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Abstract: Parsing expression grammars (PEGs) were formalized by Ford in 2004, and have several pragmatic opera-
tors (such as ordered choice and unlimited lookahead) for better expressing modern programming language syntax. In
addition, PEGs can be parsed in a linear time by using recursive-descent parsing and memoization. In this way, PEGs
have a lot of positive aspects. On the other hand, it is known that ordered choices defy intuition. They may cause bugs.
This is due to a priority of an ordered choice. To avoid this, unordered choices are required. In this paper, we define a
parsing expression grammar with unordered choices (PEGwUC), an extension of a PEG with unordered choices. By
the extension, it is expected that a PEGwUC includes both a PEG and a context-free grammar (CFG), and this allows
us to write a grammar more intuitively. Furthermore, we show an algorithm for parsing a PEGwUC. The algorithm
runs in a linear time when a PEGwUC does not include unordered choice and in a cubic time in worst-case running
time.
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1. Introduction

In 2004, a new formal grammar, called parsing expression

grammar (PEG), was introduced by Bryan Ford [7]. PEGs are
foundations for describing syntax and have several pragmatic op-
erators (such as ordered choice and unlimited lookahead) for bet-
ter expressing modern programming language syntax. In addi-
tion, PEGs look very similar to some of the context-free gram-

mar (CFG)-based grammar specifications, but differ significantly,
in that they have unlimited lookahead with syntactic predicates
and deterministic behaviors with greedy repetition and ordered
choice. Due to these extended operators, PEGs can recognize
highly nested languages, such as {an bn cn | n > 0}, which is not
possible in a CFG.

Behavior of a choice operator in a PEG is deterministic. That
is, the choice operator attempts to match in the order of the al-
ternates and finishes the matching immediately if the alternate
succeeds. For example, let / be a choice operator in a PEG. An
expression aa/a matches only aa for an input string aa since the
alternate aa succeeds.

The deterministic behavior of the choice operator has positive
aspects. One of the positive aspects is that the behavior does not
cause problems due to ambiguity of a choice operator. For exam-
ple, it does not yield the classic dangling else problem.

The deterministic behavior of the choice operator, however,
may cause a bug. This is because the choice operator defies intu-
ition [12]. A parsing expression a/aa is one of the examples. In a
regular expression, a | aa matches a and aa. However, in a PEG,
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the expression only matches a because the choice first attempts
a and then attempts aa if a fails. In addition, an expression that
includes a recursion is more complexity, for example, the expres-
sion A ← aAa/aa. A is a nonterminal and this is a placeholder
for patterns of terminals in common with CFGs. Let a10 be an
input string. Then, intuitively, we consider the expression con-
sumes a10. However, contrary to our intuition, the expression
consumes a4.

In this paper, we show an approach to avoid the bugs due to
the non-intuitive behaviors of ordered choice operators. The non-
intuitive behaviors are caused by finishing the matching of the
ordered choice at an unintended place for us. That is, the ordered
choice may not attempt all alternates of the choice. Therefore, we
address extending a PEG by adding another choice operator that
attempts all alternates of the choice, that is, an unordered choice
operator | . By the extension, we can avoid the bugs by using an
unordered choice instead of an ordered choice.

The main contribution of this paper is that we formalize the ex-
tended PEG and present the parsing algorithm. We introduce the
extended PEG as a parsing expression grammar with unordered

choices (PEGwUC). By the extension, it is expected that a PEG-
wUC includes both a PEG and a CFG. Furthermore, the parsing
algorithm allows us to parse a PEGwUC in a linear time if the
PEGwUC does not include unordered choice and in a cubic time
in worst-case running time. We show the implementation and the
performance to check the runtime.

The rest of this paper is organized as follows. In Section 2,
we describe the formalism of PEGwUC and the semantics and
properties. In Section 3, we give an algorithm for generating a
PEGwUC parser. In Section 4, we consider the time complexity
of a PEGwUC parser. In Section 5, we show experimental results
of PEGwUC parsers generated by the algorithm in Section 3. In
Section 6, we briefly review related work. Section 7 provides the
conclusion.
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2. PEGwUC

In this section, we describe the formalism of parsing expres-

sion grammars with unordered choices (PEGwUC). A PEGwUC
is an extension of a PEG with unordered choices. The extension
allows us to write a grammar more intuitively.

2.1 Grammars
A PEGwUC is an extended formalism of a PEG, defined in

Ref. [7]. Most grammar constructs come from those of PEG,
while our major extension is the introduction of an unordered
choice operator, which we denote | in this paper.

We start by defining a grammar tuple for a PEGwUC.
Definition 1 (PEGwUC). A parsing expression grammar with

unordered choices (PEGwUC) is defined by a 4-tuple G =

(N,Σ,R, es), where N is a finite set of nonterminals, Σ is a fi-

nite set of terminals, R is a finite set of rules, and es is a parsing

expression with unordered choices termed start expression.

We use A ← e for a rule in R, which is a mapping from a non-
terminal A ∈ N to a parsing expression with unordered choices e.
We write R(A) to represent an expression e, which is associated
by A← e.

A parsing expression with unordered choices e is a main spec-
ification of describing syntactic constructs. Figure 1 shows the
syntax of a parsing expression with unordered choices.

All subsequent use of the unqualified term “grammar” refers
specifically to PEGwUC as defined here and the unqualified
term “expression” refers to parsing expressions with unordered
choices. We use the variables a, b, c ∈ Σ, A, B,C ∈ N, x, y, z ∈ Σ∗,
and e for expressions.

The interpretation of PEGwUC operators comes exactly from
PEG operators. That is, the empty ε matches the empty string.
The terminal a exactly matches the same input character a. The
any character . matches any single terminal. The nonterminal A

attempts the expression R(A). The sequence e1 e2 attempts two
expressions e1 and e2 sequentially, backtracking the starting po-
sition if either expression fails. The ordered choice e1/e2 first
attempts e1 and then attempts e2 if e1 fails. The zero-or-more
repetition e* behave as in common regular expressions, except
that they are greedy and match until the longest position. The
not-predicate !e attempts e without any terminal consuming and
it fails if e succeeds, but succeeds if e fails.

An important extension to PEG operators is the unordered
choice, e1 | e2. Intuitively, this unordered choice works as the
alternation of regular expression. That is, the unordered choice
attempts both e1 and e2. If the unordered choice matches both
e1 and e2, it causes two possibilities and the subsequent behavior

Fig. 1 Syntax of a parsing expression with unordered choices.

becomes non-deterministic.
The precedence of the unordered choice is the lowest of all op-

erators. For example, e1/e2 | e3 is the same as (e1/e2) | e3.
By the extension, it is expected that a PEGwUC includes both a

PEG and a CFG. Obviously, a PEGwUC includes a PEG because
a PEGwUC is an extension of a PEG. In addition, informally, we
will define a PEGwUC that is equivalent to a CFG as follows: Let
G′ = (N,Σ,R, S ) be a CFG. N is a finite set of nonterminals. Σ is
a finite set of terminals. R is a finite set of rules. S ∈ N is a start
symbol. We assume without loss of generality that the CFG does
not have left recursion since we can eliminate left recursion in a
CFG [1]. Then, we can define a PEGwUC G that is equivalent to
the CFG G′ as a 4-tuple (N,Σ,R′, S !.), where R′ is a finite set of
rules that is basically the same as the rule R, but differs in the re-
striction. That is, there exists exactly one expression e, such that
A← e ∈ R′ for a nonterminal A. In order to satisfy the restriction,
we concatenate the expressions of the rules by using unordered
choices if more than one rule exists for a nonterminal A. For ex-
ample, let a CFG G′ be a 4-tuple ({S }, {a, b}, {S ← a, S ← b}, S ).
Then, we can define a PEGwUC that is equivalent to the CFG as
a 4-tuple ({S }, {a, b}, {S ← a | b}, S !.).

2.2 Syntactic Sugar
We consider the any character . expression to be an ordered

choice of all single terminals (a/b/ . . . /c) in Σ. We treat the any
character as a syntax sugar of such a terminal choice.

Likewise, many convenient notations used in PEGs such as
character class, one or more repetition, option, and and-predicate
are treated as syntax sugars:

[abc] = a/b/c character class
e+ = ee* one or more repetition
e? = e/ε option
&e = !!e and-predicate

2.3 Semantics
Medeiros et al. presented a formalization of regular expressions

and PEGs, using the framework of natural semantics [10]. In this
section, we present a formalization of PEGwUC, based on their
work.

First, we define some notations which are used later.
We use

PEGwUC
� to denote a matching relation in PEGwUC. Let

G[e] be a PEGwUC whose start expression is replaced with e in

G. The matching relation G[e]x
PEGwUC
� y might be read thus:

when G[e] parser parses the input string x, the string y remains
an unconsumed string. We use fail for representing a failure of

the matching. That is, G[e]x
PEGwUC
� failmeans that G[e] parser

cannot parse the input string x.
As described before, the unordered choice yields some pars-

ing results. Such results are represented by two possible relations

over
PEGwUC
� . To denote this, we use x1 ∨ . . . ∨ xn. For example,

G[a | aa] aaa
PEGwUC
� aa∨ a. We consider that x1 ∨ . . .∨ xn = x1

if n = 1.
The parsing results have the following relationship:

x ∨ y ≡ y ∨ x (1)
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Fig. 2 A matching relation
PEGwUC
� via natural semantics.

fail ∨ x ≡ x ∨ fail (2)

x ∨ y ≡ x (if x = y) (3)

fail ∨ fail ≡ fail (4)

Equations (1) and (2) means that ∨ is commutative. For

example, G[a | aa] aaa
PEGwUC
� aa ∨ a is the same with

G[a | aa] aaa
PEGwUC
� a ∨ aa. (3) and (4) means that we can

eliminate duplication. For example, G[a | a] aa
PEGwUC
� a ∨ a is

the same with G[a | a] aa
PEGwUC
� a.

For simplicity’s sake, we use X as an arbitrary result. That
is, X is the same with one of the results: x1 ∨ . . . ∨ xn, fail or
fail ∨ x1 ∨ . . . ∨ xn.

The semantics of PEGwUC shown in Fig. 2 is similar to that
of PEGs. The difference comes from unordered choices and the
parsing results. More precisely, we add a new rule split.1 in or-
der to split some parsing results of the unordered choices. The
rules are applied if a PEGwUC has some parsing results, that is,

if the input for the PEGwUC parser is x1 ∨ . . . ∨ xn (n ≥ 2).
When the rule is applied, the rule splits the input and merges the
results. For example, G[e] x ∨ y is split into G[e] x and G[e] y.

Let G[e] x
PEGwUC
� x′ and G[e] y

PEGwUC
� y′. Then, the results

are merged into a new result x′ ∨ y′. In addition, we extended the
other rules in order to handle some parsing results.

The meanings of the other rules are as follows. empty.1 says
that ε matches an empty string. char.1, char.2 and char.3 say that
the expression a attempts to match the prefix of the input string.
var.1 says that the result of the matching of the nonterminal A

is a result of the expression R(A). seq.1, seq.2 and seq.3 say
that G[e2] tries to match by using the result of the matching
G[e1] x. order.1, order.2 and order.3 say that an ordered choice
attempts to match in the order of the choices and continues to
the next matching if the result of the current matching has fail.
unorder.1 says that an unordered choice attempts to match both
of the alternates of the choice. rep.1, rep.2 and rep.3 say that a
zero-or-more repetition iterates the matching until the matching
fails completely. not.1, not.2 and not.3 say that a not-predicate
!e matches empty string if the matching of e succeeds, otherwise
the matching of the not-predicate fails. split.1 says that the rules
split the input in order to handle some parsing results and merge
the results.

Finally, as with PEGs, left recursion is unavailable in PEG-
wUC. For example, A ← Aa/b is unavailable in PEGwUC be-
cause it causes a degenerate loop. Thus, we assume that all sub-
sequent PEGwUC do not have left recursion, regardless whether
the recursion is direct or indirect.

2.4 Language Properties
In this section, we define a language recognized by PEGwUC

and discuss the properties of the languages.
A language recognized by a PEGwUC is defined as follows:

Definition 2. Let G = (N,Σ,R, es) be a PEGwUC. The language

L(G) is the set of strings x ∈ Σ∗ for which the start expression es

matches x.

As with in Ref. [7], “match” means that the start expression es

does not fail on the string x, that is, es matches x if es succeeds on
any x-prefix strings. In addition, as with the language definition
in PEG, any x-prefix strings are included in L(G) if x ∈ L(G).
Example 1. Let G = ({}, {a}, {}, a) be a PEGwUC. Then, the

language L(G) = {ax | x ∈ Σ∗}.
A language L over a terminal Σ is a language of a parsing

expression with unordered choices iff there exists a PEGwUC G

whose language is L.
Then, we show that PEGwUC have the same properties as

PEGs.
Theorem 1. If L and M are the languages of PEGwUC, then

L ∪M is also a language of PEGwUC.

Proof Since L andM are the languages of PEGwUC, there
exists PEGwUC GL = (NL,Σ,RL, eSL) and GM = (NM,Σ,
RM, eSM) whose languages are L and M. Then, L ∪ M =

L(eSL | eSM). �
Theorem 2. If L over Σ is a language of PEGwUC, then L =
Σ∗ − L is also a language of PEGwUC.

Proof Since L is a language of PEGwUC, there exists a
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PEGwUC GL = (NL,Σ,RL, eSL) whose language is L. Then,
L = L(!eSL). �
Theorem 3. IfL andM are languages of PEGwUC, thenL∩M
is also a language of PEGwUC.

Proof By DeMorgan’s laws, L ∩M = L ∪M �
Theorem 4. It is undecidable whether the language L(G) of an

arbitrary PEGwUC G is empty.

Proof It is undecidable whether the language of an arbitrary
PEG is empty [7]. If it is decidable whether the language L(G)
of an arbitrary PEGwUC G is empty, the language of an arbitrary
PEG being empty can also be decidable, since GPEGs include
PEGs. Hence, it is undecidable. �
Theorem 5. It is undecidable whether a PEGwUC G1 and a

PEGwUC G2 are equivalent.

Proof The equivalence of two arbitrary PEGs is undecid-
able [7]. Hence, it is also undecidable in a PEGwUC. �

3. Parsing Algorithm

In this section, we describe an algorithm for generating a PEG-
wUC parser. A PEGwUC parser is an extension of a packrat

parser used for parsing PEGs. Furthermore, a PEGwUC parser
inherits the benefits of a packrat parser in terms of time com-
plexity. That is, a PEGwUC parser runs in a linear time when
the PEGwUC does not include unordered choice. A PEGwUC
parser consists of functions for parsing a nonterminal and an ex-
pression and a main function. In order to define a function for
parsing a nonterminal A and an expression e, we write parse A
and parse e, respectively. We assume that the names of the func-
tions are distinct. Figure 3 shows the pseudocode.

In Fig. 3, # denotes a comment line and code(e) denotes a
placeholder for an expression e. We can replace code(e) with
a code for parsing the expression e. The details of code(e) are
given in the rest of this section. The function takes an input po-
sition i as an argument. In this function, we use three sets Curr,
Next, and Temp in order to handle parsing results. Curr and Next
are used for storing current and next input positions, respectively.
Furthermore, Temp is used for storing input positions temporarily.
Basically, elements of a set Next are results of the parsing of a
PEGwUC operator. In this parser, we assume that an input string
is stored in a variable I and the variable I is an array. I[i] cor-
responds to x in the semantics shown in Fig. 2. fail is the same
in Section 2.3; that is, fail means that a matching fails. In addi-
tion, for simplicity, we do not write a code of memoization in each
pseudocode. The rest of this section proceeds as follows. To be-
gin with, we describe the algorithm for PEGwUC operators from
Section 3.1 to Section 3.7 Finally, we describe a main function of
a PEGwUC parser and show some examples in Section 3.8.

3.1 Nonterminals
A code code(A) for parsing a nonterminal A is shown in

Fig. 3 A parse function of a nonterminal A← e and an expression e.

Fig. 4. The code corresponds to (var.1) shown in Fig. 2. More
specifically, parse A(i) corresponds to G[R(A)] x. In this code,
a PEGwUC parser stores the parsing result of parse A(i) in

the set Next. This means G[R(A)] x
PEGwUC
� X since the set

Next is the parsing result of the nonterminal A and the behavior
corresponds to (var.1).

3.2 Terminals
A code code(a) for parsing a terminal a is shown in Fig. 5.

The code corresponds to (char.1), (char.2) and (char.3) shown
in Fig. 2. When I[i] is a, a PEGwUC parser consumes I[i]
as with (char.1). In the other cases, the matching fails as with
(char.2) and (char.3).

3.3 Sequences
A code code(e1e2) for a sequence e1e2 is shown in Fig. 6. The

code corresponds to (seq.1), (seq.2) and (seq.3) shown in Fig. 2.
When the parsing result of the code code(e1) is fail, the pars-
ing results of the code code(e1e2) is also fail as with (seq.1).
In the other cases, a PEGwUC parser parses code(e2) as with
(seq.2) and (seq.3).

3.4 Ordered Choices
A code code(e1/e2) for an ordered choice is shown in Fig. 7.

The code corresponds to (order.1), (order.2) and (order.3)
shown in Fig. 2. When the parsing results of parse e j(i) do
not have fail, a PEGwUC parser finishes parsing the expres-
sion e j at the input position i as with (order.1), since the results
are stored in the set Next. The set Next is the parsing result of
the ordered choice and it is not used in the parsing. In the other
cases, the parser parses the next expression as with (order.2) and
(order.3).

3.5 Unordered Choices
A code code(e1 | e2) for an unordered choice is shown in

Fig. 4 code(A) : A code for a nonterminal A.

Fig. 5 code(a) : A code for a character a.

Fig. 6 code(e1e2) : A code for a sequence e1e2.
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Fig. 7 code(e1/e2) : A code for an ordered choice e1/e2.

Fig. 8 code(e1 | e2) : A code for an unordered choice e1 | e2.

Fig. 9 code(e*) : A code for a zero-or-more repetition e*.

Fig. 8. The code corresponds to (unorder.1) shown in Fig. 2.
More specifically, parse e j(i) corresponds to G[e j] x. This
means that a PEGwUC parser attempts every alternative of the
unordered choice and unites the results.

3.6 Zero-or-more Repetitions
A code code(e*) for a zero-or-more repetition e* is shown

in Fig. 9. The code corresponds to (rep.1), (rep.2) and (rep.3)
shown in Fig. 2. parse e(i) in the code corresponds to
G[e] x. When the parsing result of parse e(i) is fail, that

is, G[e] x
PEGwUC
� fail, a PEGwUC parser stores the input po-

sition i in the set Next. Since the set Next is the parsing re-
sult of the repetition e*, the element i of the set Next corre-

sponds to x of G[e*] x
PEGwUC
� x and the behavior corresponds to

(rep.1). When the result has an element that is not fail, that is,

G[e] x
PEGwUC
� fail∨x1∨. . .∨xn and G[e] x

PEGwUC
� x1∨. . .∨xn,

the results are stored in the set Temp and the parser continues to
parse the repetition e* with the set of the next input positions
Temp. The elements of the set Temp corresponds to x1 ∨ . . . ∨ xn

except for fail and the behavior corresponds to (rep.2) and
(rep.3).

3.7 Not-predicates
A code code(!e) for a not-predicate !e is shown in Fig. 10.

The code corresponds to (not.1), (not.2) and (not.3) shown in
Fig. 2. parse e(i) in the code corresponds to G[e] x. When

Fig. 10 code(!e) : A code for a not-predicate !e.

Fig. 11 A main function of a PEGwUC parser.

the parsing result of parse e(i) is fail, that is, G[e] x
PEGwUC
�

fail, a PEGwUC parser stores the input position i in the set
Next. Since the set Next is the parsing result of the expres-
sion !e, the element i of the set Next corresponds to x of

G[!e] x
PEGwUC
� x and the behavior corresponds to (not.1). When

the parsing result of parse e(i) has both fail and an input

position i, that is, G[e] x
PEGwUC
� fail ∨ x1 ∨ . . . ∨ xn, the

parser stores both fail and i in the set Next. This means that

G[!e] x
PEGwUC
� fail∨x and the behavior corresponds to (not.2).

When the parsing result of parse e(i) does not have fail, that

is, G[e] x
PEGwUC
� x1 ∨ . . . ∨ xn, the parser stores fail in the set

Next. This means that G[!e] x
PEGwUC
� fail and the behavior

corresponds to (not.3).

3.8 Building a PEGwUC Parser
A main function of a PEGwUC parser is shown in Fig. 11. In

Fig. 11, Succ denotes a set of input positions that the matching
succeeded except for fail.

A procedure for building a PEGwUC parser as follows:
( 1 ) Writing parse functions for each nonterminal in a PEGwUC
( 2 ) Writing a main function
We show two examples of the algorithm.
Example 2. Let a PEGwUC G = ({A}, {a}, {A ← a}, A). We first

write a parse function parse A(i).

Then, we replace a code code(a) with a code for parsing a

terminal a.
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Fig. 12 A PEGwUC parser for a PEGwUC G = ({A}, {a}, {A← a}, A).

Fig. 13 A PEGwUC parser for a PEGwUC G = ({A}, {a}, {A← a | aa}, A).

Finally, we write a main function. The result are shown in

Fig. 12. When I = aaa, a result of a parsing is a set Succ = {1}.
This means that the PEGwUC consumed the prefix a of the input

string I.

Then, we show a more complex example.
Example 3. Let a PEGwUC G = ({A}, {a}, {A ← a | aa}, A). A

PEGwUC parser for a PEGwUC G is shown in Fig. 13. When I =

aaa, a result of a parsing is a set Succ = {1, 2}. This means that

the PEGwUC consumed the prefix a and aa of the input string I.

4. The Complexity of a PEGwUC Parser

In this section, we show the time complexity of a PEGwUC
parser. We first show that a PEGwUC parser runs in a linear time
if the PEGwUC does not include unordered choice. That is, the
size of the set returned by the parse function should be 1. We
show this as Lemma 1.
Lemma 1. Let G be a PEGwUC. If G does not include unordered

choice, sizes of the sets returned by each parse function in a PEG-

wUC parser generated by the algorithm is 1.

Proof We assume that sizes of the sets returned by each
parse functions and code(e) is 1. Then, we check the size of
the set Curr is 1 for each code(e).
1. Case code(a)

Obviously, the size of the set Curr is 1 because if I[i] is a,
then Curr = {i + 1}, otherwise Curr = {fail}.

2. Case code(e1e2)
By the assumption, the size of the set Curr is 1.

3. Case code(e1/e2)
By the assumption, the number of iterations of foreach
i ∈ Curr and foreach i ∈ parse e j(i) is 1. Thus, the
size of the set Curr is 1.

4. Case code(e*)
By the assumption, the number of iterations of foreach
i ∈ Curr is 1. In addition, a set returned by parse e(i) is
also 1. Thus, the size of the set Curr is 1.

5. Case code(!e)
This is same with the case code(e*).

�
Then, we show that the parser runs in a linear time.

Theorem 6. Let G be a PEGwUC. A parser for the PEGwUC G

generated by the algorithm runs in a linear time when the PEG-

wUC G does not include unordered choice.

Proof By Lemma 1, sizes of the sets returned by each parse
function are 1. Thus, the number of iterations of foreach in
each code(e) are also 1. Therefore, we can prove this by in-
duction on the structure of a parsing expression with unordered
choices e. �

Next, we show the time complexity in worst-case.
Theorem 7. Let G be a PEGwUC. A parser for the PEGwUC G

generated by the algorithm runs in a cubic time in worst-case.

Proof Let n be a length of an input string. By the memoiza-
tion, a number of calls of each parse function is O(n). In each
parse function, foreach iterates at most n times since the size
of the set Curr is at most n and the function take O(n) to copy
the result of the parsing in the iteration. Thus, a PEGwUC parser
runs in a cubic time in worst-case. �
Corollary 1. A PEGwUC parser generated by the algorithm runs

in a linear time when the PEGwUC does not include unordered

choice and in a cubic time in worst-case.
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5. Experimental Results

In order to check how PEGwUC parsers generated by the al-
gorithm described in Section 3 run in practice, we implemented
the algorithm and measured the runtimes. This section reports the
experimental results. In this experiment, we use three determin-
istic grammars and a non-deterministic grammar in a PEGwUC.
The deterministic grammars are the grammar of XML, Java, and
G1 such that the G1 accepts the language {anbncn | n > 0}. The
non-deterministic grammar G2 is as shown in Fig. 14:

The non-deterministic grammar accepts the language {an |
n > 0} and derived from a highly-ambiguous grammar S ←
S S |S S S |a in a CFG [4]. We expect that our PEGwUC parser
runs in a cubic-time for this grammar. The parsers used in the
experiments are generated by our parser generator based on the
algorithm. The parser generator and the grammars are available
online at https://github.com/NariyoshiChida/GPEG. All tests in
this section are measured on DELL XPS-8700 with 3.4 GHz In-
tel Core i7-4700, 8 GB of DDR3 RAM, and running on Linux
Ubuntu 14.04.3 LTS. We measured runtimes ten times in a row
and calculated the averages of the runtimes other than the max-
imum runtime and the minimum runtime. We have chosen the
following files as inputs:
• XML - xmark : a synthetic and scalable XML files that are

provided by XMark benchmark program [13].
• Java - relatively large files of 60 KB or larger.
• G1 - files written as anbncn (n = 103, 104 and 105).
• G2 - files written as an (n = 102, 103 and 104).

The results are shown from Table 1 to Table 4. In these tables,
Size, Runtime, and Memo denote a size of an input file, an av-

Fig. 14 The nondeterministic grammar G2.

Table 1 The result of a XML parser.

Size (byte) Runtime (sec) Memo
Input 1 515,109 1.303 1,364,208
Input 2 1,033,034 3.011 2,710,554
Input 3 2,172,640 6.208 5,668,326

Table 2 The result of a Java parser.

Size (byte) Runtime (sec) Memo
Input 1 62,283 0.943 611,713
Input 2 111,293 2.183 1,422,695
Input 3 229,982 5.257 3,203,204

Table 3 The result of a G1 parser.

Size (byte) Runtime (sec) Memo
Input 1 3,001 0.003 5,015
Input 2 30,001 0.090 50,015
Input 3 300,001 0.987 500,015

Table 4 The result of a G2 parser.

Size (byte) Runtime (sec) Memo
Input 1 101 0.013 25,452
Input 2 1,001 13.598 2,504,502
Input 3 10,001 15,555.653 250,045,002

erage of runtimes, and a number of elements in a memoization
cache respectively.

By the experimental results, in this case, we can check the al-
gorithm runs in a linear time when a PEGwUC does not include
unordered choice and in a cubic time in worst-case.

6. Related Work

Birman and Ullman [2], [3] showed formalism of recogni-
tion schemes as TS and gTS. TS and gTS were introduced in
Ref. [1] as Top-Down Parsing Language (TDPL) and General-

ized Top-Down Parsing Language (GTDPL) respectively. A PEG
is a development of GTDPL. In this paper, we defined a PEG-
wUC, an extension of a PEG with unordered choices. PEGs
are widely used in parser generators. Robert Grimm developed
Rats!, a PEG-based parser generator for Java [8]. In addition,
David Majda developed PEG.js, a PEG-based parser generator
for JavaScript [6]. Many other PEG-based parser generators were
developed [5], [9], [11]. Scott and Johnstone [14], [15] showed
GLL parsing, which is an algorithm for generating a generalized
parser using LL parsing. GLL parsing is recursive descent-like
parsing and handles all CFGs. Furthermore, it runs in a linear
time on LL grammars and in a cubic time in worst-case. We
showed a PEGwUC and the parsing algorithm. Our parsing al-
gorithm is recursive descent parsing and handles PEGwUC. Fur-
thermore, as with GLL parsing, it runs in a linear time on PEGs
and in a cubic time in worst-case.

7. Conclusion

In this study, we formalized a PEGwUC, an extension of a
PEG with unordered choices. By the extension, it is expected
that a PEGwUC includes both a PEG and a CFG and the exten-
sion allows us to write a grammar more intuitively. Furthermore,
we showed an algorithm for generating a PEGwUC parser and
the implementation. A PEGwUC parser inherits the benefits of a
packrat parser in terms of time complexity. That is, a PEGwUC
parser runs in a linear time when the PEGwUC does not include
unordered choice. In addition, we checked the benefits in our
experiments.
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