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Abstract: We discuss Nash equilibria in combinatorial auctions with item bidding. Specifically, we give a character-
ization for the existence of a Nash equilibrium in such a combinatorial auction when valuations by two bidders satisfy
symmetric and subadditive properties. Based on this characterization, we can obtain an algorithm for deciding whether
a Nash equilibrium exists in such a combinatorial auction.
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In a combinatorial auction, m items M = {1, 2, . . . ,m} are of-
fered for sale to n bidders N = {1, 2, . . . , n}. Each bidder i has a
valuation fi that assigns a nonnegative real number to every sub-
set S of M. The objective is to find a partition S 1, S 2, . . . , S n

of M among the bidders such that the social welfare
∑n

i=1 fi(S i)
is maximized. The combinatorial auction problem is sometimes
called the social welfare problem when we disregard strategic is-
sues on bidders’ selfish concerns. VCG (Vickrey-Clarke-Groves)
mechanisms optimize the social welfare in a combinatorial auc-
tion with selfish bidders. However, it may take exponential time
in m and n. Actually, the social welfare problem is shown to be
NP-hard by Lehmann, Lehmann and Nisan, even if every val-
uation fi (i ∈ N) satisfies submodularity [12] ( fi : 2M → R+ is
submodular if fi(S ∪T )+ fi(S ∩T ) ≤ fi(S )+ fi(T ) for all S ,T ⊆ M

and is subadditive if fi(S ∪ T ) ≤ fi(S ) + fi(T ) for all S ,T ⊆ M).
Therefore approximation algorithms have also been proposed

for the social welfare problem (in a combinatorial auction). Since
each valuation fi is defined by 2m subsets of M, most proposed ap-
proximation algorithms are based on oracle models. Two oracle
models, the value queries oracle model and the demand queries
oracle model, are commonly used. Furthermore, in most pro-
posed approximation algorithms, each valuation fi is restricted
to satisfy some conditions. Two restrictions, submodularity and
subadditivity, are commonly used.

For the submodular social welfare problem (i.e., each valuation
is submodular) with the value queries oracle model, the follow-
ing are known. Lehmann, Lehmann and Nisan proposed a 1

2 -
approximation algorithm [12]. Khot et al. showed that this prob-
lem cannot be approximated to a factor better than 1 − 1

e unless
P =NP [10], where e is the base of the natural logarithm. Vondrák
proposed a randomized (1− 1

e )-approximation algorithm [15]. Us-
ing the more powerful demand queries oracle model, Dobzinski
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and Schapira proposed an improved (1 − 1
e )-approximation algo-

rithm for the submodular social welfare problem [6].
For the more general subadditive social welfare problem

(where each valuation is subadditive), Dobzinski, Nisan, and
Schapira proposed an Ω(1/ log m)-approximation algorithm us-
ing the value queries oracle model [5]. Using the more powerful
demand queries oracle model, Feige proposed a 1

2 -approximation
algorithm for the subadditive social welfare problem and also
showed that it is NP-hard to approximate to a factor better than
1
2 [8]. He also proposed a (1− 1

e )-approximation algorithm for the
fractional subadditive (more general than submodular, but more
restricted than subadditive) social welfare problem.

As suggested before, the social welfare problem we
overviewed above has a central administrator who has the
right to make a decision. The administrator makes a decision
by collecting valuations and then performing a centralized
computation based on approximation algorithms. Recently,
however, market-types of social welfare problems have been
actively considered in which there are no central administrators.
In these market-types of problems, bidders make decisions based
on prices and their own valuations, which involves much less
central coordination. Here prices can serve to decentralize the
markets, as can be seen in socio-economic activities in the real
world. If we replace the role of the central administrator by a
particular scheme for pricing items, then allowing bidders to
follow their own self-interests based on valuations and prices
can lead to good decisions. Thus a market-type of social
welfare problem, i.e., a combinatorial auction in this paper, is a
game theoretical version of traditional social welfare problem.
Bidders have incentives to maximize their own payoffs which
are determined based on valuations and prices. Thus, there is a
competition for items among bidders in a combinatorial auction.
In solutions obtained by algorithms for the traditional social
welfare problem, some bidders may feel that they are unfairly
treated. Thus, a solution is required so that, in some sense,
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all bidders are satisfied with items they obtain in the solution.
This leads to the concept of Nash equilibria (defined below).
For a market-type of social welfare problem (i.e., combinatorial
auction), a social optimal solution is very nice in a global sense,
however, in some cases, bidders may not be satisfied with the
solution from their own selfish concerns of view. Thus, a good
Nash equilibrium may be required in a combinatorial auction
from the stability point of view. Research on computing a good
Nash equilibrium and deciding the existence of Nash equilibria
is the most fundamental in a combinatorial auction and there has
been much recent research on this topic. The price of anarchy,
the ratio of the value of a social optimal solution to that of a
worst Nash equilibrium, plays a similar role as an approximation
ratio in approximation algorithms.

For a partition S 1, S 2, . . . , S n of M where each bidder i obtains
the items in S i, the price, denoted by price(S i), is attached to S i

in a combinatorial auction. The payoff of bidder i is defined by
fi(S i)− price(S i). Each selfish bidder i wants to maximize his/her
own payoff. The combinatorial auctions that are used in practice
are different from VCG mechanisms. For example, eBay uses an
auction in which m items are sold in m independent second-price
auctions. Thus, item bidding, as a combinatorial auction scheme,
occurs rather “spontaneously” and this type of auction is called
a combinatorial auction with item bidding [3]. Thus, a bidder’s
strategy is the m-dimensional vector of bids that the bidder sub-
mits in the different single-item auctions. As mentioned above,
each selfish bidder i wants to maximize his/her own payoff. A
bid profile of all bidders’ bid vectors is a pure Nash equilibrium

if no bidder wants to change his/her own bid vector assuming that
any other bidders keep their own bid vectors.

For a combinatorial auction with item bidding where all bid-
ders’ valuations are submodular, Christodoulou, Kovács, and
Schapira showed that there is always a pure Nash equilibrium and
proposed an algorithm for finding a pure Nash equilibrium which
is a 1

2 -approximation to the optimal social welfare in polynomial
time in n and m [3]. They also showed that the price of anarchy
is at most 2. Bhawalkar and Roughgarden considered a combi-
natorial auction with item bidding where all bidders’ valuations
are subadditive and showed that every pure Nash equilibrium has
a welfare at least 1

2 of the social optimal welfare (thus, the price
of anarchy is at most 2 if a pure Nash equilibrium exists) under
the assumption of no “overbidding” [1]. Furthermore, Bhawalkar
and Roughgarden suggested the following open problem: “Iden-
tify necessary and sufficient conditions for the existence of a pure
Nash equilibrium in a combinatorial auction with item bidding
and subadditive valuations.”

In this paper, we give a necessary and sufficient condition for
the existence of a pure Nash equilibrium in a combinatorial auc-
tion with item bidding by two bidders when both valuations are
subadditive and symmetric (i.e., fi(S ) = fi(T ) for all subsets
S ,T ⊆ M with |S | = |T |) under the assumption of no “overbid-
ding.” Symmetric valuations were considered in Refs. [12], [13].
An auction with symmetric valuations is called a multi-unit auc-

tion and several results have been proposed in multi-unit auc-
tions [2], [9], [11]. The auction for the super-long-term Japanese
Goverment Bonds is an example of multi-unit auctions [7].

1. Combinatorial Auctions and Item Bidding

As mentioned before, in a combinatorial auction, we are given
a set of n bidders N = {1, 2, . . . , n} and a set of m items M =

{1, 2, . . . ,m}. In this paper, we only consider the case of n = 2.
Thus, N = {1, 2}. Each bidder i ∈ N has a valuation fi which
assigns, for each subset S ⊆ M, a nonnegative number fi(S ). We
denote a valuation profile of two bidders by f = ( f1, f2). In a
combinatorial auction with item bidding, each bidder i ∈ N has a
nonnegative bid bi( j) for each item j ∈ M and i’s bid is denoted
by

bi = (bi(1), bi(2), . . . , bi(m)).

We denote a bid profile of two bidders by b = (b1, b2). We also
write b−i for each i ∈ N which is the bid of the bidder different
from bidder i in b = (b1, b2).

Feasibility of b = (b1, b2) (i.e., “no overbidding”) is defined as
follows.

Definition 1 Let f = ( f1, f2) and b = (b1, b2) be a valuation
profile and a bid profile of two bidders, respectively. For each
i ∈ N, if there is a subset S ⊆ M such that

∑
j∈S bi( j) > fi(S ) then

bi is called overbidding. Otherwise (i.e.,
∑

j∈S bi( j) ≤ fi(S ) for
all subsets S ⊆ M), bi is called feasible. If both bi (i ∈ N) are
feasible, then bid profile b = (b1, b2) is called feasible.

In a combinatorial auction with item bidding (by two or more
bidders) [1], [3], the second price auction is used. Thus, items are
allocated as follows. In a bid profile b = (b1, b2), if bidder i ∈ N

has bid bi( j) for j ∈ M which is higher than the other bidder’s bid
b−i( j), then item j is allocated to i. That is, if bi( j) > b−i( j) then
bidder i will win and obtain j ∈ M. In this case, the price of item
j ∈ M, denoted by price( j), is defined by the second highest bid
among the bids of all bidders (i.e., the lower bid of two bidders).
Thus, price( j) = b−i( j). This implies that bidder i ∈ N can obtain
no item j ∈ M with bi( j) < b−i( j).

For item j ∈ M, if both bids for j are the same, then exactly one
bidder will win and obtain j. In this case, if i wins, then the price
of j will be price( j) = b−i( j) = bi( j). In this paper, we assume
that, for each item j ∈ M, at least one bidder’s bid is positive.
(We can generalize the arguments in this paper for the case where
there can be some items j with bi( j) = 0 for both bidders i ∈ N.)

For a bid profile b = (b1, b2) and for each bidder i ∈ N,
let Xi(b) be the set of items (i wins and) allocated to i. Then
Xi(b) ⊆ { j ∈ M |bi( j)=max{b1( j), b2( j)}} by the argument above.
The payoff ui(Xi(b)) of bidder i ∈ N for Xi(b) is defined by

ui(Xi(b)) = fi(Xi(b)) −
∑

j∈Xi(b)

price( j).

Nash equilibrium is defined as follows. For a feasible bid pro-
file b = (b1, b2), let Xi(b) be the set of items allocated to bidder i.
If only bidder 1 changes bid b1 to b′1, then the resultant bid profile
of both bidders becomes b′1 = (b′1, b2). Similarly, if only bidder 2
changes bid b2 to b′2, then the resultant bid profile of both bidders
becomes b′2 = (b1, b′2).

For convenience, if only i ∈ N changes bid bi to b′i , the resul-
tant bid profile of both bidders will be written to be b′i = (b′i , b−i).
Furthermore, let Xi(b′i ) be the set of items allocated to i in bid
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profile b′i . Suppose that, even if bidder i changes bid bi to ar-
bitrary feasible bid b′i , the i’s payoff u(Xi(b′i )) will not become
strictly higher than ui(Xi(b)). In this case, i does not want to
change the bid bi in b = (b1, b2). If no bidder i ∈ N wants to
change the bid bi in the feasible bid profile b = (b1, b2), that is,
if ui(Xi(b)) ≥ ui(Xi(b′i )) for both bidders i ∈ N and for all fea-
sible bid profiles b′i = (b′i , b−i) (and Xi(b′i )) defined above, then
b = (b1, b2) is called a pure Nash equilibrium (Nash equilibrium

in short).
In this paper, we make the following assumptions on each val-

uation fi (i ∈ N):
(i) (normalization) fi(∅) = 0,
(ii) (monotonicity) 0 < fi(S ) ≤ fi(T ) for all subsets S ,T ⊆ M

with ∅ � S ⊂ T ,
(iii) (subadditivity) fi(S ∪ T ) ≤ fi(S ) + fi(T ) for all subsets

S ,T ⊆ M, and
(iv) (symmetry) fi(S ) = fi(T ) for all subsets S ,T ⊆ M with
|S | = |T |.

Thus, we can define vi : {0, 1, 2, . . . ,m} → R+ by vi(|S |) = fi(S )
for any subset S ⊆ M. Then vi is well defined by symmetry of fi
in the assumption above. Using this symmetric valuation vi, we
can write (i), (ii) and (iii) in the assumption above and the payoff
as follows.

Assumption 1 For each i ∈ N, vi in u = (v1, v2) satisfies the
following:
1. (Normalization) vi(0) = 0.
2. (Monotonicity) 0 < vi(k) ≤ vi(k′) for all k, k′with 1 ≤ k <

k′ ≤ m.
3. (Subadditivity) vi(min{k + k′,m}) ≤ vi(k) + vi(k′) for all k, k′

with 1 ≤ k, k′ ≤ m.
Definition 2 Let u = (v1, v2) and b = (b1, b2) be a valuation

profile and a bid profile of two bidders, respectively. The payoff
ui(Xi(b)) of bidder i ∈ N is then defined by

ui(Xi(b)) = vi(|Xi(b)|) −
∑

j∈Xi(b)

price( j). (1)

Since we will give a characterization of the existence of Nash
equilibria under the assumption of no “overbidding”, we first con-
sider the feasibility of a bid profile.

Definition 3 For each bidder i ∈ N, let vi in u = (v1, v2) be a
valuation satisfying Assumption 1 and let wi be a function with
wi(0) = 0 and, for each ki ∈ {1, 2, . . . ,m},

wi(ki) = ki min

{
vi(1),

vi(2)
2
, . . . ,

vi(ki − 1)
ki − 1

,
vi(ki)

ki

}
. (2)

Then each wi (i ∈ N) has the following properties.
First we have

wi(0) = vi(0), wi(1) = vi(1),
wi(ki) ≤ vi(ki) (ki = 2, 3, . . . ,m),

(3)

since wi(0) = vi(0) = 0 and, for all ki ∈ {1, 2, . . . ,m},
wi(ki)

ki
= min

{
vi(1),

vi(2)
2
, . . . ,

vi(ki − 1)
ki − 1

,
vi(ki)

ki

}
≤ vi(ki)

ki

by the definition of wi(ki). Similarly, we have

wi(ki) = ki min

{
wi(ki − 1)

ki − 1
,
vi(ki)

ki

}
(ki = 2, 3, . . . ,m), (4)

and

wi(1) ≥ wi(2)
2
≥ · · · ≥ wi(m)

m
, (5)

since

wi(ki)
ki
= min

{
vi(1),

vi(2)
2
, . . . ,

vi(ki − 1)
ki − 1

,
vi(ki)

ki

}

= min

{
min

{
vi(1),

vi(2)
2
, . . . ,

vi(ki − 1)
ki − 1

}
,
vi(ki)

ki

}

= min

{
wi(ki − 1)

ki − 1
,
vi(ki)

ki

}
≤ wi(ki − 1)

ki − 1

for all ki ∈ {2, 3, . . . ,m}. Furthermore, if wi(ki) < vi(ki) then, by
Eq. (4), we have

wi(ki)=
ki

ki − 1
wi(ki − 1) (ki = 2, 3, . . . ,m). (6)

Finally, we have

wi(1) ≤ wi(2) ≤ · · · ≤ wi(m), (7)

since wi(ki) =
ki

ki−1wi(ki − 1) or wi(ki) = vi(ki) for each ki ∈
{2, 3, . . . ,m}, and

wi(ki) = wi(ki − 1) +
1

ki − 1
wi(ki − 1) ≥ wi(ki − 1),

or

wi(ki) = vi(ki) ≥ vi(ki − 1) ≥ wi(ki − 1)

by the monotonicity of vi and wi(ki − 1) ≤ vi(ki − 1) in Eq. (3).
Throughout this paper, we use the following assumption.
Assumption 2 For each i ∈ N, vi in u = (v1, v2) satisfies As-

sumption 1 and wi in w = (w1, w2) is the function defined in Defi-
nition 3.

Then we have the following theorem, which will play a central
role in the proof of the main result in this paper.

Theorem 1 For any bid profile b = (b1, b2) and for each bid-
der i ∈ N, let the elements of each bi = (bi(1), bi(2), . . . , bi(m))
be ordered in nondecreasing order by using a permutation πi on
M = {1, 2, . . . ,m} as follows:

bi(πi(1)) ≤ bi(πi(2)) ≤ · · · ≤ bi(πi(m)). (8)

Then bidder i’s bid bi = (bi(1), bi(2), . . . , bi(m)) is feasible if and
only if

m∑
j=m−ki+1

bi(πi( j)) ≤ wi(ki) (ki = 1, 2, . . . ,m), (9)

that is, the sum of largest ki bids in bi = (bi(1), bi(2), . . . , bi(m)) is
at most wi(ki) for every ki ∈ {1, 2, . . . ,m}.

Thus, the bid profile b = (b1, b2) is feasible if and only if Eq. (9)
holds for every i ∈ N and every ki ∈ {1, 2, . . . ,m}.
Proof: (Sufficiency) Suppose Eq. (9) holds for i ∈ N and every
ki ∈ {1, 2, . . . ,m}. For any subset S i ⊆ M, let ki = |S i|. Then, in
bid vector bi = (bi(1), bi(2), . . . , bi(m)), the sum of the ki bids of
items in S i is at most the sum of the largest ki bids, i.e.,

∑
j∈S i

bi( j) ≤
m∑

j=m−ki+1

bi(πi( j))
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by Eq. (8). Thus, by Eqs. (9) and (3) (i.e., wi(ki) ≤ vi(ki)), we have

∑
j∈S i

bi( j) ≤
m∑

j=m−ki+1

bi(πi( j)) ≤ wi(ki) ≤ vi(ki)

and bi = (bi(1), bi(2), . . . , bi(m)) is feasible by Definition 1.
(Necessity) Suppose that, for i ∈ N, bid vector bi =

(bi(1), bi(2), . . . , bi(m)) is feasible. Then, for any subset S i ⊆ M

with ki = |S i| ∈ {1, 2, . . . ,m},∑
j∈S i

bi( j) ≤ vi(ki).

Let S i = {πi(m − ki + 1), πi(m − ki + 2), . . . , πi(m)}. Then we have

m∑
j=m−ki+1

bi(πi( j)) ≤ vi(ki) (10)

for all ki ∈ {1, 2, . . . ,m} and

1
ki

m∑
j=m−ki+1

bi(πi( j)) ≤ vi(ki)
ki
. (11)

Furthermore, since, in bi = (bi(1), bi(2), . . . , bi(m)), for each
k′i ∈ {2, 3, . . . , ki}, the average of the largest k′i bids is at most
the average of the largest k′i − 1 bids, we have

1
k′i

m∑
j=m−k′i+1

bi(πi( j)) ≤ 1
k′i − 1

m∑
j=m−k′i+2

bi(πi( j))

by Eq. (8). Thus, we have

1
ki

m∑
j=m−ki+1

bi(πi( j)) ≤ 1
ki − 1

m∑
j=m−ki+2

bi(πi( j))

≤ · · ·
≤ 1

2

m∑
j=m−1

bi(πi( j))

≤ bi(πi(m)).

By combining this with Eq. (11), we have

1
ki

m∑
j=m−ki+1

bi(πi( j)) ≤ 1
k′i

m∑
j=m−k′i+1

bi(πi( j)) ≤ vi(k
′
i )

k′i
(12)

for any k′i = 1, 2, . . . , ki. Thus, by combining this with the defini-
tion of wi in Eq. (2), we have

1
ki

m∑
j=m−ki+1

bi(πi( j)) ≤ min

{
vi(1),

vi(2)
2
, . . . ,

vi(ki)
ki

}
=
wi(ki)

ki

and Eq. (9) for every ki ∈ {1, 2, . . . ,m}. �
By Theorem 1, we have the following corollary.
Corollary 1 A bid profile b = (b1, b2) of two bidders can be

determined as to whether or not it is feasible in O(m) time, if the
elements of bi for both i ∈ N are sorted as in Eq. (8) in advance.

2. Existence of Nash Equilibria

In this section, we first give some technical terms and lem-
mas for explaining the main result in this paper, and then give its
proof.

Definition 4 Let P = (M1,M2) be a partition of M into two
subsets, i.e., M1 ∩M2 = ∅ and M1 ∪M2 = M. For each i ∈ N, let

di= (di(1), di(2), . . . , di(m)) be defined by

di( j) =

⎧⎪⎪⎨⎪⎪⎩
wi(|Mi |)
|Mi | (if j ∈ Mi),

0 (otherwise).
(13)

Then we have the following lemma and the main result.
Lemma 1 The bid profile d = (d1, d2) defined by Eq. (13) is

feasible and Xi(d) = Mi for each i ∈ N (i.e., the set of items (i
wins and) allocated to i in d = (d1, d2) is Mi).
Proof: Clearly, Xi(d) = Mi, since P = (M1,M2) is the partition
of M into two subsets and d−i( j) = 0 for each j ∈ Mi by Eq. (13).

We will prove that d = (d1, d2) is feasible. To clarify the argu-
ment, we will give a proof for i = 1. By symmetry, a proof for
i = 2 is also obtained.

Let k1 = |M1| and let the elements of bid vector d1 be ordered
by using some permutation σ1 on M as follows:

d1(σ1(1)) ≤ d1(σ1(2)) ≤ · · · ≤ d1(σ1(m)). (14)

Then,

d1(σ1(1)) = d1(σ1(2)) = · · · = d1(σ1(m − k1)) = 0,
d1(σ1(m − k1 + 1)) = · · · = d1(σ1(m)) = w1(k1)

k1
,

(15)

and, for every k′ with 1 ≤ k′ ≤ k1, we have

m−k1+k′∑
j=m−k1+1

d1(σ1( j)) =
k′

k1
w1(k1). (16)

The feasibility of d1 can be obtained as follows. Since w1(1) ≥
w1(2)

2 ≥ · · · ≥ w1(m)
m by Eq. (5), we have

m∑
j=m−k′′+1

d1(σ1( j)) =
k′′

k1
w1(k1) ≤ w1(k′′) for each k′′ ≤ k1.

On the other hand, if k′′ > k1, then, since d1(σ1(m − k′′ + 1)) =
d1(σ1(m − k′′ + 2)) = · · · = d1(σ1(m − k1)) = 0, we have

m∑
j=m−k′′+1

d1(σ1( j)) =
m∑

j=m−k1+1

d1(σ1( j)) = w1(k1) ≤ w1(k′′),

where the last inequality is obtained from Eq. (7). Thus, d1 is
feasible by Theorem 1. �

Theorem 2 A valuation profile u = (v1, v2) satisfying As-
sumption 1 has a Nash equilibrium if and only if there is a par-
tition P = (M1,M2) of M into two subsets such that the feasible
bid profile d = (d1, d2) of two bidders defined by Eq. (13) is a
Nash equilibrium.

Before giving a proof of Theorem 2, we give simple examples.
Example 1. Let N = {1, 2}, M = {1, 2, 3} and let

v1(0) = 0, v1(1) = v1(2) = 3, v1(3) = 6,
v2(0) = 0, v2(1) = v2(2) = 2, v2(3) = 4.

(17)

Then each vi (i ∈ N) satisfies Assumption 1, and

w1(0) = 0, w1(1) = 3, w1(2)
2 = 1.5, w1(3)

3 = 1.5,
w2(0) = 0, w2(1) = 2, w2(2)

2 = 1, w2(3)
3 = 1.

In this case, by Theorem 2, there is no Nash equilibrium which
can be shown as follows.

By symmetry, we can assume there are only four distinct
partitions P (k) = (M (k)

1 ,M
(k)
2 ) of M (k = 0, 1, 2, 3), where
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M (k)
1 = { j ∈ M | j ≤ k} and M (k)

2 = M − M (k)
1 . Thus,

M (0)
1 = ∅, M (1)

1 = {1}, M (2)
1 = {1, 2}, M (3)

1 = {1, 2, 3}. Corre-
sponding to the partition P (k) = (M (k)

1 ,M
(k)
2 ) of M, the feasible

bid profiles d (k) = (d (k)
1 , d

(k)
2 ) defined by Eq. (13) are

d (0)
1 = (0, 0, 0), d (0)

2 = (1, 1, 1),
d (1)

1 = (3, 0, 0), d (1)
2 = (0, 1, 1),

d (2)
1 = (1.5, 1.5, 0), d (2)

2 = (0, 0, 2),
d (3)

1 = (1.5, 1.5, 1.5), d (3)
2 = (0, 0, 0).

Thus, Xi(d (k)) = M (k)
i for all k = 0, 1, 2, 3 and i = 1, 2. Now let

bidder 1 change bid d (k)
1 to d′(k)

1 for k = 0, 1, 2 as follows:

d′ (0)
1 = (3, 0, 0), d′ (1)

1 = (0.8, 1.1, 1.1), d′ (2)
1 = (0.4, 0.4, 2.2).

It can then be easily seen that bidder 1 can improve his payoff
in the feasible bid profile d′ (k) = (d′ (k)

1 , d
(k)
2 ). Actually, X1(d′ (k))

and the payoff u1(X1(d′ (k))) for k = 0, 1, 2 become as follows.

X1(d′ (0)) = {1}, u1(X1(d′ (0))) = 3 − 1 > u1(X1(d (0))) = 0,

and, for k = 1, 2,

X1(d′ (k)) = {1, 2, 3}, u1(X1(d′ (k))) = 6 − 2 > u1(X1(d (k))) = 3.

Similarly, for k = 3, if bidder 2 changes bid d (3)
2 to d′ (3)

2 = (0, 0, 2)
then bidder 2 can improve her payoff in the feasible bid profile
d′ (3)

2 = (d (3)
1 , d

′ (3)
2 ) from 0 to 0.5. Actually,

X2(d′ (3)) = {3}, u2(X2(d′ (3))) = 2 − 1.5 > u2(X2(d (3))) = 0.

By Theorem 2, the valuation profile u = (v1, v2) in Eq. (17) has
no Nash equilibrium. �
Example 2. Let N = {1, 2}, M = {1, 2, 3, 4, 5} and

vi(0) = 0, vi(1) = vi(2) = vi(3) = 3, vi(4) = vi(5) = 6

for each i ∈ N. Then each vi (i ∈ N) satisfies Assumption 1 and

wi(0) = 0, wi(1) = 3, wi(2)
2 = 1.5, wi(3)

3 =
wi(4)

4 =
wi(5)

5 = 1.

As in Example 1, for k = 3 with M (3)
1 = {1, 2, 3} and M (3)

2 =

{4, 5}, d (3) = (d (3)
1 , d

(3)
2 ) defined by Eq. (13) is

d (3)
1 = (1, 1, 1, 0, 0), d (3)

2 = (0, 0, 0, 1.5, 1.5).

The feasible bid profile d (3) = (d (3)
1 , d

(3)
2 ) with X (3)

1 (d (3)) =
M (3)

1 = {1, 2, 3} and X (3)
2 (d (3)) = M (3)

2 = {4, 5} is not a
Nash equilibrium: if bidder 2 changes bid d (3)

2 to d′ (3)
2 =

(0, 1.2, 1.2, 0.3, 0.3) then

X2(d′ (3))= {2, 3, 4, 5}, u2(X2(d′ (3)))=6 − 2 > u2(X2(d (3))) = 3

and she can improve her payoff in the feasible bid profile d′ (3)
2 =

(d (3)
1 , d

′ (3)
2 ) from 3 to 4.

However, d (1) = (d (1)
1 , d

(1)
2 ) with

d (1)
1 = (3, 0, 0, 0, 0), d (1)

2 = (0, 1, 1, 1, 1)
(M (1)

1 = {1}, M (1)
2 = {2, 3, 4, 5})

(u1(X1(d (1))) = u1(M (1)
1 ) = 3 u2(X2(d (1))) = u2(M (1)

2 ) = 6)

and d (4) = (d (4)
1 , d

(4)
2 ) with

d (4)
1 = (1, 1, 1, 1, 0), d (4)

2 = (0, 0, 0, 0, 3)
(M (4)

1 = {1, 2, 3, 4}, M (4)
2 = {5})

(u1(X1(d (4))) = u1(M (4)
1 ) = 6 u2(X2(d (4))) = u2(M (4)

2 ) = 3)

are both Nash equilibria. �
We give an outline of the proof of Theorem 2 using the follow-

ing notation.
Definition 5 For a bid profile b = (b1, b2), let Yi = Xi(b) be

the set of items allocated to bidder i and let yi = |Yi| (i = 1, 2).
Then, clearly P = (Y1,Y2) is a partition of M into two subsets,
i.e., Y1 ∩ Y2 = ∅, Y1 ∪ Y2 = M and y1 + y2 = m. For each i ∈ N,
let ci = (ci(1), ci(2), . . . , ci(m)) be defined by

ci( j) =

⎧⎪⎪⎨⎪⎪⎩
wi(yi)
yi

(if j ∈ Yi),

0 (otherwise).
(18)

If we let Mi = Yi then ci = (ci(1), ci(2), . . . , ci(m)) is the bid di

defined by Eq. (13) in Definition 4. Thus, we have the following
lemma (we will give its proof in Section 4).

Lemma 2 In a valuation profile u = (v1, v2), if a feasible bid
profile b = (b1, b2) is a Nash equilibrium, then c = (c1, c2) de-
fined by Eq. (18) is also a Nash equilibrium.

Using this lemma, we can easily prove Theorem 2 as follows.
Proof of Theorem 2: (Necessity) If there is a feasible bid pro-
file b = (b1, b2) which is a Nash equilibrium, then, by Lemma 2,
c = (c1, c2) defined by Eq. (18) is also a Nash equilibrium. Thus,
by setting Mi = Yi and di = ci for each i ∈ N, we have a desired
partition of M into two subsets and the necessity for Theorem 2
is proved.

(Sufficiency) If there is a partition P = (M1,M2) of M into two
subsets such that the feasible bid profile d = (d1, d2) of two bid-
ders defined by Eq. (13) is a Nash equilibrium, then it is clearly a
Nash equilibrium in the valuation profile u = (v1, v2). �

3. Basic Properties of a Feasible Bid Profile b

To prove Lemma 2, we need the concept of prestability and sta-
bility. For a bid vector b = (b(1), b(2), . . . , b(m)), let b( j↔ j′) be
the bid vector obtained from b by swapping b( j) and b( j′). For ex-
ample, if b = (b(1), b(2), b(3)) then b(1↔ 3) = (b(3), b(2), b(1)).

Definition 6 Let b = (b1, b2) be a feasible bid profile. For
i ∈ N, let Xi(b) be the set of items allocated to bidder i. Then bi

is called prestable in b = (b1, b2), if

ui(Xi(b)) ≥ ui(Xi(b′i ))

for all feasible bid profiles b′i = (b′i , b−i) with b′i = bi( j ↔ j′)
(1 ≤ j � j′ ≤ m) and |Xi(b′i )| = |Xi(b)|. Otherwise, bi is called
unprestable in b = (b1, b2). If both bi (i ∈ N) are prestable in
b = (b1, b2), then b = (b1, b2) is called prestable.

Note that, by the definition, a prestable bid profile b = (b1, b2)
is always feasible and that, if bi is unprestable in a feasible bid
profile b = (b1, b2), then b = (b1, b2) is not a Nash equilib-
rium. Furthermore, as mentioned in Corollary 1, we can deter-
mine whether a given bid profile b = (b1, b2) is feasible or not
in O(m) time (excluding O(m log m) time for sorting). We can
also determine whether a given feasible bid profile b = (b1, b2) is
prestable or not in O(m2) time based on Definition 6.

Furthermore, we have the following lemma (see Appendix for
its proof).

Lemma 3 For a prestable bid profile b = (b1, b2), let Yi =

Xi(b) be the set of items allocated to bidder i ∈ N and let
yi = |Yi|. Then we can always choose a permutation π−i on
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M = {1, 2, . . . ,m} appropriately such that

b−i(π−i(1)) ≤ b−i(π−i(2)) ≤ · · · ≤ b−i(π−i(m)), and (19)

Yi = {π−i(1), π−i(2), . . . , π−i(yi)}. (20)

Based on these observations, from now on, we will consider
only a prestable bid profile b = (b1, b2), and assume that, for each
i ∈ N, the set of items Yi = Xi(b) allocated to bidder i and a
permutation π−i satisfy Eqs. (19) and (20).

Definition 7 Let b = (b1, b2) be a prestable bid profile sat-
isfying Eqs. (19) and (20), where Yi = Xi(b) is the set of items
allocated to bidder i ∈ N and yi = |Yi| (thus, P = (Y1, Y2) is a
partition of M into two subsets and y1 + y2 = m). For i ∈ N, if

vi(yi + k) − vi(yi) ≤
k∑

j=1

b−i(π−i(yi + j)) (21)

for all k with 1 ≤ k ≤ m − yi and

vi(yi − k′) ≤ vi(yi) −
k′−1∑
j=0

b−i(π−i(yi − j)) (22)

for all k′ with 1 ≤ k′ ≤ yi, then b−i is called stable in b = (b1, b2),
and otherwise it is called unstable. If both b1 and b2 are stable in
b = (b1, b2), then b = (b1, b2) is called stable.

Note that, if a prestable bid profile b = (b1, b2) is stable, then
even if bidder i changes bi to b′i which may or may not be fea-
sible, the payoff of bidder i will not increase in (b′i , b−i), which
can be shown by Eqs. (21), (22) and the definition of the payoff
of bidder i. Thus, if a prestable bid profile b = (b1, b2) is stable,
then it is a Nash equilibrium. The converse is also true and we
have the following theorem (see Appendix for its proof).

Theorem 3 A prestable bid profile b = (b1, b2) of two bid-
ders with (X1(b), X2(b)) satisfying Eqs. (19) and (20), where Xi(b)
is the set of items allocated to bidder i with |Xi(b)| = yi (i ∈ N), is
a Nash equilibrium if and only if b = (b1, b2) is stable.

By Theorem 3 (and Definition 7), we can determine whether a
prestable bid profile b = (b1, b2) is a Nash equilibrium or not in
O(m) time. Furthermore, by combining this with Theorem 2, we
have the following corollary.

Corollary 2 We can determine whether a valuation profile
u = (v1, v2) satisfying Assumption 1 has a Nash equilibrium or
not in O(m2) time and, if it has, we can find such a Nash equilib-
rium in O(m2) time.

From this theorem, we can also obtain the proof of Lemma 2
without much difficulty.

4. Proof of Lemma 2

Finally, we study properties of c = (c1, c2) defined by Eq. (18)
and complete the proof of Lemma 2. Note that, for each i ∈ N,
Yi = Xi(b) and yi = |Yi|. For each i ∈ N, let Xi(c) be the set of
items allocated to bidder i in c = (c1, c2). Thus, we have

Xi(c) = Yi, |Xi(c)| = yi (i ∈ N), (23)

y1 + y2 = m, (24)

by the definition of c = (c1, c2) in Eq. (18). We order the items
not contained in Xi(c) in nondecreasing order in b−i. Thus, we

can assume that the items in X−i(c) = Y−i = M − Xi(c) =
{ j (−i)

1 , j (−i)
2 , . . . , j (−i)

m−yi
} are ordered as follows:

b−i( j (−i)
1 ) ≤ b−i( j (−i)

2 ) ≤ · · · ≤ b−i( j (−i)
m−yi

). (25)

Similarly, we consider c−i and order the items in Y−i =

{ j (−i)
1 , j (−i)

2 , . . . , j (−i)
m−yi
} in nondecreasing order in c−i by using a

permutation σ−i as follows:

c−i(σ−i( j (−i)
1 )) ≤ c−i(σ−i( j (−i)

2 )) ≤ · · · ≤ c−i(σ−i( j (−i)
m−yi

)). (26)

Then the following lemma holds (see Appendix for its proof).
Lemma 4 Let i ∈ N and ki ≤ m− yi be a nonnegative integer.

Then

ki∑
h=1

b−i( j (−i)
h ) ≤

ki∑
h=1

c−i(σ−i( j (−i)
h )), (27)

i.e., the sum of the ki smallest bids for the items in Y−i =

{ j (−i)
1 , j (−i)

2 , . . . , j (−i)
m−yi
} in b−i is at most the sum of the ki smallest

bids for the items in Y−i in c−i.
By using this lemma and Theorem 3, we can obtain the proof

of Lemma 2.
Proof of Lemma 2 : Suppose to the contrary that, c = (c1, c2)
is not a Nash equilibrium even though b = (b1, b2) is a Nash
equilibrium. Then there would be a bidder i ∈ N such that if
bidder i changes the bid then in the resulting bid profile bidder i

will obtain a greater payoff. Thus, by symmetry, we can assume
i = 1 and bidder 1 changes c1 to c′1 so that his payoff u1(X1(c′))
of X1(c′) of items allocated to him in the bid profile c′ = (c′1, c2)
is greater than his payoff u1(X1(c1)) in the bid profile c = (c1, c2).
Thus, we have

u1(X1(c′)) = v1(|X1(c′)|) −
∑

j∈X1(c′)
c2( j)

> u1(X1(c))=v1(y1). (28)

We will show below that this leads to a contradiction.
We can assume X1(c′) ⊇ X1(c). Actually, for every j ∈ X1(c),

we have c2( j) = 0 by the definition of c, and, by the mono-
tonicity of v1, we can modify c′1( j) so that X1(c′) may include
j without decreasing the value of u1(X1(c′)) (by decreasing a
bid for some item in X1(c′) − X1(c) if necessary). Now let
Y ′2 = X1(c′) − X1(c) ⊆ Y2 and k1 = |Y ′2|. Then we can write

u1(X1(c′)) = v1(|X1(c′)|) −
∑
j∈Y ′2

c2( j). (29)

Since X1(c′) = X1(c) ∪ Y ′2 and |X1(c′)| = |X1(c1)| + |Y ′2| = y1 + k1,

by applying Lemma 4, we have

u1(X1(c′)) = v1(|X1(c′)|) −
∑
j∈Y ′2

c2( j)

≤ v1(|X1(c′)|) −
k1∑

h=1

b2( j(2)
h )

= v1(y1 + k1) −
k1∑

h=1

b2( j(2)
h )

by Eq. (29). Moreover, since b = (b1, b2) is a Nash equilibrium,
we have
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v1(y1 + k1) − v1(y1) ≤
k1∑

h=1

b2( j(2)
h )

by Definition 7 and Theorem 3. By combining these, we have
u1(X1(c′)) ≤ v1(y1). However, this contradicts

u1(X1(c′)) > u1(X1(c)) = v1(y1)

in Eq. (28). Thus, c = (c1, c2) is a Nash equilibrium. �

5. Concluding Remarks

In this paper, we have given a necessary and sufficient condi-
tion for a valuation profile u = (v1, v2) satisfying Assumption 1 to
have a Nash equilibrium in Theorem 2. We give some remarks
below.

Note that, if all valuations vi are submodular and symmetric
then it is easily shown that we can obtain a Nash equilibrium
which also maximizes the social welfare (thus, it is optimal) in
polynomial time in n and m, however, the price of anarchy re-
mains 2 [14]. This implies that the price of anarchy cannot be
improved even if we restrict valuations to be symmetric.

The results in this paper can be generalized to the case of n ≥ 3.
That is, if n is fixed, we can decide in polynomial time whether a
combinatorial auction has a Nash equilibrium or not if all valua-
tions vi are subadditive and symmetric [14]. However, if n is not
fixed, our algorithm becomes exponential in n. Thus, we pose the
following questions: is there a polynomial time algorithm to de-
cide whether the model of the combinatorial auction in this paper
with general n ≥ 3 has a Nash equilibrium or not? Is it possible
to relax the constraint of symmetry in a valuation and to obtain a
similar result which might lead to an answer to the open question
posed by Bhawalkar and Roughgarden in Ref. [1].

A recent paper by Dobzinski, Fu, and Kleinberg [4] revealed
that exponential communication is required in order to find a pure
no-overbidding Nash equilibrium in combinatorial auctions with
subadditive bidders, even if such an equilibrium is known to ex-
ist. However, this does not settle the open question posed by
Bhawalkar and Roughgarden. Note also that, this does not im-
ply that any algorithm for deciding whether there is a pure no-
overbidding equilibrium in combinatorial auctions with subaddi-
tive bidders requires exponential time.
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[3] Chrisodoulou, G., Kovács, A. and Schapira, M.: Bayesian combinato-
rial auctions, Proc. 35th ICALP, pp.820–832 (2008).

[4] Dobzinski, S., Fu, H. and Kleinberg, R.: On the complexity of com-
puting an equilibrium in combinatorial auctions, Proc. 26th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp.110–122 (2015).

[5] Dobzinski, S., Nisan, N. and Schapira, M.: Approximation al-
gorithms for combinatorial auctions with complement-free bidders,
Proc. 37th Annual ACM Symposium on Theory of Computing, pp.610–
618 (2005).

[6] Dobzinski, S. and Schapira, M.: An improved approximation algo-
rithm for combinatorial auctions with submodular bidders, Proc. 17th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp.1064–
1073 (2006).

[7] Debt Management Report 2011, The Government Debt Management
and the State of Public Debts, Financial Bureau, Ministry of Finance,
Japan, pp.34–46, available from 〈http://www.mof.go.jp/english/jgbs/
publication/debt management report/2011/saimu.pdf〉.

[8] Feige, U.: On maximizing welfare where utility functions are subad-
ditive, Proc. 38th Annual ACM Symposium on Theory of Computing,
pp.41–50 (2006). (see also SIAM J. Computing, Vol.39, pp.122–142
(2009)).

[9] de Keijzer, B., Markakis, E., Schäfer, G. and Telelis, O.: Inefficiency
of standard multi-unit auctions, Proc. 21st Annual European Sympo-
sium on Algorithms, pp.385–396 (2013).

[10] Khot, S., Lipton, R., Markakis, E. and Mehta, A.: Inapproximability
results for combinatorial auctions with submodular utility functions,
Proc. WINE 2005, Lecture Notes in Computer Science 3828, pp.92–
101 (2005).

[11] Kwasnica, A.M. and Sherstyuk, K.: Multi-unit auctions, Journal of
Economic Surveys, Vol.27, No.3, pp.461–490 (2013).

[12] Lehmann, B., Lehmann, D. and Nisan, N.: Combinatorial auctions
with decreasing marginal utilities, Proc. 3rd Annual ACM Symposium
on Electronic Commerce, pp.18–28 (2001).

[13] Nisan, N.: Bidding and allocation in combinatorial auctions, Proc. 2nd
Annual ACM Symposium on Electronic Commerce, pp.1–12 (2000).

[14] Umeda, H. and Asano, T.: Unpublished note, Department of Informa-
tion and System Engineering, Chuo University (2017).
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Appendix

A.1 Proof of Lemma 3

Suppose that Yi � {π−i(1), π−i(2), . . . , π−i(yi)}. Then for some
j ∈ {1, 2, . . . , yi} and j′ ∈ {yi+1, yi+2, . . . ,m}, we have π−i( j) � Yi

and π−i( j′) ∈ Yi. Thus,

j < j′, b−i(π−i( j)) ≤ b−i(π−i( j′)),
bi(π−i( j)) ≤ b−i(π−i( j)), and b−i(π−i( j′)) ≤ bi(π−i( j′)).

Then b−i(π−i( j)) = b−i(π−i( j′)) holds, which will be shown be-
low. Now (let b−i(π−i( j)) = b−i(π−i( j′)) and) let π−i( j ↔ j′) be
the permutation obtained from π−i by swapping π−i( j) and π−i( j′).
Thus,

π−i( j↔ j′)( j′′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π−i( j′′) ( j′′ � j, j′),
π−i( j) ( j′′ = j′),
π−i( j′) ( j′′ = j).

Then, by updating π−i = π−i( j ↔ j′), we obtain π−i( j) ∈ Yi and
π−i( j′) � Yi. Note that, by this process, only π−i changes, but
none of b1, b2, Y1, Y2, and πi changes, and Eq. (19) always holds.
By repeating this process, we can finally obtain a permutation π−i

satisfying Eqs. (19) and (20).
Now we prove b−i(π−i( j)) = b−i(π−i( j′)). Suppose to the con-

trary that b−i(π−i( j)) < b−i(π−i( j′)). Let b′i = bi(π−i( j) ↔ π−i( j′))
be obtained from bi by swapping bi(π−i( j)) and bi(π−i( j′)). Then
b′i = (b′i , b−i) is a feasible bid profile and

b′i (π−i( j′)) ≤ b−i(π−i( j)) < b−i(π−i( j′)) ≤ b′i (π−i( j)).

Thus, Xi(b′i ) = Xi(b) − {π−i( j′)} ∪ {π−i( j)} and |Xi(b′i )| = |Xi(b)|,
and we have
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ui(Xi(b′i )) = ui(Xi(b)) + b−i(π−i( j′)) − b−i(π−i( j)) > ui(Xi(b)).

However, this is a contradiction, because bi is prestable. Thus,
we have b−i(π−i( j)) = b−i(π−i( j′)).

Now let i = 1, and let π2 be an identical permutation (i.e.,
π2( j) = j for all j = 1, 2, . . . ,m) by changing labels of items if
necessary. Then by Eqs. (19) and (20), we have

b2(1) ≤ b2(2) ≤ · · · ≤ b2(m) and Y1 = {1, 2, . . . , y1}, (A.1)

and

b1(π1(1)) ≤ b1(π1(2)) ≤ · · · ≤ b1(π1(m)) and
Y2 = {π1(1), π1(2), . . . , π1(y2)} (y2 = m − y1)

(A.2)

by choosing π1 appropriately. Such a permutation π1 is obtained
by the same argument above. �

A.2 Proof of Lemma 4

To clarify the argument, we will give a proof for i = 1. Thus,
bi = b1, ci = c1, πi = π1, σi = σ1, b−i = b2, c−i = c2, π−i = π2,
and σ−i = σ2. By symmetry, a proof for i = 2 is also obtained
and we will omit it.

Let Y ′2 be the set of k1 items of Y2 = X2(c) = M − X1(c) corre-
sponding to k1 smallest bids in c2, i.e.,

Y ′2 = {σ2( j(2)
1 ), σ2( j(2)

2 ), . . . , σ2( j(2)
k1

)} ⊆ Y2. (A.3)

Note that c2( j) = w2(y2)
y2

for each j ∈ Y2 = X2(c). Thus,

∑
j∈Y ′2

c2( j) = k1
w2(y2)
y2

(A.4)

Since Y2 = X2(b) and b2 is feasible, the sum of the smallest k1

bids of Y2 in b2 is at most k1
w2(y2)
y2

. In fact, this can be obtained
as follows. If the sum of the smallest k1 bids of Y2 in b2 were
greater than k1

w2(y2)
y2

, then the k1th smallest bid of Y2 would be

greater than w2(y2)
y2

(and each larger bid of Y2 would also be greater

than w2(y2)
y2

) and we would have
∑

j∈Y2
b2( j) > y2

w2(y2)
y2
= w2(y2), a

contradiction for the feasibility of b2.
Thus, we have the sum of the smallest k1 bids of Y2 in b2 is at

most
∑
j∈Y ′2

c2( j) = k1
w2(y2)
y2

and Eq. (27) for i = 1. �

A.3 Proof of Theorem 3

We assume Eq. (19), i.e.,

b−i(π−i(1)) ≤ b−i(π−i(2)) ≤ · · · ≤ b−i(π−i(m)).

To prove Theorem 3, we need some notation.
Definition 8 For a feasible bid profile b = (b1, b2), let gi(b−i)

denote the maximum number of items which bidder i ∈ N can
obtain by choosing his feasible bid vector b′i appropriately. That
is, he can choose a feasible bid vector b′i so that he can obtain
gi(b−i) items, however, he cannot obtain gi(b−i) + 1 items for any
feasible bid vector b′′i .

In the feasible bid profile b = (b1, b2), we will say, gi ≤ gi(b−i)

items are allocatable to bidder i, but hi ≥ gi(b−i)+1 items are un-

allocatable to bidder i using this notation gi(b−i). Then we have
the following lemma.

Lemma 5 Suppose that, in a feasible bid profile b = (b1, b2),
for each i ∈ N, gi(b−i) items are allocatable to bidder i, but
gi(b−i) + 1 items are not. Then there is an integer hi with
1 ≤ hi ≤ gi(b−i) + 1 such that

hi−1∑
j=0

b−i(π−i(gi(b−i) + 1 − j)) > wi(hi).

Let g′i be the smallest such integer hi. Then

1 ≤ g′i ≤ gi(b−i) + 1, (A.5)

wi(g
′
i ) = vi(g

′
i ), (A.6)

g′i−1∑
j=0

b−i(π−i(gi(b−i) + 1 − j)) > wi(g
′
i ), and (A.7)

k−1∑
j=0

b−i(π−i(gi(b−i) + 1 − j)) ≤ wi(k) for all k ≤ g′i − 1.

(A.8)

Proof: To clarify the argument, we will give a proof for i = 1.
Thus, bi = b1, πi = π1, b−i = b2 and π−i = π2. By symmetry, a
proof for i = 2 is also obtained. Furthermore, we can assume that
π2 is an identical permutation and π2( j) = j for all j = 1, 2, . . . ,m
by changing labels of items if necessary. Thus, Eq. (19) can be
written as follows:

b2(1) ≤ b2(2) ≤ · · · ≤ b2(m). (A.9)

Suppose that there were no such h1 with 1 ≤ h1 ≤ g1(b2) + 1.
Then

h1−1∑
j=0

b2(g1(b2) + 1 − j) ≤ w1(h1), (A.10)

for each h1 = 1, 2, . . . , g1(b2) + 1. Let b′1 and π′1 be defined by

b′1( j) =

⎧⎪⎪⎨⎪⎪⎩
b2( j) ( j = 1, 2, . . . , g1(b2) + 1)
0 ( j = g1(b2) + 2, g1(b2) + 3, . . . ,m),

π′1( j) =

⎧⎪⎪⎨⎪⎪⎩
j + g1(b2) + 1 ( j = 1, 2, . . . ,m − g1(b2) − 1),
j − (m − g1(b2)) + 1 ( j = m − g1(b2), . . . ,m).

Then we have

b′1(π′1(1)) ≤ b′1(π′1(2)) ≤ · · · ≤ b′1(π′1(m)),
b′1(π′1(m − j)) = b2(g1(b2) + 1 − j) ( j = 0, 1, . . . , g1(b2)),
b′1(π′1(m − j)) = 0 ( j = g1(b2) + 1, g1(b2) + 2, . . . ,m − 1).

Thus,

h1−1∑
j=0

b′1(π′1(m − j)) =
h1−1∑
j=0

b2(g1(b2) + 1 − j) ≤ w1(h1)

for all h1 with 1 ≤ h1 ≤ g1(b2) + 1 (and

h1−1∑
j=0

b′1(π′1(m − j)) =
g1(b2)∑

j=0

b2(g1(b2) + 1 − j) ≤ w1(g1(b2) + 1)

for all h1 with g1(b2) + 2 ≤ h1 ≤ m) would hold, and b′1 would
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be a feasible bid of bidder i by Theorem 1. Thus, g1(b2) + 1
items would be allocatable to bidder 1 in a feasible bid profile
b′ = (b′1, b2). However, this is a contradiction, since g1(b2) + 1
items are not allocatable to bidder 1. Thus, such an integer h1

exists, and 1 ≤ g′1 ≤ g1(b2) + 1, Eqs. (A.7) and (A.8) hold.
Next, we prove w1(g′1) = v1(g′1). If g′1 = 1, then it is clear

that w1(g′1) = w1(1) = v1(1) = v1(g′1) by the definition of
w1. Thus, from now on we can assume g′1 ≥ 2. Suppose that
w1(g′1) � v1(g′1). Then we have w1(g′1) < v1(g′1) by Eq. (3). Thus,
by Eq. (6), we have

w1(g′1) = g′1
w1(g′1 − 1)

g′1 − 1
. (A.11)

On the other hand, by the choice of g′1, we have

w1(g′1 − 1) ≥
g′1−2∑
j=0

b2(g1(b2) + 1 − j).

Furthermore, by Inequality (A.9) and Eq. (A.11), we have

w1(g′1)

g′1
=
w1(g′1 − 1)

g′1 − 1
≥
∑g′1−2

j=0 b2(g1(b2) + 1 − j)

g′1 − 1

≥ b2(g1(b2) − g′1 + 3)

≥ b2(g1(b2) − g′1 + 2).

Thus, we have

w1(g′1) = g′1
w1(g′1 − 1)

g′1 − 1
= (g′1 − 1)

w1(g′1 − 1)

g′1 − 1
+
w1(g′1 − 1)

g′1 − 1

≥
⎛⎜⎜⎜⎜⎜⎜⎜⎝
g′1−2∑
j=0

b2(g1(b2) + 1 − j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ + b2(g1(b2) − g′1 + 2)

=

g′1−1∑
j=0

b2(g1(b2) + 1 − j).

However, this is a contradiction by the choice of g′1 since
Eq. (A.7) holds, as shown above. Note that, here in this argument,
Eq. (A.7) is

g′1−1∑
j=0

b2(g1(b2) + 1 − j) > w1(g′1).

Thus, we have w1(g′1) = v1(g′1). �
Now, we are ready to prove Theorem 3.

Proof of Theorem 3
Since we have already shown the sufficiency of Theorem 3, we

have only to show the necessity: If b = (b1, b2) is a Nash equilib-
rium then it is stable.

Suppose to the contrary that b = (b1, b2) is not stable even if it
is Nash equilibrium (and thus, prestable). Then, for some i ∈ N

and some k, k′ (1 ≤ k ≤ m − yi, 1 ≤ k′ ≤ yi) with y1 + y2 = m,
Eqs. (21) or (22) would not hold.

To clarify the argument, we will give a proof for i = 1. Thus,
bi = b1, πi = π1, b−i = b2 and π−i = π2. By symmetry, a proof for
i = 2 is also obtained and we will omit it. Furthermore, we can
assume that π2 is an identical permutation (i.e., π2( j) = j for all
j = 1, 2, . . . ,m) by changing labels of items if necessary. Thus,
Eqs. (19) and (20), can be written by

b2(1) ≤ b2(2) ≤ · · · ≤ b2(m) and Y1 = {1, 2, . . . , y1} (A.12)

and we have

v1(y1 + k) − v1(y1) >
k∑

j=1

b2(y1 + j) (A.13)

for some k with 1 ≤ k ≤ m − y1, or

v1(y1 − k′) > v1(y1) −
k′−1∑
j=0

b2(y1 − j) (A.14)

for some k′ with 1 ≤ k′ ≤ y1. Now we can assume that, in a
prestable bid profile b = (b1, b2), g1(b2) items are allocatable to
bidder 1, but g1(b2) + 1 items are not. Thus, y1 ≤ g1(b2). Since
b = (b1, b2) is a Nash equilibrium, Y1 = X1(b) = {1, 2, . . . , y1},
and

u1(Y1) = v1(y1) −
∑
j∈Y1

b2( j)

≥ u1(X1(b′)) = v1(|X1(b′)|) −
∑

j∈X1(b′)
b2( j)

for any feasible b′ = (b′1, b2), we can assume

v1(y1 + k) − v1(y1) ≤
k∑

j=1

b2(y1 + j) (A.15)

for all 1 ≤ k ≤ g1(b2) − y1 and

v1(y1 − k′) +
k′−1∑
j=0

b2(y1 − j) ≤ v1(y1) (A.16)

for all 1 ≤ k′ ≤ y1. Thus, Eq. (A.14) never holds. Similarly,
Eq. (A.13) does not hold for any k with 1 ≤ k ≤ g1(b2)−y1. There-
fore, Eq. (A.13) holds for some k with g1(b2)−y1+1 ≤ k ≤ m−y1

(and this implies g1(b2) < m).
Let k∗ be the smallest integer among such ks. Thus, we have

g1(b2) − y1 + 1 ≤ k∗ ≤ m − y1, (A.17)

v1(y1 + k∗) − v1(y1) >
k∗∑
j=1

b2(y1 + j), (A.18)

v1(y1 + k) − v1(y1) ≤
k∑

j=1

b2(y1 + j) (A.19)

for all 0 ≤ k ≤ k∗ − 1. The last two inequalities imply

v1(y1 + k∗) − v1(y1 + k) >
k∗∑

j=k+1

b2(y1 + j) (A.20)

for all 0 ≤ k ≤ k∗ − 1. Similarly, by inequalities (A.16) and
(A.18), we have

v1(y1 + k∗) − v1(y1 − k′) >
k′∑
j=1

b2(y1 − k′ + j) +
k∗∑
j=1

b2(y1 + j)

(A.21)

for all 1 ≤ k′ ≤ y1. This is equivalent to

v1(y1 + k∗) − v1(k′) >
y1+k∗∑
j=k′+1

b2( j) (A.22)
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for all 0 ≤ k′ ≤ y1−1. Combining inequalities (A.20) and (A.22),
we have

v1(y1 + k∗) − v1(k′) >
y1+k∗∑
j=k′+1

b2( j) (A.23)

for all 0 ≤ k′ ≤ y1 + k∗ − 1.
On the other hand, in prestable bid profile b = (b1, b2), g1(b2)

items are allocatable to bidder 1 but g1(b2) + 1 items are not allo-
catable to bidder 1. Thus, we can consider g′1 defined in Lemma 5.
That is, g′1 is the smallest k′′ such that 1 ≤ k′′ ≤ g1(b2) + 1 and
b2(g1(b2)−k′′+2)+b2(g1(b2)−k′′+3)+· · ·+b2(g1(b2)+1) > w1(k′′).
Thus, we have

1 ≤ g′1 ≤ g1(b2) + 1, (A.24)

w1(g′1) = v1(g′1), (A.25)

g′1∑
j=1

b2(g1(b2) + 1 − g′1 + j) > w1(g′1), and (A.26)

k∑
j=1

b2(g1(b2) + 1 − g′1 + j) ≤ w1(k) for all 1 ≤ k ≤ g′1 − 1.

(A.27)

Since g1(b2) items are allocatable to bidder 1, we also have

k∑
j=1

b2(g1(b2) − k + j) ≤ w1(k) for all 1 ≤ k ≤ g1(b2).

(A.28)

Now subtract g′1 from y1 + k∗ several times, say q ≥ 1 times, so
that y1 + k∗ − qg′1 will be in the interval [g1(b2) + 1 − g′1, g1(b2)]
of g′1 integers. Let k′ = y1 + k∗ − qg′1. Then, we have

g1(b2) + 1 − g′1 ≤ k′ = y1 + k∗ − qg′1 ≤ g1(b2). (A.29)

Since
∑g′1

j=1 b2(g1(b2) + 1 − g′1 + j) > w1(g′1) by Eq. (A.26),
g1(b2) + 1 − g′1 ≤ k′ = y1 + k∗ − qg′1 by Eq. (A.29), and
y1 + k∗ ≥ g1(b2) + 1 by Eq. (A.17), we have

qw1(g′1) < q
g′1∑
j=1

b2(g1(b2) + 1 − g′1 + j)

≤ q
g′1∑
j=1

b2(y1 + k∗ − qg′1 + j)

≤
qg′1∑
j=1

b2(y1 + k∗ − qg′1 + j)

=

qg′1∑
j=1

b2(k′ + j) =
y1+k∗∑
j=k′+1

b2( j)

by Eq. (A.12) and 0 ≤ k′ ≤ y1+k∗−1. Thus, by inequality (A.23),
we have

qw1(g′1) <
y1+k∗∑
j=k′+1

b2( j) < v1(y1 + k∗) − v1(k′). (A.30)

Furthermore, since v1 is subadditive and y1 + k∗ − k′ = qg′1, we
have

v1(y1 + k∗) − v1(k′) ≤ v1(y1 + k∗ − k′) = v1(qg′1) ≤ qv1(g′1),

qw1(g′1) <
y1+k∗∑
j=k′+1

b2( j) < v1(y1 + k∗) − v1(k′) ≤ qv1(g′1)

(A.31)

and

w1(g′1) < v1(g′1). (A.32)

However, this contradicts w1(g′1) = v1(g′1) in Eq. (A.25).
Thus, for i = 1, both Eqs. (21) and (22) hold. By symmetry,

both Eqs. (21) and (22) also hold for i = 2. Thus, b = (b1, b2) is
stable. �
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