

4. ディジタルゲリマンダへの 工学的アプローチ ディジタルにはディジタルを

格(東京工芸大学)

工学的視点の必要性

本誌の読者はディジタルゲリマンダの工学的な側 面にも関心を持つだろう. しかしディジタルゲリマ ンダを専門的に研究しようとするわけではないから、 専門的理論よりは幅広い関連分野を含む解説を求め るだろう. 筆者は、社会制度と情報技術の関係をテー マとする電子化知的財産社会基盤研究会(EIP 研究会) の主査を務めており現在当該研究会では知財に限ら ず法制度、社会制度と情報技術の関係に関し幅広く 論じている。その立場からディジタルゲリマンダを 幅広い関連分野と関連づけて解説することを試みる.

モデル化

工学的に扱うためには、まず問題の工学的モデル が必要だ、ここではまず簡単なモデル化を試みる.

地理的ゲリマンダのモデル

まず地理的ゲリマンダを図-1で説明する. この 例は定員2の選挙区における選挙区分けの操作を行 うことで当選者数を増やす状況を示している. (a) では□派と×派がそれぞれ1人ずつ当選する. こ の場合×が勝利したエリアでは×の支持者にかなり 余裕がある. 区割を調整し、この×の支持者をもう 1つの選挙区に多く配置されるようにすれば、(b) のようにもう1つの選挙区でも×派が勝利する.

ずつ候補をたてて争っているとすれば、その状況は 以下のように行列を使って簡単に表現できる.

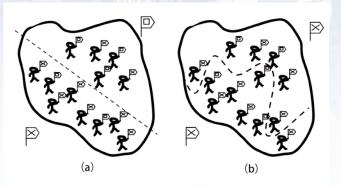


図 -1 地理的ゲリマンダにおける区割操作. □派と×派の選挙戦において、(a) の区割では双方が1つずつの 選挙区で勝利するが(b)では2つの選挙区で×派が勝利するこ とができる.

有権者,選挙区,候補をそれぞれ, K人の有権者、 $1 \le k \le K$ B個の選挙区、 $1 \le b \le B$ ×派 =1、 \square 派 =2 として C=2種類の政党を $1 \le c \le 2$ で、表す.

有権者はいずれか1つの選挙区に属するので、有権 者 k が選挙区 b に属する場合を $s_{kb}=1$, そうでない 場合を s_{kb} =0とすると、選挙区割はK行B列の行 列で表すことができる.

選挙区割: $S = (s_{kh})$

有権者 k が政党 c を支持してる場合を $v_{ck}=1$, そう でない場合 $v_{ck}=0$ とすると、有権者の政党支持傾 向も2行 K列の行列で表すことができる.

政党支持傾向: $V=(v_{ck})$

各選挙区の得票数 Wは以下の簡単な式で表すこと

ができる.

得票数: $W=(w_{cb})=VS$

ここで w_{cb} は候補cの選挙区bにおける得票数になる.

各 \square 派 (c=1) の得票数が×派 (c=2) の得票数 より大きければ当選となるから、全選挙区におけ る□派の当選者数は以下の式で表現できる. Н₀は Heaviside の階段関数で $W_{1,b}>W_{2,b}$ の場合に 1, そ うでない場合に0となり、その合計は□派の当選者 数となる (同点の場合当選ではないとする).

□派の当選者数:N

$$N = \sum_{b=1}^{B} H_o (W_{1,b} - W_{2,b})$$

地理的ゲリマンダは、このように比較的簡単にモデ ル化できる. 工学的にはこのようにして定式化された モデルの「最適解」を求めたり、操作を困難にしたり することが研究テーマとなるだろう.

ディジタルゲリマンダのモデル

ディジタルゲリゲリマンダについては「1. ディジ タルゲリマンダと法規制の可能性|(湯淺)におい て、①コンピュータ技術を使って恣意的な選挙区割 (地理的ゲリマンダの高度化)、②統計的データ分析 (ビッグデータ分析) を用いて選挙区割以外の方法 により投票結果にバイアスをかけること、③ SNS などでメッセージの伝達にバイアスをかけることに よって誘導を行うこと、という3つの類型が示さ

れている. ①は、コンピュータ技術を使いはするが、 モデルとしては地理的ゲリマンダと同一でよい. ②, ③の地理的ゲリマンダとの関係は後で SNS による 選挙操作として述べるが、②は「投票効果のない選 挙区」を含む地理的ゲリマンダとしてモデル化可能 であり、③の SNS の誘導の作用は地理的ゲリマン ダのモデルとの関係は薄く、後述の Echo Chamber の研究との関連が高いと思われる.

先行研究, 関連研究の状況

ディジタルゲリマンダに関する文献はどの程度 あるだろう. IEEE Xplore, ACM Digital Library, Google Scholar でのヒット件数を表-1 に、日本の 文献のヒット件数を表-2に示す。キーワード検索 であり一部無関係の文献も含まれる。選挙制度の違 いも反映し日本における文献数は少ない。英語では digital gerrymandering, gerrymandering または voter partition と表記される場合もある. 和文ではディジ タル・ゲリマンダーと表記される場合もあるが本特 集ではディジタルゲリマンダと統一した.

SNS による選挙操作

まず、はたして SNS による選挙操作はディジタルゲ リマンダと呼ぶべきだろうかという疑問から考えよう.

もしも、SNS に介入できるだれかが特定の候補 者に直接的に有利・不利になる介入をすれば、たと えば特定の候補者を支持するメッセージのみを伝達 したり妨害したりすれば、それは地理的ゲリマンダ の一種ではなくむしろ SNS 上の単純な選挙操作と

キーワード	IEEE Xplore ヒット件数	ACMD ヒット件数	Google Scholar ヒット件数	Top10 の引用元件数
gerrymandering	3	2	18,400 件	125 ~ 681
voter partition	12	5	17,300 件	6~63
digital gerrymander	2	0	2,499 件	1 ~ 94

表 - 1 IEEE Xplore, ACM Digital Library, Google Scholar における digital gerrymandering 関連キーワードを含む文献のヒット件数 (2017/10/23)

キーワード	J-stage ヒット件数	Google ヒット件数
ゲリマンダー	16	8,620
選挙区割	20	1,230,000
ディジタルゲリマンダー	1	1,810

表 -2 J-stage, Google による日本におけるディジタルゲリマンダ関連文献ヒット件数(2017/10/23)

捉えるべきだろう.

そうではなく、ディジタルゲリマンダの類型②に あたる場合, すなわち有権者がどの候補を支持する かという選択には影響を与えずに、投票を行うか行 わないかという決定のみに関与する場合、これを候 補者の応援,妨害と単純に捉えることはできない. したがって選挙結果への影響が不透明であり法的な 規制もむずかしい.

後者の方法による選挙介入の効果はどうモデル化 できるだろうか、選挙区割とは少し異なって見える が、しかし、選挙区 b_1 の有権者kを投票させない ことの効果は、有権者 k を当選結果に寄与しない別 の選挙区 b_2 に割り当てることの効果と同等である. つまり①の地理的ゲリマンダに「投票効果のない選 挙区」を拡張して、選挙区割を制御するのと同じ効 果を持つ. したがって SNS による後者の方法によ るこのような干渉の効果は地理的ゲリマンダと同じ モデルが適用可能だろう.

推薦システム

今日のネット販売では利用者が商品の推薦記事を 提供する推薦システム(recommender system)が必 須である. そのようなシステムにおいて, 推奨対象 者自らがバイアスのあるメッセージ(公平な評価よ り高い評価を自身に与えたり、他者に低い評価を与 えたりするメッセージ)を投稿することを防ぐ必要 がある. そうした投稿が増えると推薦システムへの 信頼が損なわれてしまう. 評価の信頼性を向上する には大きく「異常値」を検出し除外する方法と、評 価の「多様性」を高める手法がある.

アカウントで発信者が特定できれば大量投稿の検 出は容易だ、しかし実際には偽アカウントが利用され 得るので、アカウントによる発信者特定はできないと いう前提でこれらの手法が研究されている。たとえば Vargas 等による推奨記事の統計的特徴を利用して推奨 者の新規性、信頼性、多様性を評価する手法を示した 報告1) はこの分野では最も引用件数が多い研究報告 である。またこの手法は投稿者の多様性を担保するが、 同時に偏った投稿を大量に行うという意味で「異常|

な投稿者を自動的に排除する効果も期待できる.

ディジタルゲリマンダを意図して SNS に投稿を行 う場合、結果に影響を及ぼすためには意図的な投稿 を大量に投稿する必要があるだろう. 大量の異常な メッセージを検出、除去する技術はディジタルゲリ マンダの有効な抑制手段の1つになると考えられる.

異常値を除去することは選挙に保守的なバイアスを かけることにならないだろうか. 異常値を制限すべ きなのは投票へ行くようにという勧奨だけで、「候補 Aに投票してください」というメッセージは適法な選 挙活動でありまったく制限されない. ディジタルゲリ マンダの問題はステルス性(だれが何のためにやって いるかが見えないこと)と、費用や実施時期の監視が できないことである. 投票の勧奨に関する投稿であり, かつ異常な投稿のみを検出、抑制することは、選挙運 動に保守的なバイアスをかける恐れなくディジタルゲ リマンダを効果的に抑制する手段となりそうである.

Echo Chamber

Echo Chamber は特定の意見を支持する集団内でお互 いの間でのみコミュニケーションが行われることであ る. Echo Chamber とは音楽演奏などに心地のよい残響 を響かせるための部屋を意味する。2000年ごろからこ の言葉が使われ始めた. SNS のフィルター機能により 促進されるためフィルターバブルとも呼ばれる.

Colleoni らは 2009 年の 4.6 億件のツイートを分析し, 民主党支持者と共和党支持者が内輪のみでメッセージ 交換をしているかを確認した²⁾.民主党支持者は民主 党の支持者へのフォローが82%,共和党支持者へのフォ ローが 12% だったが、共和党支持者は民主党支持者の フォローが 76%、民主党支持者へのフォローが 23% で あり、この分析では極端な Echo chamber は発生してい ないことを示す結果となった.

一方笹原もツイートデータベースを分析した $^{3)}$ が、 この場合は同一集団内のつながりの強さが見いだされ、 笹原はツイートの連携の強いグループをソーシャルグ ラフ化した. またツイート数とユーザ数の関係を分析 し、グラフからは1%程度の少数のユーザが半分以上 のツイートを行っている状況が示唆された.

Echo Chamber が発生している場合、利用者は多数の 閉じたグループに分かれ、それらはごく一部の利用者 が大部分のメッセージを発信することで結合している. もし、投票行動を促すメッセージをあるグループで大 量にリツイートされるよう調整して発信すれば、グ ループ内で効率的に反復拡散し、グループ単位で投票 行動に影響を与えることが可能となる。こうして Echo Chamber は類型②のディジタルゲリマンダを効率的、 効果的に実行する手段となり得る.

このとき選ばれる Echo Chamber 自体は必ずし も特定の候補を支持している必要はない。 Echo Chamber の支持者が目標政党に対立候補の支持者 であっても利用できる. なぜなら、もしその Echo Chamber のメンバが当選させたい政党を支持する傾 向があれば「投票に行くように」、そしてその逆であ れば「投票に行かないように」誘導すればよい.

このように Echo Chamber はディジタルゲリマンダを 行うために容易かつ効果的な手段であり、その研究は ディジタルゲリマンダの利用や抑制に役立つと思われる.

選挙制度との関係

Erdélyi はさまざまな選挙制度と選挙操作につい て調べた. 特に選挙方法ごとに、選挙操作への頑 健性を細かく調査している. Erdélyi はマルチエー ジェント研究の立場から分析をしている. まずゲ リマンダの選挙制度の単純な関係として, ゲリマ ンダは当選に結び付かないいわゆる死に票を再配 分する操作であるから、大選挙区や比例代表では 抑制され、小選挙区で敏感であることは理解しや すい. しかし Erdélyi 等は詳細な理論的分析を展 開し、縮退投票(Fallback Voting)がゲリマンダ に対し強い耐性があることを示した ⁴⁾.

Erdélyi が例示するモデルは2段階投票で、ゲリ マンダの目的は有権者を2グループに分けたときに 意図的にそれぞれのグループが選ぶ候補を制御でき るかという問題である. Erdélyi は、そのような操作 が NP 困難 (NP hard) であることを「意図的な操 作が実際上は不可能である | ことから「頑健である | と定義して分析を行っている. 多くの選挙方式を比 較し、その中で Fallback Voting が区割操作に対し計 算量的に頑健(computationaly registant)であるこ とを示している.

ディジタルにはディジタルを

ディジタルゲリマンダによる選挙介入は可視性がない (だれが何を目標に行っているか、そもそもその影響を受 けているか否かが分かりにくい)ことが不安を誘う. ア シモフ (Isaac Asimov) の「ファウンデーション」シリー ズ⁵⁾ に登場する「心理歴史学」のように政治が何者かに 思いのままに操られているのでは、という不安である.

一連の関連研究を見る限り、技術的にはディジタル ゲリマンダを抑制する手段は多い. したがってステル ス性の解消は難しくても、ディジタルゲリマンダの影 響を最小化することは、おそらく可能と考えられる.

地理的ゲリマンダに関する研究成果は、選挙区割 の操作の影響の最小化につなげられる可能性がある が, 同時に選挙の公平性を確認したり, より公平な 選挙を実現したりする指針が得られるという面でも 有益な研究成果である.

今回文献を調べた範囲ではディジタルゲリマンダ を主に研究する研究者は世界的にもまだ多くない. 今後日本のディジタル社会基盤の発展のために欠か せない研究分野であり、本特集をきっかけにこの分 野に関心を持つ読者がいれば、筆者の喜びである.

- 1) Vargas, S. and Castells, P.: Rank and Relevance in Novelty and Diversity Metrics for Recommender Systems, ACM Proc. RecSys' 11(2011).
- 2) Colleoni, E., Rozza, A. and Arvidsson, A.: Echo Chamber or Public Sphere? Predicting Political Orientation and Measuring Political Homophily in Twitter Using Big Data, Journal of Communication, 2014 - Wiley Online Library (2014).
- 3) 笹原和俊:連想ネットワークによる集合注意の可視化、人工知 能学会論文誌, 論文 ID: B-MDF02 (2015).
- 4) Erdélyi, G., Piras, L. and Rothe, J.: The Complexity of Voter Partition in Bucklin and Fallback Voting: Solving Three Open Problemsm, Proc. AAMAS' 11, Vol.2, pp.837-844.
- 5) アイザック・アシモフ:ファウンデーション、ハヤカワ文庫 SF (1984).

(2017年9月1日受付)

金子 格(正会員) ■ Itaru-k@acm.org

早稲田大学(1980年),同大博士(情報科学2002年),日立製作所, アスキーを経て 2004 年より東京工芸大学.

———— 訂 正 ————

本誌 58 巻 12 号(2017 年 12 月号)の小特集「ディジタルゲリマンダとは何か」の一部を著者の申し出により訂正いたします.

P.1087 右段 30 行目

- (誤) 民主党支持者へのフォローが 23%
- (正) 共和党支持者へのフォローが 23%