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Improving Neural Machine Translation
with Linearized Dependency Tree Decoder
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Abstract: In spite of achieving significant performance in recent years, there are some existing issues that Sequence-
to-Sequence Neural Machine Translation still does not solve completely. Two of them are translation for long sen-
tences and the over-translation. To address these two problems, we propose an approach that utilize more syntactic
information, syntactic dependency information, so that the output is generated based on more abundant information.
In addition, the outputs are presented not as a simple sequence of tokens but as a linear grammatical tree structure. In
addition, the output of the model is presented not as a simple sequence of tokens but as a linearized tree construction.
Experiments on the Europarl-v7 dataset of French-to-English translation demonstrate that our proposed method can
produce dependency relations between words in the target language and improve BLEU scores by 1.57 and 2.40 on
datasets consisting of sentences with up to 50 and 80 tokens, respectively. Furthermore, the proposed method also
solved the ineffective translation for long sentences and repetition problems in Neural Machine Translation.

1. Introduction

In this work, we propose an approach in which syntactic de-
pendencies are incorporated into the model to represent more
grammatical information of output. As we know, the Sequence
to Sequence (Seq2Seq) Learning model [17], [26] is extremely
effective on a variety of tasks that require a mapping between a se-
quence to sequence. Thus, it is used to solve many tasks in natural
language processing. The Seq2Seq model consists of an encoder-
decoder neural network which encodes a variable-length input se-
quence into a vector and decodes it into a variable-length output.
Because the model uses the information of the source representa-
tion and the previously generated words to produce the next-word
token, this distributed representation allows the Seq2Seq model
to generate appropriate mapping between the input and the out-
put [22]. In Neural Machine Translation (NMT) task, which is
based on the Seq2Seq learning, has achieved excellent translation
performance in recent years on [4], [17], [20], [21]. In particular,
the NMT model which is built upon an encoder-decoder frame-
work with attention mechanism [20] can also pay attention and
its decoder knows which part of the input is relevant for the word
that is currently being translated. Therefore, it has shown com-
petitive results and outperformed conventional statistical methods
[1]. Despite of these advantages, NMT model still has a couple
particular issues to be solved such as dealing with fixed vocabu-
lary, not applicable to small-data, additional phrases, wrong lexi-
cal choice errors, long sentence translation and overproduction of
strange tokens... In this paper, we touch upon the following two
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major problems:

e Translation of long sentences

e Over-translation

Since the decoder of the model produces the target language
word by word simply based on the previous target words and the
source-side representation vector until it reaches the special end
token, it is incapable in capturing long-distance dependencies in
history, so ineffective for long sentences translation [2], [11].
Even with an attention mechanism, NMT model just pays atten-
tion to the current alignment information between the inputs and
the output at the current position but ignores past alignments in-
formation. Therefore, it cannot keep track of the attention history
when it updates information at each current time step, leading to
the over-production [12], [23], [24], [25].

In order to address the above two issues, it is worth consider-
ing that using syntactic dependency information and representing
the output as a tree structure would be effective. This approach
allows the next tokens to be output based on not only the previous
tokens but also the syntactic dependencies so far, thereby condi-
tioning them on more abundant information so it has the ability
to make smarter predictions. Basically, in this paper, we train the
model with an encoder-decoder neural network and using depen-
dencies in which the input of the source language is in sequence
form and the output of the target language will be generated in
a linearized dependency-based tree structure. That is, instead of
predicting only words at each time step, the model trains the net-
work to predict both words and their grammatical dependencies
as a dependency tree at each time step. Therefore, it is hoped that
the accuracy of output will be improved.

The major contributions of this work are as follows:

e To utilize the information of both “head” words and syntac-

tic dependencies between them to produce better output.
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o To settle the problems in the NMT task. In this paper, we
desire to solve two tasks. First is the ineffective translation
for long sentences. Second is the over-translation in NMT
task.

Empirically, to assess the performance of the proposed method,
we used Conditional Gated Recurrent Unit with Attention mech-
anism model of Bahdanau [20] on the French-English portions of
the Europarl-v7 dataset. As a result, the BLEU score is improved
by 1.57 and 2.40 points for sentences of length up to 50 and 80
tokens, respectively. Also, we compare and analyze the results of
attention-based Seq2Seq model and the proposed approach.

2. Related Work

In fact, the effectiveness of using dependency information of
words has been reported in some previous NLP tasks, for exam-
ple, in dependency-based word embeddings, relation classifica-
tion and sentence classification tasks [18], [27], [28], [29], [30].
It has been shown that the combination of words and their depen-
dency information can boost performance. Besides, in the work
of Vinyals et al. [10], they also represent output as a linearized
tree structure, but their work showed that generic sequence-to-
sequence approaches can achieve excellent results on syntactic
constituency parsing. At a glance, our proposed method is a lit-
tle similar to the works of Dyer et al., Aharoni et al., Eriguchi et
al., Wu et al. [5], [8], [9], [14] in use of parse tree and gener-
ation. However, Dyer et al. and Aharoni et al.’s works concern
predicting constituent trees. Eriguchi et al.’s model employs syn-
tactic dependency parsing but their model is hybridized the de-
coder of NMT and the Recurrent Neural Network Grammars, and
the target sentences are parsed in transition-based parsing. Wu
et al.’s model also employs dependency parsing but their model
separately predicts the target translation sequence and parsing ac-
tion sequence which maps to translation. On the other hand, our
proposed model’s decoder directly predicts the linearized depen-
dency tree itself in a single neural network in depth-first pre-order
order so that the next-word token is generated based on syntactic
relations and tree construction itself. In other words, our model
is able to learn and produce a tree of words and their dependency
relations by itself.

3. Related Processing

3.1 Stanford Dependency Parser

Stanford Dependency Parser, the popular transition-based
parser in natural language processing, produces results in the
form of a tree structure in which each word of the sentence is the
dependent of exactly one token, either another word in the sen-
tence or the distinguished “ROOT-0" token. The parsing result is
represented in the format “abbreviated relation name(governor,
dependent)” in which a governor is a head word and dependency
is a syntactic relation between a governor and a dependent. The
governor and the dependent are words in the sentence.

3.2 Depth-First Pre-order Tree Search

The search tree is deepened as much as possible on each
child before going to the next sibling. Depth-first pre-order Tree
Search starts with the root node and displays the data part of the
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current node by traversing the left subtree to right subtree recur-
sively calling the pre-order function. The reason we use Depth-
first pre-order Tree Search algorithm is we want our model to
predict the next-word tokens from left-to-right so that it can keep
the order of words in output sequences the model generates.

4. Sequence-to-Dependency Model

In our proposed approach, the neural network model is trained
to map the target language output in linearized dependency tree
construction from the source language input which is as a se-
quence. Thus, we can define the problem as follows. Given a
source sequence X = (x,x2,...,xy) of length N, we want the
model to encode the input sequence X and decode it to a tree
structure with both words and dependency information condi-
tioned on the encoded vector. Therefore, the output will be rep-
resented in the form (LY) = (ly,,ly,,...,ly,). The conditional

probability p(ly|x) is decomposed as:
payl) = [ | payly;, »), (1)
i=1

in which (ly,, ly,, ..., ly,,) are words or dependency labels.
Therefore, the hidden state s; at time step j is computed as
follows:
s; = cGRUy (s;-1.1y,-1.C)). )

and the next token ly ;, which may be a word or dependency label,
will be generated as follows:

ly, :f(s.i’lyjfl,cj)’ ®)

In this paper, dependencies are defined as the dependency labels
which are achieved from the Stanford Dependency Parser [31].
The decoder will decode the next output based on relations be-
tween governors and dependents in a linearized tree structure. In
regards to the order of generating the dependency labels and the
words, the decoder will produce these symbols in a manner called
depth-first pre-order traversal. In this section, we will describe
the model step-by-step as follows:

4.1 Dependency Parsing

Since there is not a parallel corpus in which target-side is rep-
resented in linearized dependency tree, we have to create the par-
allel corpus for training dataset by doing dependency parsing for
the target-side language. In this paper, we do experiments on
a French-English language pair so we use the Stanford Depen-
dency Parser to obtain dependency parsing results for English.
After that, this dependency parsing results will be transformed in
another step for traversing the tree, which will be described in the
next section to create a dependency tree. The dependency tree
represents the target language as an ordered tree structure which
is necessary for training. The reason we chose the Stanford De-
pendency Parser for the parsing portion of this method is because
it can represent the order of words in sentence. This information
of the order is useful to traverse tree in the following step.

4.2 Transformation and Tree Traversal
In this section, we describe the Tree Transform and Tree
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Algorithm 1 Tree Transform

Algorithm 2 Tree depth-first pre-order traversal

: procedure TRANSFORM TREE
. Transform(T,Labels):

1

2

3 for label in Labels do

4 if label.children.size! = 0 then

5: Recur Transform(T,Labels)

6 else

7 Compare the order of current label’s parent & children
8 if (label’s children order is larger than label’s parent order

then

9: INSeRT label’s parent first
10: else
11: INSERT label’s children

Traversal process in which output in a linearized dependency
tree form is created from the Stanford Dependency Parsing tree.
For example, given a sentence “I ate the fish with a fork.”, after
obtaining dependency parsing tree from the above dependency
parsing phase, we move the “head” word to the same layer with
dependents which are directly connected to the “head” word so
that these dependents and “head” word are rooted to {ROOT. The
“head” word is put in a position so that the word order in sen-
tence can be preserved. Next, the tree structure obtained in the
fist step will be transformed into another tree structure for the
next tree traversal step. Next we traverse this tree in a depth-first
pre-order traversal to create output with a linearized tree structure
to train the model. That is, for each rooted subtree, governors and
dependency labels of the sentence are predicted first, and their
information will be used to predict the next dependent words. In
other words, the model can capture the dependency information
between label-word and word-word pairs to predict the next to-
kens. This means that the model is capable of modeling gram-
matical dependencies in the output symbols. Also, in Seq2Dep
model, we define the Nonterminal “{DEPENDENCY LABEL”,
and Node-closing *“}” tokens. Nonterminal indicates subtree [15],
which means open subtree to visit children node. Node-closing
indicates end-of-subtree, that means the subtree is finished and
return to the upper layer. And these defined tokens donot appear
in original source and target datasets. Algorithms 1 and 2 show
the definition of transformation and tree traversal in more detail
respectively. The purpose of using depth-first pre-order traversal
is as follows:

e To keep the words of the target language sequence in or-
der when they are generated. With this generating order, the
word order of the sentence is preserved, thus, we do not have
to do any post-processing subsequently.

o To utilize both information of the words and the dependency
labels generated in the previous rooted subtree to predict the
tokens of the next rooted subtree.

Figures 1, 2 and 3 show the Stanford dependency parsing tree,
tree after changing “head” word and Transform Tree.

4.3 Sequence-to-Dependency Model

The proposed Sequence-to-Dependency (Seq2Dep) model
consists of an encoder which is a bidirectional GRU layer as in
Bahdanau’s model [20]*!. The input embeddings of the source

*l https://github.com/nyu-dl/dl4mt-tutorial
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Input: Sentence
Output: Linearized Dependency Tree

1: Stanford Dependency Parsing

2: Make Tree from Dependency Parsing Result
3: Tree transform

4: procedure TRAVERSE TREE

5: Traverse(T,N):

6: N as discovered

7: for all Node not in N do

8: if Node.children.size! = 0 then

9: Recursively call Traverse(T,N)
10: in pre-order traverse
11: else
12: if Node is Nonterminal then
13: Ourtput Node-opening
14: Visit children
15: Ourput Node-closing
16: else
17: Output Node

Fig. 1 Stanford Dependency Parsing Tree

sentences are shared by the forward and backward GRU, and the
hidden states of the corresponding forward and backward GRU
are added to obtain the hidden representation for that time step.
The decoder of the model will decode the output as words and
dependency labels in a linearized dependency tree structure in a
depth-first pre-order traversal. Figure 4 shows the decoder which
generates both dependency labels and words in the Seq2Dep
model. In Figure 4, the previous token and context vector feeding
are omitted for simplicity.
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Fig.2 Dependency tree after changing position of “head” word

ENCODER
Jai mangé le poisson avec une fourchette
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{DOBJ |

l

fish-4 ‘

{NSUBJ | ate-2 {NMOD {PUNCT

{CASE‘ ’ {DET ‘

fnrk—?‘ ’ -8 ‘

Fig. 3 Transform Tree

DECODER

{NSuUBIJ }

ate {DOBJ {DET the } fISh } {NMOD{CASE W|th } {DET

v {PUNCT . } </S>

Previous tokens feeding is omitted for simplicity

Fig.4 Seq2Dep model

5. Experiments

5.1 Dataset

In our experiment, the proposed model was trained on the
French-English parallel corpus of the Europarl-v7 dataset. We
used newstest2011 and newstest2012 of WMT16 as development
and test data respectively. To confirm translation for long sen-
tences, the whole test set was used without removing any sen-
tences with a maximum length of 50 or 80. We performed exper-
iment on the following two datasets:

e Europarl-v7 dataset consisting of sentences with a maximum

length of 50.
e Europarl-v7 dataset consisting of sentences with a maximum
length of 80.

For data preprocessing, we filtered out sentences which were
longer than the above maximum lengths and cleaned the special
symbols or characters which were not strings. We also omitted
sentences which had multiple sentences in one line. The reason
is that the parsing results obtained from the Stanford Dependency
Parser in parsing step would contain multi “{ROOT” tokens for
sentences which have multiple sentences in one line, while it is
necessary to generate the next child nodes starting from just one
top {ROOT of atree. Next, we tokenize and lowercase this dataset
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and perform dependency parsing. After that, we traverse the tree
in a depth-first pre-order to create the parallel corpus for the train-
ing model in which the source language, French is in sequence
form, and the target language, English is in a linearized depen-
dency tree structure form. The longer sentences are(in particular,
sentences with a maximum length of 80), the more CPU memory
and time cost for this processing data step.

In addition, we built a dictionary of the target language (En-
glish) that consists of both words and dependency labels. In this
dictionary, we define 74 dependency labels based on the current
representation of grammatical relations of the Stanford Depen-
dency Parser.

5.2 Settings

In order to evaluate the performance of the proposed method,
we set the same hyperparameters as the attention-based cGRU
model in DL4MT-Tutorial and compare the obtained results of
both Seq2Seq and Seq2Dep models.

The recurrent transformation weights for gates and hidden state
proposal matrices were initialized as random orthogonal matri-
ces. Weights were optimized using the Adadelta algorithm and
were updated with a mini-batch size of 32 sentences. The vocab-
ulary sizes of both source and target languages were set at 30k
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Table 1  Translation quality as measured by different metrics.
Post-processing
Model BLEU METEOR TER
Seq2Seq-50 19.31 26.3 66.1
Seq2Dep-50 | 20.88 27.0 62.5
Seq2Seq-80 16.97 25.5 78.5
Seq2Dep-80 19.37 25.6 65.6
25.0 ~
22.5 1
20.0 1
v
S 175
wi
=
w
m 15.0
125
10.0
—8— Dbaseline
75 =®= SeqiDep

(1,11) (11, 21) (21, 31) (31, 41)

(41, 51)

(51, 61) (8l,71) (71,81} (BL, 91) (91.101)

test sentences sorted by their lengths

Fig.5 Comparison of BLEU score with respect to the length of sentences

words, the beam size was set to 5, dropout was not applied and
the gradients were clipped at 1.0. Morever, because the generated
tokens are not only words but also dependency labels in Seq2Dep
model, the maxlen parameter was set up so that dependency la-
bels are not counted, therefore long sentences will not be removed

in training.

5.3 Model Training
In the experiments, we trained the following 2 models on
the 1.65M sentences with a maximum length of 50 and 1.89M
sentences with a maximum length of 80 from the Europarl-v7
French-English bitext.
Attention-based Seq2Seq Model
This model is a Seq2Seq model with attention mechanism
as in Firat [4] that consists of an encoder that encodes the
source language input in sequence form and a decoder that
decodes target language output in sequence form.
Seq2Dep Model
the model architecture is the same as the attention-based

The proposed method. In this model,
Seq2Seq model but the input is in sequence form and the
output is in linearized dependency tree structure.

6. Results

In the Seq2Dep model, because the output consists of both
words and dependency labels, we evaluated the result with post-
processing, which is the process that removes the dependency
labels from the translated result. From this section onwards,
we will refer to the Seq2Seq and Seq2Dep models with sen-
tences of maximum length 50 and 80 tokens as Seq2Seq-50,
Seq2Dep-50, Seq2Seq-80 and Seq2Dep-80. As a result, the

BLEU score of Seq2Dep-50 with post-processing was 20.88,
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which is higher than the BLEU score of 19.31 obtained by the
attention-based Seq2Seq-50 model with a gain of up to 1.57
points. Similarly, the BLEU score improved by 2.40 points for
datasets with maximum sentence lengths of 80. Table 1 shows
BLEU and METEOR scores and TER error of the attention-based
Seq2Seq and Seq2Dep models. Figure 5 shows the relation be-
tween BLEU score and the length of sentence.

Moreover, when we made a trial to evaluate the translation
results without post-processing, the BLEU scores without post-
processing were 42.76 and 43.41 for both datasets. From these
scores, it is thought that the model can predict not only word-
based tokens but also dependency labels well.

7. Testing Repetition

In order to verify the ability of the proposed approach to solve
the repetition problem of NMT, over-translation, we measured
the repetition of words in the translation results of attention-based
Seq2Seq and Seq2Dep learnings in this section. The repetition
rate is measured by the following formula:

()
rep_rat = N1 r@:) “4)
P LTy
in which ; and ¥; are the " hypothesis sentence and i reference

sentence respectively, and r is the number of the repeated words
and is computed by:

r(X) = len(X) — len(set(X)) 5)

in which len(X) is the length of the sentence X and len(set(X))
is the number of words that are not repeated in sentence X. For
example, given the sentence X="“The big fish ate the smaller
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repetition rate

—a— baseline
-@= 5Seq2Dep

[0, I]J}] [10:20:' [20,I3D] [3D,I4ﬂ]

[40, 50)

[50,60) [60,70) [70,80) [BO0,90) [0, 100}

test sentences sorted by their lengths

Fig. 6 Comparison of the repetition rate of the baseline and Seq2Dep models

fish”, in this case, set(X)={The, big, fish, ate, smaller}, len(X)=7,
len(set(X))=5. Figure 6 shows the comparison of repetition rate
in both models in which the horizontal axis is the length of sen-
tences, vertical axis is the repetition rate respectively. In Figure
6, the repetition rate in both Seq2Seq and Seq2Dep learnings de-
creases as the length of the sentences increases. From Figure 6,
we can see that the more tokens the model learns, the more the
repetition rate decreases. Also, the repetition is reduced in the
Seq2Dep model compared to the attention-based Seq2Seq model.

8. Analysis and Discussion

In figure 5, except the span in which the sentence length is be-
tween 41 and 51 words, the BLEU score of the Seq2Dep model
goes up gradually and almost overcomes that of the attention-
based Seq2Seq model. The BLEU score falls from 19.31 to 16.97
with a 2.34 points difference for the attention-based Seq2Seq
model while the point difference is 1.51 in the Seq2Dep model.
From the experiments, we confirm that by using the syntactic de-
pendency information, the Seq2Dep model can learn well and
reduce the drop in BLEU score compared to the baseline model
even if the sentence is very long. Besides, we can see the BLEU
score is low for short sentences which have a length of 10 words
or less. This is because of the brevity penalty on short sentences
in BLEU [13].

With regards to the BLEU score without post-processing, we
see that the score of the Seq2Dep-80 model is higher than that
of the Seq2Dep-50 model. The reason could be: The longer the
sentences are, the more syntactic dependencies the models re-
quire for generating better outputs.

Also, in terms of the over-translation problem, Figure 6 shows
that the repetition rates of the two models decrease gradually with
respect to the length of the sentences and the Seq2Dep model has
a lower repetition rate. When we checked the translation results,
we saw that Node-closing token “}” was almost generated after
each subtree . Moreover, we saw that there were some very long
sentences which the over-generation of “UNK”’s occurred in the
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translation result of Seq2Seq model while that did not occur in
translation results of Seq2Deq model. Our assumption is that af-
ter generating subtree, the Seq2Dep model can learn that it should
generate the Node-closing token “}” next, instead of a chain of
words. In other words, as mentioned in Kuncoro et al.’s work
[3] in which modeling of composition can achieve better per-
formance, the Seq2Dep model which learns about the syntactic
dependencies and tree structure performance is probably able to
learn the blocks of the form “Nonterminal word }” like a phrase-
structure in sentences, so it is unlikely to generate the same word
repeatedly. Therefore, it is possible to prevent the long repeated
words in long sentences. Usually, because the block of the form
“Nonterminal word }” is seen as a phrase in sentence or a subtree
in tree structure, and it is rare for a phrase to occur repeatedly
in sentence or for a subtree to repeat in a tree structure, so it is
assumed that repetition of the blocks of form “Nonterminal word
}” are also rare.

9. Conclusion

In this work, we proposed a method in which the Seq2Dep
NMT model is trained by utilizing syntactic dependencies to
provide the model more abundant information. In other words,
Seq2Dep model learns the potential internal relative connections
among tokens and their long term syntactic dependencies to pre-
dict the next-word tokens. Furthermore, the Seq2Dep model can
also generate output as a linearized dependency tree structure in a
Depth-first pre-order tree traversal over words and dependencies.
The purpose of this work is to alleviate issues of translating long
sentences and repetitive translation. We conduct experiments on
the French-English parallel corpus of the Europarl-v7 dataset and
the results demonstrated the performance of the proposed model
which improved BLEU scores by 1.57 and 2.40 points for sen-
tences of length at most 50 and 80 tokens respectively. The trans-
lation results, especially on long sentences, were better than the
Seq2Sep model with attention mechanism.
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10.

Future work

Confirm how accurate the Seq2Dep model generates the de-
pendency labels as well.

In this paper, we set the same hyperparameters as the
attention-based cGRU model in DL4AMT-Tutorial and trained
the Seq2Dep model on only Europarl-v7 dataset. Since ex-
periments were done on small vocabulary size and dataset,
we plan to train the model on larger vocabulary and datasets
with subword units segmentation.

For future work, we plan to train models on datasets which
consist of only long sentences with more than 50 or 80 to-
kens to compare the performance of long-sentences transla-
tion of the approach and baseline model.
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