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Abstract:
In the K computer, the job manager and peripheral tools collect various metrics and store them into databases. A part of
the metrics is directly provided to users by the job manager. Also, some part of the metrics is summarized and reported
by administrators. However, most of the data are not fully exploited for analysis to help inform our operations because
the amount of data stored in databases is growing every moment and becoming huge size that is difficult to handle
them. In this study, to get the picture of workloads behavior regarding arithmetic, memory access, and I/O intensive,
we attempt to classify the workloads based on modern statistics. At first, before classification of the workloads, we
analyze metrics behavior as a preliminary study by PCA and select features to be used in classification. After that, we
partition the workloads into several groups by k-means and DBSCAN clustering methods with 10,000 sampling work-
load records extracted from nearly one million records in the database. Based on the results, we obtain a few groups
that require a diagnosis of the performance improvement. One of the group consists of 2,142 and 845 workloads clas-
sified by k-means and DBSCAN, respectively. Furthermore, we evaluate the validity of the classification results by
normalized mutual information score. In this evaluation, based on our practice, we assume that the discipline fields are
related to application performance and use the information of disciplinary field, group-id, and user-id as a label. The
result shows that between these labels and application performance are less relevant.

Keywords: workload classification, unsupervised classification, K-computer, performance analysis, k-means, DB-
SCAN

1. Introduction
As part of the operations of our supercomputing center, our

division currently addresses a usage survey of our facility that
includes understanding workload characteristics with statistical
analysis and finding issues from a massive number of workloads
in the system[1], [2]. We expect that the study helps not only
demand analysis of the procurement process but also screening
of applications underutilizing computing resources, detecting an
anomaly workload, and choosing benchmark programs, and so
on. The organized information based on usage statistics is ex-
pected to provide insights on how to improve our services.

In the K computer (hereinafter referred to as K/K-computer)
[3], [4], the job manager collects various usage metrics (e.g., job
name, number of nodes, elapsed time, maximum memory usage,
I/O usage, number of staging files, staging file size, and raw data
of hardware counters) for each job, which constitutes a workload.
In operation, these metrics are automatically collected and stored
in databases. A part of the metrics is directly provided to users
by the job manager after completion of each job. Also, some part
of the metrics is summarized and reported by administrators us-
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ing kind of a monthly report. However, most of the data are not
fully exploited for analysis to help inform our operations because
the amount of data stored in databases is growing every moment
and becoming huge size that is difficult to handle them. At this
moment, we struggle with this kind of engineering to exploit sig-
nificant information from the massive data.

Recently, in order to obtain more meaningful information
about workload performance from huge system logs, machine
learning or some statistical techniques are attracted [5], [6], [7],
[8], [9], [10], [11]. One of the statistical techniques, clustering is
a fundamental multivariate analysis technique to divide the entire
data set into small groups and easily understand behavior group
by group without training data set. This is an appropriate method
for systematically classifying unlabeled workloads in this case.

Before classifying the real workloads executed on K, as prepro-
cessing to sort out the metrics, we attempt to study metric behav-
ior by principal component analysis and select features from the
metrics. Also, we make a small data set extracted from the origi-
nal data by random sampling to reduce memory usage in classifi-
cation processes. After that, we attempt to classify the data set by
two kinds of clustering methods: k−means and DBSCAN. Based
on the classification results, we analyze the workloads character-
istics of each group regarding performance (e.g., FLOPS, mem-
ory throughput, and I/O intensive) and perform screening of un-
derutilizing application that has room for performance improve-
ment. Finally, we evaluate the validity of the classification results
by normalized mutual information score.
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All the analyses were mainly performed by SciPy, scikit-learn,
and pandas in Python.

In the rest of the paper, we describe an overview of the job
metrics and workloads of the K computer in Chapter 2. We then
describe the metrics behavior and preprocessing as a preliminary
in Chapter 3. In Chapter 4, we report the experiment results by
k-means and DBSCAN. In Chapter 5, we evaluate the validity
of the classification. Two-column size figures are added in the
Appendix.

2. K-computer
K-computer is the first 10-petaflops supercomputer developed

by RIKEN and Fujitsu under the Japanese national project. The
system has 82,944 compute nodes connected by Tofu high-speed
interconnects. Each compute node has a SPARC-V9 based cus-
tomized chip called SPARC64VIIIfx [12] and is equipped with
16 GB memory for each compute node. Furthermore, a 30 PB
global storage and an 11 PB local storage are installed and are
transparently accessed by compute nodes through I/O nodes.

2.1 Hardware Counters
The SPARC64VIIIfx chip has built-in hardware counters to

store the counts of events (e.g., the number of cycles, floating
instructions, load/store instructions, cache misses, and bus trans-
actions in terms of memory and I/O read/write accesses). To pre-
cisely measure application performance with a profiler, 56-type
counters are to be unlocked to users and extremely low overhead
profiling is to be achieved compared with ordinary sampling-
based profiling. However, the number of counters in a single ex-
ecution of a user program is limited by the mechanism and the
user program cannot simultaneously use more than eight hard-
ware counters. Besides, users cannot change a set of hardware
counters during the execution. Therefore, in this study, we use
a single set of counters throughout the duration to consistently
compare the same metrics between all targeted workloads.

2.2 Job Record Extraction From the Database
For system efficiency, K-computer employs a job manager, pe-

ripheral system software, and tools, which are similar to most
supercomputers. The job manager controls submitted jobs as a
basic unit of workload and exclusively executes them on com-
pute nodes. At the same time, the job manager records the time
stamp, state, and various metrics of the workload in a database.

(a) (b)

Fig. 1 The number of workloads/jobs and node-time based on actual records
in each half-year period from 2015 to 2017.

Also, for usability enhancement, the job manager provides var-
ious job submitting methods (e.g., batch and interactive job types,

normal, bulk, and step job models) to users. Fig. 1 shows the
number of jobs and node-time in each half-year period from Apr.
2015 to Sep. 2017. As shown in Fig. 1 (a), at least, each period
has 130 thousand valid jobs except for invalid jobs including can-
celed jobs by users, statistically spoiled jobs with missing values,
abnormally terminated jobs and so on. These invalid jobs account
for up to 34% of the number of all jobs. On the other hand, these
jobs spent up to 7% of the node time of all job. This number is
sufficiently small, therefore, the invalid jobs are ignorable.

Furthermore, we extracted records of the batch job type with
the normal model from the database and use the extracted data
set in classification because this type of record is obviously dom-
inant and accounts for more than 90% of all the records on K,
as shown in Fig. 1 (b). Also, other types of records in the bulk,
step, and master-worker job models have a slightly cumbersome
structure because of the parent-child relationship. In addition, the
interactive job spends much time for an idle state because of wait-
ing for the key-in command by a user. (This “interactive” type
job provides a command prompt on a compute node. A user can
interactively enter commands to start the user’s program.) Clas-
sifying workloads based on their performance records may make
them noise information. Finally, we use the valid records from
the database, except for the above conditions.

3. Preliminary
3.1 Job Metrics and Preprocessing

The job manager and peripheral tools collect more than 120
metrics for each job and store them into databases. Through
the database, we can refer to eight hardware counters (While
“max cycle counts” is a cycle counts in a thread, “cycle counts”
is whole of cycle counts in all threads. One metric constitutes
the other metric. Thus we do not include the eight counters.):
“cpu mem read ratio”, “cpu mem write count ratio”, “float-
ing inst ratio”, “fma inst ratio”, “simd floating inst ratio”,
“simd fma inst ratio”, “sleep cycle ratio”, and “cycle count.”
Most of the metrics including the hardware counters are integer-
type variables. However, part of the metrics (e.g., cycle counts
and sleep cycle) easily become a large number represented by
a 128-bit integer. Also, their counts depend on the duration of
a workload. To equally compare metrics between workloads
given three performance types: arithmetic, memory access, and
I/O intensive workload. In the viewpoint of the single-node
performance, they do not depend on the number of nodes.
Therefore, we normalized the eight hardware counters by using
“cycle counts.”

Also, before the classification of the workloads, to easily han-
dle them, we eliminated the categorical metrics (e.g., user-id,
group-id) and time stamp from the original data set and then ob-
tained 30 metrics as shown in Table 1. One of the metrics, “cy-
cle counts” is used for the normalization of the hardware coun-
ters, but it is omitted from the table.

In addition, we use the well-recognized fact that a classification
process sufficiently works with lower accuracy than the accuracy
of the actual measurement. Therefore, we treated all the metrics
as a 32-bit floating-point number.

In this study, to classify the workloads, we use only the metrics
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Table 1 Job Metrics
metric name description
alloc core total num of cores actually allocated to compute nodes
alloc node num num of nodes actually allocated to compute nodes
cpu mem read count ratio cpu memory read counts per cycle counts
cpu mem write count ratio cpu memory write counts per cycle counts
elapsed time elapsed time in a job
file io size file I/O size
floating inst ratio floating inst. counts per cycle counts
flops num of floating-point op. per elapsed time (FLOPS)
fma inst ratio FMA inst. counts per cycle counts
io transfer size I/O transfer size
max cycle counts max cycle counts in all threads
max use mem max memory usage in a compute node
mem th memory throughput
op intensity arithmetic intensity (=flops/mem th)
read system call num of read system call
req core num num of cores required by a job script
req node num num of nodes required by a job script
simd floating inst ratio SIMD-floating inst. counts per cycle counts
simd fma inst ratio SIMD-FMA inst. counts per cycle counts
sleep cycle ratio sleep cycle counts per cycle counts
stgin ave filesize average file size in stging-in
stgin file num num of files in stging-in
stgin transfer size total file size in stging-in
stgout ave filesize average file size in stging-out
stgout file num num of files in stging-out
stgout transfer size total file size in stging-out
use core total num of cores actually used for a workload
use node num num of nodes actually used for a workload
use nodetime product of use node num and elapsed time
write system call num of write system call

as shown in the table.

3.2 Log-transformation
The metrics have substantially left-skewed distribution. To be

spread between records more uniformly, we apply the logarith-
mic transformation defined by eqn. (1), where v = u + 1(u ≥ 0)
and u is a actual measurement value of a metric.

w = ln (v) (1)

After then, we apply standardization to the log-transformed
value as eqn. (2), where wmean is the mean value and wsd is the
standard deviation for w.

wstd =
(w − wmean)
wsd

(2)

Finally, after the rescaling process, we obtained preprocessed
data sets.

This transformation has pros and cons. Most of the correlations
between the metrics tend to be positive because the magnitude of
the metric value except for normalized value (e.g., ratio) depends
on duration (e.g., elapsed time). While this transformation im-
proves an appearance of the shape of distribution on subspace, it
may needlessly emphasize the correlation between the metrics.

3.3 Feature Selection with PCA
Some metrics (e.g., req node num, alloc node num, and

use node num) are experimentally expected to be similar values.
Also, part of the metrics is calculated from several other met-
rics. For instance, “flops” is derived from a few hardware coun-
ters (e.g., floating-point instruction counts, SIMD/FMA/SIMD-
FMA floating-point instruction counts.) Therefore, FLOPS and
the hardware counters to be used for the arithmetic are correlated
each other. To determine the number of metrics to be used for
classification, we evaluate the contribution rate by principal com-
ponent analysis (PCA) as feature selection.

As shown in Fig. 2, the cumulative contribution rate with 25

metrics is not much different from the rate with all metrics. On
the other hand, the rate with six metrics exceeded 80% of all the
metrics contribution. In other words, only six metrics can reserve
most of the original information in multidimensional space.

Generally, 30 metrics is not a large number as compared to
other data mining projects based on natural language processing
with more than ten-thousand features. However, we determined
to use 20 metrics based on the result because the reduction of
the features is directly linked to memory usage and computation
time.

Fig. 2 Cumulative PCA contribution rate. The horizontal axis is the number
of PCA components. The vertical axis is the contribution rate.

Fig. 3 shows the loading factors between the metrics and PCA
components with heatmap. This result reveals the correlations of
the metrics for each PCA component. Obviously, the metrics re-
lated to the number of nodes or cores are strongly same behavior.
Also, “file io size” and “io transfer size” is very similar.

20

Fig. 3 PCA loading factors. The rows mean the metrics. The columns mean
the PCA components. The heat map with dendrogram uses the stan-
dardized values for each metrics. The dendrogram was calculated
by hierarchical clustering with the Euclidean distance and the Ward
variance minimization algorithm as a linkage method. Each arrow
means feature selection based on the result of the dendrogram.

To find out metrics with similar behavior, we calculated hier-
archical clustering and show the dendrogram on the top of the
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figure. Based on the result, we obtained an optimal set of features
to classify.

3.4 Random Sampling
In this study, we used the data set collected from five half-year

periods, Spr. 1, 2015 to Sep. 30, 2017. The number of targeted
workloads is 911,544. However, a few clustering methods in-
cluding DBSCAN require much computation time and memory
consumption. As an early study, we do not need classification
using all workloads. To reduce the calculation time and memory
usage, we use random sampling and make new data set consists of
10,000 workloads from the original record. We confirmed that the
new data set is statistically same as the original using two-sided
Kolmogorov–Smirnov test with 0.05 as a significance level.

4. Experiments
In this chapter, we classify the actual workloads by k-means

and DBSCAN[13] (Density-based spatial clustering of applica-
tions with noise.) Both are the common and robust clustering
methods to divide data into several small groups without training
data set.

4.1 k-means
k-means is a partitioning clustering method and requires two

kinds of parameters: vector of initial centroids and number of
clusters. Determining the initial centroids are an essential fac-
tor to obtain a preferable classification. The scikit-learn provides
k-means++ implementation that automatically performs prepro-
cessing to choose optimal initial centroids. During several trials
of the classification in this study, we confirmed that these prepro-
cessed centroids are very stable even though the algorithm uses
random numbers. Therefore, hereafter, we can focus on deter-
mining the number of clusters.

Fig. 4 Residual sum of squares in the k-means classification.

We classified with the number of clusters k from 2 to 50. Fig. 4
shows the residual sum of squares. Based on the result, we can
find out some steep points with the elbow method and chose k=7,
16, and 33.

Fig. A·1 shows the result of the clustering by k-means with
k=7, 16, and 33, respectively. As well-known characteristics of
k-means, it tends to make similar size groups relative to other
clustering methods. These results represent the characteristics.

Fig. 5 The metrics vs. clusters in k-means classification with #cluster=7.
The rows of the heat map are cluster number. The columns are the
metrics. A heat map with dendrogram uses the standardized values
for each metrics. The white color represents the mean value in a col-
umn. The red and blue color describe the values higher and lower
than the mean value, respectively.

To obtain standardized values based on the metrics and clus-
ters, at first, we calculated an average of the metric values for all
data of each column. In addition, we calculated an average of the
metric for each column in a cluster. And then, using the average
values of all data set and a classified data set for each column,
we performed standardization for each column, cluster by clus-
ter. Finally, we obtained the heat map with the number of clusters
k = 7 as shown in Fig. 5.

Hereafter, with the figure, we see the characteristics based on
the metrics, cluster by cluster. At first, regarding the staging
metrics, cluster-0 has values lower than the mean of all clus-
ters. On the other hand, I/O metrics (“io transfer size” and
“read system call”) slightly have high value, while arithmetic
and memory access metrics (“flops” and “mem th”) have low
values. Interpreting the group is difficult. At this moment, we
estimate the cluster is a kind of weak I/O intensive workloads.

Cluster-1 has the highest values in arithmetic metrics (“float-
ing inst ratio” and “fma inst ratio.”) In addition to those, other
arithmetic metrics (“flops” and “op intensity”) have higher val-
ues than the mean. We think that these classified workloads are
a kind of arithmetic intensive. But the number of workloads is
the smallest. Therefore, we can determine that the workloads are
low-priority to check than others.

In cluster-2, all the metrics have values lower than the mean.
Also, these workloads used a small number of nodes in less time.
In other words, the workloads are ignorable.

Cluster-3 has high values on the whole and seems the most re-
source consuming cluster. Also, the cluster has a characteristic of
I/O intensive with a large number of nodes. Also, the cluster has
the highest value in the memory throughput metric (“mem th”)
and high values in staging metrics. We are impressed that the
cluster exploits more compute resources than others.
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Cluster-4 has the highest arithmetic and high memory access
metrics values (“flops”, “mem th”, and “op intensity.”) On the
other hand, I/O and staging metrics have lower values than the
mean. Also, the workloads have higher values regarding a mag-
nitude of workload (“use node num” and “elapased time”) than
the mean. The workloads have the prominent characteristics of
arithmetic intensive.

Cluster-5 is similar to cluster-2 except for staging metric
values. Also, the memory usage metric (“max use mem”) is
nearly equal to the mean. We think the workloads are low-
priority to check in more detail because the magnitude metrics
(“elapsed time” and “use node num”) are smaller than the mean.

In cluster-6, while the workloads have lower arithmetic and
memory access metrics (“flops” and “mem th,”) they have
higher values in the magnitude metrics (“use node num” and
“elapsed time.”) Also, the number of the workloads is the largest
through all clusters according Fig. A·1. Concerning the applica-
tion performance improvement, the workloads are the most im-
portant candidate to check in more detail.

Finally, regarding workloads performance, we think that the
characteristics of cluster-6 need to be examined in more detail be-
cause these workloads of the cluster used much node-time larger
than the mean and have lower values in terms of arithmetic and
memory access. In addition, they are approximately 2,000 in the
sampling data set. The sampling data set consists of 10 thousand
workloads records extracted from nearly million workloads, the
fact means that there are underutilizing 200-thousand workloads
in K. If this naive conclusion is true, the number of workloads in
the cluster cannot be ignored.

4.2 DBSCAN
DBSCAN is a density-based clustering method and requires

two parameters instead of the number of clusters k in k-means.
One is the maximum radius to search the neighborhood (here-
after referred to as eps), similar to cut-off distance in molecular
dynamics simulation. The other is a criterion (hereafter referred
to as minPts) to connect a targeted point (workload record) to a
cluster or drop the point as noise. If the number of points of work-
loads inside the radius exceeds the minPts, the point is connected
to a cluster. This is one of the characteristics of DBSCAN. If
the point eventually does not belong to any clusters, this method
treats the point as noise information. Therefore, determining the
eps and minPts are an essential factor to obtain an appropriate
classification.

Fig. 6 shows the number of clusters along with the parame-
ters: eps and minPts. While small eps generates a large number
of clusters (This parameter generates more than 80 clusters in
minPts=10 and eps=1.0.), Using large eps, DBSCAN does not
correctly work to classify the workloads because each point eas-
ily connects to one large cluster. This cluster is not different from
noise. Based on the result, we determined the appropriate param-
eter range: eps=1.0 to 2.0 and minPts=50 to 80.

Fig. A·2 shows the workloads classified by DBSCAN. Each
3 × 3 figure block along with the parameters (eps and minPts)
consists of a set of two figures: clustered and noise. We can see
the characteristics that too large eps incurs a single large clus-

Fig. 6 The number of clusters in the parameter-sweep experiments of DB-
SCAN with eps=1.0 to 2.5 and minPts=10 to 100.

ter as well as noise. Also, too large minPts prevent the growth of
clusters. Also, DBSCAN does not depend on assuming the hyper-
sphere for the shape of a cluster. We can see the shape of clusters
with vertically/horizontally long, that is different from the shape
by k-means.

Fig. A·3 shows the number of workloads for each cluster. Neg-
ative cluster number means noise. Based on the result, we think
that the data set includes so many noisy information to prevent
the growth of clusters. In other words, most of the workloads are
sparsely distributed over the subspace. The density is very low on
the whole.

Fig. 7 Heat map of the metrics vs. clusters in classificaiton by DBSCAN
with eps=1.5 and minPts=50.

As well as the evaluation with k-means, we obtained the met-
ric values cluster by cluster, as shown in Fig. 7. DBSCAN divides
the data set into 14 groups and noise. We omitted clusters with
a small number of workloads and eventually chose cluster#=0, 1,
3, 4, and 6. Other clusters are ignorable in terms of the number
of workloads.

Cluster-1 is the largest cluster except for noise and reaches
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2,800 workloads in the sampling data set. However, based on the
result, all the metric values are lower than the mean. In other
words, most of the workloads are lower performance than the
mean. We think that the workloads are ignorable.

In cluster-3, the staging metrics have lower values than the
mean. While the magnitude metric (“use node num”) is slightly
large, another magnitude metric (“elapsed time”) is smaller than
the mean. The memory throughput metric (“mem th”) is nearly
equal to the mean. We think that the workloads are the most im-
portant candidate to be checked in more detail. The number of
workloads in the cluster is 845.

Cluster-4 has lower values than the mean in the arithmetic and
memory access metrics (“flops” and “mem th.”) On the other
hand, the I/O metric (“io transfer size”) is larger than the mean.
Also, the memory usage metric (“max use mem”) has high value.
We think that the workloads are a kind of I/O intensive.

Cluster-6 has the highest values in the arithmetic and memory
access metric (“flops” and high “mem th.”) The workloads are
typical computation intensive.

Through the experiments, we confirmed that the scikit-learn’s
implementation works well. However, it consumes a lot of mem-
ory usage than other implementation (e.g., pyclustering). This is
an issue depending on the implementation of DBSCAN. If we at-
tempt to classify a million workloads, a kind of high-performance
technique will be required in future of our study.

5. Evaluation and Discussion
In the previous chapter, we confirmed that both clustering

methods divided into small groups and found that a few clusters
become candidates for diagnosis of the performance improve-
ment.

On the other hand, we need to confirm that the experiments
correctly perform to partition the workloads into small groups,
while we do not have any kinds of criteria (e.g., training data set)
to know the validity of the classification. Therefore, we used an
assumption based on our heuristics in this evaluation.

In our operations, we often assume the relationship or correla-
tion between application performance and disciplinary field (e.g.,
biological science, material science, environmental science, engi-
neering and fundamental physics) on statistical average because
each field frequently uses a similar model, scheme, and library.
Based on our practice, we exploited the disciplinary field infor-
mation as a workload’s label. In addition to that, we used group-
id and user-id as a label as well in order to confirm the validity
under the assumption. These labels are used for the evaluation
process, not for the classification. The number of “fields” is six.
Also. The number of group-ids and user-ids are 282 and 882 in
the data set, respectively. For group-id and user-id, we confirmed
that there are no missing values in the data set. On the other
hand, part of workloads does not have the “field” label because
the “field” label is assigned by manual based on the usage reports.
Thus, we assigned “misc” label to those workloads.

Furthermore, to quantitatively compare clustered workloads
with assigned labels, we used normalized mutual information
(NMI) [14] as defined by eqn.6, where N is the number of work-
loads, K is the number of clusters, and J is the number of labels.

Eqn.3 and Eqn.4 express entropy of the set of clusters and labels,
where ωk is a set of workloads in k-th cluster, c j is a set of work-
loads labeled as j. Eqn.5 expresses mutual information, where
ωk ∩ c j is a set of workloads with j-label in k-th cluster. NMI is a
common criterion based on entropy expression in information re-
trieval. The range of value is from 0.0 to 1.0. If all workloads are
completely divided into different clusters along with labels under
the condition that the number of clusters equals the number of la-
bels, NMI score is 1.0. In the condition of our study, the number
of clusters is not equal to the number of labels. However, if well-
separated clusters along with labels, the entropy decreases; NMI
increases.

H(Ω) = −
K∑
k

|ωk |
N

log
|ωk |
N

(3)

H(C) = −
J∑
j

|c j|
N

log
|c j|
N

(4)

I(Ω; C) =
K∑
k

J∑
j

|ωk ∩ c j|
N

log
N |ωk ∩ c j|
|ωk ||c j|

(5)

NMI(Ω; C) =
I(Ω; C)

[H(Ω) + H(C)]/2
(6)

Table 2, 3, and 4 show NMI scores under the conditions that
the number of clusters is 9, 14, and 45 based on the result with
DBSCAN as mentioned in the previous chapter.

NMI is less than 0.5 in most of the cases. Also, while NMI
scores in DBSCAN are smaller than k-means for the “field” la-
bel, both values in k-means and DBSCAN are very low. We think
that the “field” label does not represent the behavior of major ap-
plications due to a lot of noisy workloads, or this criterion is not
appropriate in terms of diagnosis of the application performance.

On the other hand, for the group-id and user-id, the NMI scores
improve. However, we think that the number of labels regarding
group-id and user-id is too large to classify. In other words, too
many labels cause fitting into too many small clusters.

Table 2 NMI (#cluster=9)

label k-means DBSCAN
field 0.16 0.24
group-id 0.31 0.27
user-id 0.36 0.28

Table 3 NMI (#cluster=14)

label k-means DBSCAN
field 0.18 0.26
group-id 0.35 0.32
user-id 0.42 0.34

Table 4 NMI (#cluster=45)

label k-means DBSCAN
field 0.23 0.31
group-id 0.48 0.43
user-id 0.55 0.46

Based on the results, finding some criteria to evaluate the valid-
ity of the classification result is one of importance in our research.
We need to solve the problem in future if the information is ex-
ploited for some tasks in our operations.
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6. Summary
In this paper, we introduced and discussed our current research

regarding data mining with the metrics of the massive workloads
on K.

The job manager and peripheral tools collect various metrics
and store them into databases. A part of the metrics is directly
provided to users by the job manager. Also, some part of the met-
rics is summarized and reported by administrators using kind of
an annual report. However, most of the data are not fully ex-
ploited for analysis to help inform our operations because the
amount of data stored in databases is growing every moment and
becoming huge size that is difficult to handle them.

As an early study, to get the picture of workloads behavior
based on modern statistics, we classified the workloads and an-
alyzed their performance characteristics group by group. Based
on the classification, with 10,000 sampling records extracted from
the nearly million records in the original database, we found the
candidates to be checked in more detail. Each cluster consists of
2,142 and 845 workloads classified by k-means and DBSCAN,
respectively.

Furthermore, we evaluated the validity of the classification re-
sults by normalized mutual information score. In this evaluation,
based on our practice, we assumed that the disciplinary fields for
users group are related to application performance. Under the as-
sumption, we used the field, group-id, and user-id as a label. The
result showed that between these labels and application perfor-
mance is less relevant. We need to solve the problem in future if
the information is exploited for some tasks in our operations.
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Appendix

A.1 k-means
Fig. A·1 is added in the appendix.

A.2 DBSCAN
Fig. A·2 and Fig. A·3 are added in the appendix.
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Fig. A·1 (a-*) The workloads classified by k-means and plotted on PCA subspace. The assigned colors
(#color=20) are periodically used in a figure. (b-*) Centroids plotted on PCA subspace. (c-*)
The number of workloads in each cluster.
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Fig. A·2 The workloads classified by DBSCAN and plotted on PCA subspace. Each set of parameters
consists of clustered (left) and noise (right).
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Fig. A·3 The number of workloads classified by DBSCAN with eps=1.0, 1.5, and 2.0 and minPts=10,
50, and 100. Cluster# = −1 is noise.
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