include technologies for distributed network systems and its de-
velopment. He is a member of IPSJ.

Tomoya Kawakami received his B.E.
degree from Kinki University in 2005 and
his M.I. and Ph.D. degrees from Osaka
University in 2007 and 2013, respectively.
From 2007 to March 2013 and from July
2014 to March 2015, he was a specially
appointed researcher at Osaka University.
From April 2013 to June 2014, he was a

Ph.D. researcher at Kobe University. Since April 2015, he has
been an assistant professor at Nara Institute of Science and Tech-
nology. His research interests include distributed computing,
rule-based systems, and stream data processing. He is a mem-
ber of IPSJ and IEEE.

Yuuichi Teranishi received his M.E. and
Ph.D. degrees from Osaka University,
Japan, in 1995 and 2004, respectively.
From 1995 to 2004, he was engaged
Nippon Telegraph and Telephone Corpo-
ration (NTT). From 2005 to 2007, he was
a Lecturer of Cybermedia Center, Osaka
University. From 2007 to 2011, he was an

associate professor of Graduate School of Information Science
and Technology, Osaka University. Since August 2011, He has
been a research manager and project manager of National Insti-
tute of Information and Communications Technology (NICT). He
received IPSJ Best Paper Award in 2011. His research interests
include technologies for distributed network systems and appli-
cations. He is a member of IPSJ and IEEE.

Shinji Shimojo received his M.E. and
Ph.D. degrees from Osaka University in
1983 and 1986, respectively. He was an
assistant professor with the Department
of Information and Computer Sciences,
Faculty of Engineering Science at Osaka
University from 1986, and an associate
professor with Computation Center from

1991 to 1998. During this period, he also worked for a year as a
visiting researcher at the University of California, Irvine. He has
been a professor with the Cybermedia Center (then the Compu-
tation Center) at Osaka University since 1998, and from 2005 to
2008, and since 2016, he had/has been the director of the Center.
He is an executive researcher at National Institute of Informa-
tion and Communications Technology and a director of Network
Testbed Research and Development Promotion Center. His cur-
rent research work is focusing on a wide variety of multimedia
applications, peer-to-peer communication networks, ubiquitous
network systems, and Grid technologies. He was awarded the
Osaka Science Prize in 2005. He is a member of IEEE, and IE-
ICE and IPSJ fellow.

c© 2018 Information Processing Society of Japan

