
Electronic Preprint for Journal of Information Processing Vol.25

Regular Paper

Particle-based Shallow Water Simulation with Splashes
and Breaking Waves

Makoto Fujisawa1,a) Takuya Nakada1 MasahikoMikawa1,b)

Received: September 6, 2016, Accepted: March 3, 2017

Abstract: We propose a fast method of simulating large-scale liquid phenomena by coupling 2D and 3D smoothed
particle hydrodynamics (SPH). Our method combines 2D SPH-based shallow water simulation with 3D SPH simula-
tion to effectively treat complex behaviors, such as splashes and breaking waves. To achieve realistic animation, we
generate 3D particles from 2D particles by categorizing these particles according to motion and position. One-way
interactions between both types of particles are described by the conservation of momentum. We demonstrate the
effectiveness of our approach in various graphical scenes.

Keywords: large-scale fluid simulation, shallow water, SPH

1. Introduction

Fluid simulation is widely used to create computer graphics
animation of complex natural phenomena. However, it is diffi-
cult to compute the details of large phenomena, such as floods
and ocean waves, in real-time because of the high computational
cost, while interactive applications, such as games, require both
high levels of detail and very fast computing. One approach to
this type of application is to use a two-dimensional height field,
in which three-dimensional fluid behaviors are approximated as
surface wave motion. The wave motion is calculated as a two-
dimensional flow on a surface, which dramatically reduces the
computational cost. However, this method cannot represent some
motions characteristic of waves, such as splashes and breaking
waves, because it can only treat vertical movement.

In this paper, we propose a new method that realizes fast
fluid simulation with finer details by combining two-dimensional
shallow-water simulation with particles and three-dimensional
smoothed particle hydrodynamics (SPH). A height field repre-
sented by the particles is updated according to the shallow wa-
ter equation (SWE) and three-dimensional particles are generated
by analyzing wave movement. Both particles can be naturally
combined because the full Lagrangian representation is available.
Also, we propose to use a screen-space rendering technique to
represent a water surface by using additional particles for render-
ing in cases where the particle-based shallow-water simulation
would cause holes due to an insufficient number of particles.

2. Related Work

For large-scale water simulation, various methods have been
proposed. Using a two-dimensional height field instead of a full
three-dimensional fluid solver is the most popular solution for

1 University of Tsukuba, Tsukuba, Ibaraki 305–8550, Japan
a) fujis@slis.tsukuba.ac.jp
b) mikawa@slis.tsukuba.ac.jp

interactive applications. Several papers propose using the fast
Fourier transform (FFT) to construct a height field and create
fluid animations in large-scale scenes with a high level of de-
tail [18], [25], [26]. Kass and Miller [12] introduced a wave equa-
tion that can determine water surface movement using a height-
field representation. This approach is not based on physics, but
it can very effectively simulate large-scale water scenes, such
as ocean waves. Later researchers extended this technique to
fluid splashing [22], bubbles and droplets [19], waves over ter-
rain [8], [17], and hydraulic erosion [28].

Kass and Miller [12] introduced the shallow water equation
(SWE), which is based on the Navier–Stokes equations, for com-
puter graphics animation. This provides a more physically accu-
rate way to simulate the water surface. However they ignored the
nonlinear advection term by assuming that water speed is almost
constant. Layton et al. [13] used the semi-Lagrangian method
to solve the advection term of SWE. Solenthaler et al. [23] ex-
tended the method by using particles and SPH. Because they
use particles instead of a grid, the method has many benefits,
such as ease of extending the simulation space, mass conserva-
tion, and simplicity. However, the SWE cannot be used to treat
three-dimensional effects, such as splashing and breaking waves.
Chentanez et al. [4] combined grid-based shallow-water simula-
tion and the particle-based three-dimensional simulation to rep-
resent breaking waves, splashing, and waterfalls. Their method
automatically extracts regions of liquid for generating the par-
ticles by assuming that such effects arise from rigid interactions.
Thürey et al. [27] used triangle mesh patches to simulate breaking
waves. Later, Chentanez et al. [5] proposed a method for coupling
a grid, particles and a height field to simulate large-scale scenes.
A combination of Eulerian and Lagrangian approaches offers the
advantages of both methods, although it also suffers some disad-
vantages of each method. For example, the simulation space is
restricted by the grid, but the particle can move freely. Ihmsen
et al. [9] proposed a fully Lagrangian method for rendering large-

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

scale water scenes by generating some types of additional diffuse
particles from SPH simulation results. However, this method is
not suitable for an interactive application, because it requires a
vast amount of diffuse particles in order to generate realistic ani-
mations. Our method is also a fully Lagrangian method, but the
method based on SPH shallow-water simulation [23], which we
extend to three-dimensional effects by using SPH particles. Both
the water surface and three-dimensional effects are represented
as particles, so that we can easily combine the simulation, and
the method has the advantage of being a particle-based method.
Also, we propose a method to calculate interactions on the ba-
sis of momentum conservation from three-dimensional to two-
dimensional particles.

There are many works that consider the full three-dimensional
simulation of liquid by using a grid [3] or particles [11]. SPH [6],
which is one popular particle-based simulation method, has been
widely used for computer graphics [11], [20] because of its sim-
plicity and the ease of extending the simulation space. SPH uses
an explicit calculation of pressure according to a state equation,
which allows very fast computation but causes incompressibil-
ity problems. To solve this problem, various algorithms, such as
WCSPH [1], PCISPH [24], IISPH [10], PBF [16], and DFSPH [2]
have been developed. We use PBF (Position-Based Fluid) to sim-
ulate the behavior of three-dimensional particles because of its
handling of incompressibility and its low computational cost rel-
ative to other volume-conserving methods.

3. Method

We use SWE with particles [23] to simulate the water wave.
This two-dimensional simulation cannot generate any three-
dimensional effects, such as breaking waves or splashing. To
make such kinds of effects, we introduce particles that move
freely in three-dimensional space and then use SPH to calculate
the behavior of these particles. The particles are generated via
analysis of the movement of SWE particles and deleted when they
enter into the water’s surface. Finally, both types of particles are
rendered by a screen-space rendering technique. In the follow-
ing sections, we call the particles used in SWE simulation the 2D
particles, and those used in three-dimensional PBF are called 3D
particles.

3.1 Particle-based Shallow Water Simulation
In general shallow-water simulation, the simulation space is

partitioned by a two-dimensional grid, and each grid cell has a
height, a vertical velocity, and horizontal velocity, and these vari-
ables are updated by using the SWE [13]. SWE, used for repre-
senting the motion of the water surface, is based on the Navier–
Stokes equations, meaning that the system represents mass and
momentum conservation. The velocity field is updated by solv-
ing the SWE (2) and then changing the height field on the basis
of the velocity Eq. (1).

∂h
∂t
= −∇ · (hu) (1)

Du
Dt
= −g∇(h + H(x)) + aext (2)

where h is the height of the water surface, u is the velocity of the

water, g is acceleration due to gravity, H(x) is the height of the
bottom of the water, and aext is the external force.

In order to realize a seamless interaction between 2D and 3D
particles, we use SPH-based shallow-water simulation [23]. SPH-
based shallow-water simulation uses the density of SPH to deter-
mine the height of the particles.

hi =
ρ2D

i

ρ0
(3)

where hi and ρ2D
i are the height from the bottom and the density

of particle i, respectively. In this, ρ0 is the rest density of water.
We assume that gravity acts along the y axis. In this case, 2D par-
ticles are placed on the xz plane and the density ρ2D

i is calculated
as in 2D SPH.

ρ2D
i =

∑

j∈N
m2D

j Wpoly6(x j − xi, l
2D) (4)

where N is the set of 2D particles within the effective radius l2D,
m2D

j is the mass of 2D particle j, and W(x j − xi, l2D) is the kernel
function. By substituting Eq. (3) into Eq. (2), we can obtain the
SWE for the particle method:

∂u2D
xz

∂t
= − g
ρ0
∇ρ2D

i − g∇H(x) + ν∇2u2D
xz + aext (5)

where u2D
xz is the velocity of a 2D particle on the xz plane and

ν(= μ/ρ0) is the kinematic viscosity coefficient. The term ν∇2u2D
xz

is a viscosity term used to stabilize the surface motion [14]. Equa-
tion (5) updates the velocity u2D

xz of 2D particles with timestep
length Δt, and position x2D

xz is also updated from the veloc-
ity. Finally, the y element of the position is calculated from
x2D
y = hi + H(x2D

xz) and Eq. (3). The SPH shallow-water simu-
lation transforms the change in density to the change in height.
We also restrict the velocity by setting a maximum propagation
speed of water

√
ghi to that given from a wave equation, which

creates a more stable simulation.
Boundary handling is a challenging problem of particle-based

methods. In our method, we use boundary particles to prevent
particle stacking near the boundary, which can be caused by un-
derestimation of the density. Boundary particles are placed into
solid boundaries. As an added step, we set the velocity u2D

xz to 0
for particles that contact the boundary, which represents a one-
way interaction from solid to liquid.

3.2 3D Particle Generation
As mentioned, SWE simulation alone cannot simulate 3D ef-

fects, such as breaking waves or splashing. In order to consider
these kinds of phenomena, we generate 3D particles from 2D par-
ticles. In SWE simulation, the motion of water surface would be
restricted to vertical movement and it only generates waves. We
assume that there are only two types of 3D effect arising from the
wave as shown in Fig. 1: a splash shot to the upper direction from
crest of wave and a plunging breaker (breaking wave) moved to
the horizontal direction from side of wave.

We assume that the phenomena occur when the height of a 2D
particle hi increases rapidly. Thus, the condition for 3D particle
generation becomes,

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 1 3D effects caused by a wave.

Fig. 2 Classification of newly generated 3D particles and their initial veloc-
ities. A blue circle represents a 2D particle and a light blue is a 3D
particle.

hi − hprev
i

Δt
> γ3D. (6)

Here, hprev
i is the height of the 2D particle i at the previous step,

and γ3D is the user-specified threshold for 3D particle generation.
Each particle satisfying Eq. (6) is classified into one of three types
according to the maximum difference in height with neighboring
particles j. This is characterized by

hdi f f = max(h j) −min(h j) (7)

where max(h j) and min(h j) are the maximum and minimum
height among neighboring 2D particles. We classify the 2D par-
ticle into the three types, “top”, “slope” and “steep” particles, by
hdi f f as shown in Fig. 2. The “top” particle represents a splash
generated from the top of the wave, while the “steep” particle
represents a plunging breaker generated from the steep region
of the wave. We also define the “slope” particle in order to
smoothly interpolate the motion of the above two particles. These
have the following thresholds: top particles are generated when
hdi f f ≤ γtop; steep particles are generated when γsteep ≤ hdi f f ;
and splash particles are generated in other cases (i.e., when
γtop < hdi f f < γsteep), where we assume that 0 ≤ γtop ≤ γsteep.

The initial position of a new 3D particle is determined as fol-
lows.

x3D
xz = x2D

xz (8)

x3D
y = (1 − αheight)h

2D
i + αheight max(h j) + H(x2D) (9)

where αheight is a parameter used to adjust the height of 3D parti-
cle. In this paper, we use 0–0.3 for αheight. The initial position is
independent of the type of particle. In contrast, the initial velocity
of each 3D particle depends on its type.
• “top” particles

The particle is placed near the wave crest when the change of
height from the previous timestep is large but the difference
between near particles hdi f f is small. In this case, splashes
are generated, and we set the vertical vector with the veloc-
ity:

Fig. 3 3D particles deletion.

utop
xz = 0, utop

y = ktop
hi − hprev

i

Δt

where ktop is the coefficient for “top” particles.
• “steep” particles

The particle is placed on the side of the wave when the dif-
ference from nearby particles is large. In this case, we set an
oblique velocity to represent a breaking wave.:

usteep
xz =

a2D
xz

|a2D
xz |
√
ghi, usteep

y = ksteep
hi − hprev

i

Δt

where ksteep is the coefficient for “steep” particles, a2D
xz is the

vector of acceleration of the 2D particle in the xz plane, and√
ghi is the maximum propagation speed of water as given

by a wave equation. We just use a2D
xz to determine the direc-

tion of the steep particle movement, because the horizontal
velocity of the 2D particle does not correspond to the wave
speed.

• “slope” particles
“slope” particles are placed between “top” and “steep,” and
the initial velocity is calculated by linear interpolation of the
corresponding “top” and “steep” particle velocities:

uslope
xyz = αslopeusteep

xyz + (1 − αslope)utop
xyz

where αslope = (hdi f f −γtop)/(γsteep−γtop) is the interpolation
coefficient for “steep” particles,

After 3D particles have been generated from the 2D particles,
the positions of the 3D particles are updated by PBF [16]. PBF
can enforce the incompressibility of the fluid by imposing a den-
sity constraint, such as ci(x3D

1 , . . . , x
3D
N) = ρ3D

i /ρ0 − 1 = 0, on
all 3D particles. PBF uses a constraint-based method to obtain a
uniform distribution of the particles, rather than the Poisson dis-
tribution of pressure that is derived from the Navier–Stokes equa-
tions. This might produce unreasonable results, because SWE is
based on the Navier–Stokes equations. We think the equation for
mass conservation (Eq. (1) for SWE) is unlikely to be a problem
because both 2D and 3D simulations use the particles for approx-
imation. Also, the pressure p is approximated from the change of
height h as p = gρh in the SWE [13]. This is similar to a position-
based method. In our experiments, we did not observe any visual
artifacts related to this problem.

3.3 3D Particle Deletion
We remove 3D particles when their position is under the water

surface represented by the 2D particles. If the y coordinate of a
3D particle is less than the height of all neighboring 2D particles
(those that lie within the effective radius l2D), then this particle
is deleted from the simulation space as shown in Fig. 3. Before

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

removing the particle, we update the velocity of the 2D particles
within the effective radius l2D of the particle to be deleted, by
using following formula:

u2D
xz =

m2D
i u2D

xz +
m3D

i

Nneigh

(
u3D

xz + |u3D
y | rxz

|rxz |
)

m3D
i

(10)

where Nneigh is the number of neighboring 2D particles, rxz is the
position of 2D particle relative to the 3D particle on the xz plane.
In Eq. (10), the term m2D

i u2D
xz represents the momentum of a 2D

particle before the velocity update; we add the momentum of the
relevant 3D particle to it. For this, we assume that the momen-
tum of a 3D particle m3D

i u3D uniformly affects all neighboring
2D particles. The xz component of the momentum of the 3D par-
ticle (m3D

i u3D
xz /Nneigh) is directly added to the momentum of the

2D particles. The y component of the momentum of 3D particle,
in contrast, works as a repulsive force on the 2D particles in the
direction rxz/|rxz|.

3.4 Rendering
General height-field approaches use a flat mesh and move the

vertices according to the height field. We cannot apply this
method to our simulation results because we incorporate 3D par-
ticles. Full 3D particle-based methods, in contrast, commonly
use the Marching Cubes algorithm [15] to make the surface mesh
from a potential field defined by the particles and the kernel func-
tion. This technique is valid for 3D particles only, but we also
have 2D particles that are characterized by just upper surface in-
formation (i.e., a height). To handle this, we create a surface
mesh from both 2D and 3D particles by using the Screen Space
Meshes (SSM) algorithm [21] for rendering. SSM uses only those
particles visible from a specified viewpoint. Therefore, it is not
necessary to calculate information about the particles under the
surface wave if the viewpoint is above the 2D particles.

SSM directly projected the particles into screen space and gen-
erates a mesh in the 2D space. If the particle distribution is sparse,
SSM will generate a mesh with many holes. The particle-based
SWE calculates the particle distribution in two dimensional space
and then it projects the particles into three dimensional space by
computing the height from the density of the particles. Even if
there is no hole in two dimensional space, when projecting to
three dimensional space with the height, some holes are gener-
ated at a region where the density rapidly changes as shown in
Fig. 4. We solve this problem by using a particle interpolation.
The holes appear in the side of the wave where the particles are
rapidly moving in a vertical direction. In the side of the wave,
the particles also move toward to the center of the wave as indi-
cated by the red arrow in Fig. 4, because the wave is created by
the movement of the particles gathering. As a result, the particles
placed on the wave side move along to the wave surface. We make
use of this feature to fill the holes. Figure 5 shows the particle in-
terpolation using the particle movement along the wave surface.
We simply use a linear interpolation to deside the position of in-
terpolated particles and particle interpolation is performed when
the following condition is satisfied.

γinterp < |x2D
xyz − x2Dprev

xyz | (11)

Fig. 4 Holes on surface generated by the vertical movement of the parti-
cles. Fully three dimensional simulation generates uniform particle
distribution (left), while particle-baesd SWE causes non-uniform dis-
tribution in three dimensional space (right).

Fig. 5 Particle interpolation for screen-space mesh creation. A green parti-
cle represents an interpolated particle.

Fig. 6 Comparison of particle interpolation.

where x2Dprev
xyz is the 3D position of a 2D particle at the previous

step, and γinterp is the user-defined threshold for particle interpo-
lation. We use γinterp = r2D/2 for all examples where r2D is the
radius of the 2D particle. If the particle fulfills the condition of
Eq. (11), then we place new particles on the straight line connect-
ing the previous position to the current position of the 2D parti-
cle. In our experiments, the interpolation between the current and
previous particles is not enough to cover all holes. So that we
extrapolate the particles inside the liquid as shown in Fig. 5 right.
Figure 6 shows the result with and without particle interpolation.

4. Results

This section describes the results of applying the proposed
method to several scenes. All results were generated on a com-
puter equipped with a 3.7 GHz Intel Core i7 CPU and an NVIDIA
GeForce GTX TITAN GPU. The algorithm was predominantly
implemented on the GPU by using NVIDIA CUDA. We use the
method of Ref. [7] to search for neighboring particles. We set the
resolution of the screen to 1280 × 720 pixels and let Δt = 0.005 s
in all examples. Table 1 lists the parameters used in obtaining the
results.

Figure 7 shows a breaking dam scene rendered with both sur-
face mesh and particles. Our method can generate both breaking
waves and splashing caused by collisions between several waves.
These effects are found in Fig. 8 made using full 3D simulator
with 286,300 particles. We used PBF [16] with 2–10 density
iterations per frame and Marching Cubes [15] for surface mesh
creation for Fig. 8. These results indicate that the classification
we use during 3D particle generation is valid for many scenar-

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 7 Scene1: Dam breaking from the center region. Blue indicates 2D particles and white indicates 3D
particles.

Fig. 8 Dam breaking scene with full 3D simulator. Only 3D particles are used to simulate the fluid
behavior. Average simulation time per frame is around 1 fps.

Fig. 9 Water drop falling on a water surface.

Table 1 Paramters for all examples.

scene 1 scene 2 scene 3 scene 4

αheight 0.3 0.3 0 0.3
γ3D 3 1.5 3 1
γtop 0.1 0.15 0.07 0.3
γsteep 0.15 0.2 0.15 0.5

ktop 0.3 0.6 0.5 0.35
ksteep 0.2 0.2 0.5 0.05

ios. However, we observe that updating velocity while conserv-
ing momentum from 3D to 2D particles makes unnaturally high
waves, using simulation with 2D particles only as a baseline.

Figure 9 shows that this method of velocity update is valid for
a scene with falling water drops. In these scenes, conservation of
vertical and horizontal momentums works well to generate waves
and splashes. Figure 10 shows a dam breaking scene with some
buildings. Our approach can make plausible animation of large-
scale scenes at an interactive rate.

Table 2 summarizes the performance of our method including
surface mesh creation. Table 2 also includes the result of full 3D
simulation. Similar to the proposed method, we implemented the
full 3D simulation on the GPU by using the method of the method
of Ref. [7] and we set the 3D particles under the water so that it
is the same as Scene 1–4. As shown in Table 2, the proposed
method succeeded in drastically reducing the number of the par-
ticles. As a result, our method is about 9–23 times faster than
the full 3D simulation in average fps and about 5–8.5 times faster
in maximum fps. Figure 11 shows comparisons of the results of
Scene 2–4. Parameters for full 3D simulation, such as an effective
radius, a mass of particle, are same as the one used for the results
of the proposed method.

Figure 12 shows a more detailed comparison of the computa-
tional time of Scene 1. In the case of scenes where many par-
ticles are stacked in liquid like an ocean, the computation speed
of the previous method becomes slower in order to maintain in-

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 10 Scene 4: Dam breaking with buildings.

Table 2 Perfomance results for all examples.

Scene Proposed method Full 3D simulation
2d partices Max. 3d particles Avg. time (fps) Max. time (fps) 3d particles Avg. time (fps)

Scene 1 13,700 35,837 61.1 43.5 286,300 6.29
Scene 2 10,800 8,000 137.5 50.0 243,531 5.83
Scene 3 10,800 8,000 98.1 43.5 244,558 5.73
Scene 4 158,775 142,864 24.3 14.3 1,008,315 2.64

Fig. 11 Comparisons of the results of the proposed method (top) and full three dimensional simulation
(bottom).

compressibility. On the other hand, the calculation speed of the
proposed method does not decrease, since the method only con-
siders the ocean surface. However, the calculation time of the
proposed method depends on the number of generated 3D parti-
cles as shown in Fig. 13. It would cause a temporary decrease in
computational speed during simulation.

All resulting animations are included in our movie file putting
on our website:

http://slis.tsukuba.ac.jp/pbcglab/files/jip sphswe.mp4

5. Limitation

There are some limitations of the proposed method. At first,
the interpolation of particles for rendering cannot fulfill all holes.
Figure 14 (a) shows a concave region generated by a waterdrop
falling in Scene 2. The particle interpolation based on the parti-
cle movement along the surface cannot treat the region where the

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 14 Limitations of the proposed method: (a) the particle interpolation cannot prevent the hole made
in a concave region, (b) inaccurate wave velocity calculation causes unnatural reflected splashes
and breaking waves.

Fig. 12 Comparison of computational time of Scene 1 with full 3D simula-
tion.

Fig. 13 Computational time of Scene 1 with the number of 3D particles.

particles move outward around a point. Moreover, the shape of
the particles clearly appears when the viewpoint approaches and
some flickering artifacts are observed at the inner silhouette of the
surface mesh due to the SSM algorithm.

Another limitation is that the velocity direction of the wave
calculated in Section 3.2 is not entirely correct. Figure 14 (b)
shows a frame from Scene 4 with other parameters: γtop = 0.15,
γsteep = 0.2, ktop = 0.3, ksteep = 0.3. The splashes and breaking
waves caused from the wave colliding to the building are bounded
to the opposite direction of the wave propagation. It is not neces-
sarilly the case that the velocity direction of the particles calcu-
lated by SWE is equal to the velocity of the wave, because SWE
decides a height of wave from the density of the particles.

*1 http://www.mitsuba-renderer.org

6. Conclusions and Future Work

We have presented a fully Lagrangian simulation method for
large-scale phenomena by combining 2D particle-based shallow-
water simulation with a 3D SPH fluid simulation method. 3D
particles generated by using a classification based on the state of
surrounding 2D particles and a system that updates velocity ac-
cording to momentum conservation makes it possible to realize
various 3D effects, such as breaking waves and splashing.

As future work, we plan to modify the surface mesh creation
because the current particle interpolation method is insufficient
to fill all holes. We also want to modify flickering artifacts ob-
served in the inner silhouette of the surface mesh. It would be
caused by the weak silhouette smoothing in SSM [21], while we
could not apply a strong smoothing because the shrinking of the
inner silhouette caused another artifact. Moreover, the corrected
calculation of the wave direction is also a future work.

We currently consider breaking waves and splashing. There are
other possible types of 3D effects, such as waterfalls. Moreover,
our method cannot treat a scene like pouring water into a glass be-
cause we do not consider mass conservation between 2D and 3D
particles. Poured water represented by 3D particles will disap-
pear under the water surface, without increasing the height of the
water. We have to consider another height calculation method to
achieve mass conservation because the current height calculation
is based on only the density of the 2D particles.

Acknowledgments This work was supported by JSPS
KAKENHI Grant Number 25730069 and 16K00148. We also
thank to anonymous reviewers for their constructive comments.
The images in this paper were rendered using Mitsuba ren-
derer *1.

References

[1] Becker, M. and Teschner, M.: Weakly Compressible SPH for Free Sur-
face Flows, Proc. 2007 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pp.209–217 (2007).

[2] Bender, J. and Koschier, D.: Divergence-free Smoothed Particle
Hydrodynamics, Proc. 14th ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, pp.147–155 (online), DOI: 10.1145/
2786784.2786796 (2015).

[3] Bridson, R.: Fluid Simulation for Computer Graphics, A K Petters
(2008).

[4] Chentanez, N. and Müller, M.: Real-Time Simulation of Large
Bodies of Water with Small Scale Details, Proc. 2010 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pp.197–
206 (2010).

[5] Chentanez, N., Müller, M. and Kim, T.-Y.: Coupling 3D Eulerian,

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Heightfield and Particle Methods for Interactive Simulation of Large
Scale Liquid Phenomena, Proc. 2014 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pp.1–10 (2014).

[6] Gingold, R.A. and Monaghan, J.J.: Smoothed Particle Hydrodynam-
ics - Theory and Application to Non-spherical Stars, Monthly Notices
of the Royal Astronomical Society, Vol.181, pp.375–389 (1977).

[7] Green, S.: CUDA Particles, Technical Report, NVIDIA Whitepaper
(2008).

[8] Holmberg, N. and Wünsche, B.C.: Efficient Modeling and Render-
ing of Turbulent Water Over Natural Terrain, Proc. 2nd International
Conference on Computer Graphics and Interactive Techniques in Aus-
tralasia and South East Asia (GRAPHITE ’04), pp.15–22 (online),
DOI: 10.1145/988834.988837 (2004).

[9] Ihmsen, M., Akinci, N., Akinci, G. and Teschner, M.: Unified spray,
foam and air bubbles for particle-based fluids, The Visual Com-
puter, Vol.28, No.6-8, pp.669–677 (online), DOI: 10.1007/s00371-
012-0697-9 (2012).

[10] Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C. and Teschner,
M.: Implicit Incompressible SPH, IEEE Trans. Visualization and
Computer Graphics, Vol.20, No.3, pp.426–435 (online), DOI:
10.1109/TVCG.2013.105 (2014).

[11] Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A. and Teschner, M.:
SPH Fluids in Computer Graphics, Eurographics 2014 - State of the
Art Reports, pp.21–42 (online), DOI: 10.2312/egst.20141034 (2014).

[12] Kass, M. and Miller, G.: Rapid, Stable Fluid Dynamics for Com-
puter Graphics, ACM SIGGRAPH Computer Graphics, Vol.24, No.4,
pp.49–57 (online), DOI: 10.1145/97880.97884 (1990).

[13] Layton, A.T. and Panne, M.V.D.: A Numerically Efficient and Stable
Algorithm for Animating Water Waves, The Visual Computer, Vol.18,
No.1, pp.41–53 (2002).

[14] Lee, H. and Han, S.: Solving the Shallow Water Equations Using
2D SPH Particles for Interactive Applications, The Visual Computer,
Vol.26, No.6-8, pp.865–872 (2010).

[15] Lorensen, W.E. and Cline, H.E.: Marching Cubes: A High Resolu-
tion 3D Surface Cconstruction Algorithm, ACM SIGGRAPH Com-
puter Graphics, Vol.21, No.4, pp.163–169 (1987).

[16] Macklin, M. and Müller, M.: Position Based Fluids, ACM Trans.
Graphics, Vol.32, No.4, pp.104:1–104:12 (online), DOI: 10.1145/
2461912.2461984 (2013).

[17] Maes, M.M., Fujimoto, T. and Chiba, N.: Efficient Animation of Wa-
ter Flow on Irregular Terrains, Proc. 4th International Conference on
Computer Graphics and Interactive Techniques in Australasia and
Southeast Asia (GRAPHITE ’06), pp.107–115, ACM (online), DOI:
10.1145/1174429.1174447 (2006).

[18] Mastin, G.A., Watterberg, P.A. and Mareda, J.F.: Fourier Synthe-
sis of Ocean Scenes, IEEE Computer Graphics and Applications,
Vol.7, No.3, pp.16–23 (online), DOI: doi.ieeecomputersociety.org/
10.1109/MCG.1987.276961 (1987).

[19] Mould, D. and Yang, Y.-H.: Modeling Water for Computer Graph-
ics, Computers & Graphics, Vol.21, No.6, pp.801–814 (online), DOI:
10.1016/S0097-8493(97)00059-9 (1997).

[20] Müller, M., Charypar, D. and Gross, M.: Particle-Based Fluid
Simulation for Interactive Applications, Proc. 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pp.154–
159 (2003).

[21] Müller, M., Schirm, S. and Duthaler, S.: Screen Space Meshes, Proc.
2007 ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, pp.9–15 (2007).

[22] O’Brien, J.F. and Hodgins, J.K.: Dynamic Simulation of Splashing
Fluids, Proc. Computer Animation 95, pp.125–132 (1995).

[23] Solenthaler, B., Bucher, P., Chentanez, N., Müller, M. and M.Gross:
SPH Based Shallow Water Simulation, Proc. Virtual Reality Interac-
tions and Physical Simulations (VRIPhys), pp.39–46 (2011).

[24] Solenthaler, B. and Pajarola, R.: Predictive-corrective Incompress-
ible SPH, ACM Trans. Graphics, Vol.28, No.3, pp.40:1–40:6 (online),
DOI: 10.1145/1531326.1531346 (2009).

[25] Tessendorf, J.: Simulating Ocean Water, SIGGRAPH 1999 course
notes (1999).

[26] Thon, S., Dischler, J.-M. and Ghazanfarpour, D.: Ocean Waves
Synthesis Using a Spectrum-based Turbulence Function, Proc. Com-
puter Graphics International 2000, pp.65–72 (online), DOI: 10.1109/
CGI.2000.852321 (2000).

[27] Thürey, N., Müller-Fischer, M., Schirm, S. and Gross, M.: Real-time
Breaking Waves for Shallow Water Simulations, Proc. 15th Pacific
Conference on Computer Graphics and Applications, pp.39–46 (on-
line), DOI: 10.1109/PG.2007.54 (2007).

[28] Št’ava, O., Beneš, B., Brisbin, M. and Křivánek, J.: Interactive
Terrain Modeling Using Hydraulic Erosion, Proc. 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pp.201–
210 (2008).

Makoto Fujisawa is currently an Assis-
tant Professor in the Faculty of Library,
Information and Media Science, Univer-
sity of Tsukuba since 2011. He received
B.Eng., M.Eng., and Ph.D. degrees in me-
chanical engineering from Shizuoka Uni-
versity in 2003, 2005, and 2008 respec-
tively. He worked for Nara Institute of

Science and Technology from 2008 to 2010 as an Assistant Pro-
fessor. His research interests include computer graphics and
physics simulation. He is a member of ACM, IEEE CS, IIEEJ,
IPSJ and VRSJ.

Takuya Nakada received B.A. degree
from University of Tsukuba in 2015. He
is currently working in the NHN hangame
Corp. since 2015. His research interests
include computer graphics and physics
simulation.

Masahiko Mikawa is currently an Asso-
ciate Professor in the Faculty of Library,
Information and Media Science, Univer-
sity of Tsukuba, Japan since 2006. He
received B.Eng., M.Eng., and Ph.D. de-
grees from Osaka University in 1992,
1994 and 2001 respectively. He worked
for NTT Access Network Systems Labo-

ratories from 1994 to 2001, NTT Service Integration Laboratories
from 2001 to 2003 and was a Lecturer in the Graduate School of
Library, Information and Media Studies, University of Tsukuba
from 2003 to 2006. He is a member of RSJ, SICE, SOFT and
IEEE.

c© 2017 Information Processing Society of Japan

