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Abstract: Link prediction plays an important role in multiple areas of artificial intelligence, including social network
analysis and bioinformatics; however, it is often negatively affected by the data sparsity problem. In this paper, we
present and validate our hypothesis, i.e., for sparse networks, incidence matrix factorization (IMF) could perform bet-
ter than adjacency matrix factorization (AMF), the latter used in many previous studies. A key observation supporting
our hypothesis here is that IMF models a partially observed graph more accurately than AMF. Unfortunately, a tech-
nical challenge we face in validating our hypothesis is that there is not an obvious method for making link prediction
using a factorized incidence matrix, unlike the AMF approach. To this end, we developed an optimization-based link
prediction method. Then we have conducted thorough experiments using both synthetic and real-world datasets to
investigate the relationship between the sparsity of a network and the predictive performance of the aforementioned
two factorization approaches. Our experimental results show that IMF performed better than AMF as networks became
sparser, which validates our hypothesis.
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1. Introduction

Link prediction is the problem of graph mining or network
analysis that attempts to predict a link between two nodes based
on other observed links and attributes of nodes [4], [8], [17].
There are numerous applications for link prediction, such as rec-
ommender systems in the social sciences [15] and protein-protein
interaction analysis systems in bioinformatics [24]. In this paper,
we focus on link prediction based on a graph structure, which is
formulated as a pairwise classification problem as follows. Given
partially observed graph G = (V,EP) with the set of nodesV and
the set of positive links (i.e., observed links) EP ⊂ V×V, the goal
is to learn scoring function s : V × V → R that predicts a new
link on an unlabeled pair of nodes in a set EU := (V ×V) \ EP.

As pointed out by many researchers, a central issue in link
prediction lies in the sparsity of a graph [7], [16], [22]. As net-
works grow, the number of node pairs that can be linked increases
quadratically, whereas the number of actual links often grows
only linearly, which degrades the predictive performance of most
existing methods [22].

Our idea for countering this sparsity problem is to employ in-
cidence matrix factorization (IMF) as a building block of our
link prediction method, instead of adjacency matrix factoriza-
tion (AMF), which has been used in a number of previous stud-
ies [1], [6], [14], [15], [19]. A key observation supporting our
approach here is that IMF can model a partially observed graph
more accurately than AMF. We begin by briefly introducing the
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Fig. 1 [Top] An example of link prediction using AMF. Here we learn la-
tent vector xk for any node vk ∈ V, then predict whether v1 and v3
are linked based on the magnitude of 〈x1, x3〉. This model has a flaw
in that unlabeled node pairs are modeled as zero.
[Bottom] Even though IMF is promising for accurately capturing a
partially observed graph, it is not trivial to predict a link in this di-
rection. By factorizing the incidence matrix, we learn latent vector
y(i, j) for any positive link e(i, j) ∈ EP in addition to latent vector xk for
any node. Predicting a link between v1 and v3 requires a latent vector
of the unlabeled pair of nodes (v1, v3) � EP, which we cannot obtain
through factorization of the incidence matrix.

AMF approach illustrated in Fig. 1, [Top]. Given partially ob-
served graph G = (V,EP), AMF learns latent feature vectors of
nodes {xk}vk∈V by factorizing its adjacency matrix A ∈ R|V|×|V|,
using both positive links (they are represented as ones in the ma-
trix) and unlabeled node pairs (they are represented as zeros) such
that

〈xi, x j〉 ≈
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if (vi, v j) ∈ EP

0 if (vi, v j) � EP

holds in its simplest instantiation; here, 〈·, ·〉 denotes the standard
inner product. This approach has a flaw in that the model learned
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from a partially observed graph is inconsistent with the model
learned from its fully observed graph. Consider pair of nodes
(vi, v j) that is not linked in a partially observed graph, but is in-
stead actually positive in its fully observed graph. In the ideal
case, latent vectors of vi and v j obtained from the partially ob-
served graph satisfy 〈xi, x j〉 ≈ 0, whereas those obtained from
the fully observed graph satisfy 〈xi, x j〉 ≈ 1. As the observation
of a graph becomes sparser, the number of such links increases;
therefore, this inconsistency can lead to poor performance. Con-
versely, IMF can avoid this inconsistency because it learns a
model by only utilizing positive links. More specifically, IMF
learns latent feature vectors of nodes {xk}vk∈V and those of pos-
itive links

{
yl
}
el∈EP

by factorizing incidence matrix B ∈ R|V|×|EP |

such that

〈xi, y j〉 ≈
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if vi ∈ e j

0 if vi � e j

holds in its simplest instantiation. Since this approach does not
utilize unlabeled node pairs, the model obtained from a partially
observed graph is consistent with the model obtained from a fully
observed graph; therefore, the performance of IMF is expected to
be robust to the sparsity of the given graph. In this light, we ar-
rive at our hypothesis that IMF can counter the sparsity problem
better than AMF. The main purpose of this paper is to confirm
our hypothesis by a thorough set of experiments.

While the IMF approach is promising, it is not trivial to predict
a new link using a factorized incidence matrix as shown in Fig. 1,
[Bottom]. By factorizing the incidence matrix of a graph, we
learn latent vector xk of each node vk ∈ V and latent vector y(i, j)

of a positive link (vi, v j) ∈ EP, but we do not learn a latent vector
y(i′ , j′) of any unlabeled node pair (vi′ , v j′ ) � EP; therefore, we can-
not predict a link using an approach similar to that of AMF. We
thereby face a key technical challenge, i.e., how can we utilize
the factorized incidence matrix to predict a link? Our idea here is
that the link on (vi′ , v j′ ) is expected if we can successfully recover
its latent vector y(i′ , j′) that is consistent with latent vectors of pos-
itive links {y(i, j); (vi, v j) ∈ EP}. Given the above, we propose an
optimization-based link prediction method that adopts the IMF
approach; we describe our method in Section 3. Although the
computational cost of IMF is generally more expensive than that
of AMF, our method is faster with a simple contrivance, as further
detailed in Section 3.3.

We employed the simplest methods for adopting these ap-
proaches rather than devising a new model, in order to conduct
comparative experiments with large datasets to truly confirm our
hypothesis. Moreover, we only focused on the graph structure;
i.e., we did not incorporate domain-specific side information into
our model to highlight the property of IMF as a building block
for link prediction versus that of AMF. In our experiments,
we first applied the two methods to synthetic datasets gener-
ated by the Barabási–Albert model [5], which is a well-known
generative model of graphs. This model enabled us to obtain
graphs with scale-free and small-world properties. Next, we ap-
plied the two methods to real-world datasets from KONECT [12],
which is a repository of a large number of real-world networks.
Our experimental results on both the synthetic and real-world

datasets demonstrate that performance improvements achieved by
the IMF-based method versus the AMF-based method are nega-
tively correlated with the density of the given graphs; in other
words, IMF indeed alleviates the sparsity problem.

2. Preliminaries

In this section, we first present our definition of the link predic-
tion problem as a binary classification/ranking problem. Next, we
provide formal definitions of the incidence matrix, adjacency ma-
trix, and truncated singular value decomposition (SVD), the lat-
ter being a standard method of matrix factorization and low-rank
approximation. Finally, we introduce a baseline link prediction
method that utilizes the AMF approach.

2.1 Link Prediction
Given partially observed graph G = (V,EP) with the set of

nodesV and the set of positive links EP ⊂ V×V, the goal of the
link prediction problem is to learn scoring function s : V×V → R
for predicting a new link on an unlabeled pair of nodes in a set
EU := (V ×V) \ EP.

2.2 Matrix Representations of a Graph
Adjacency matrix A = (ai j) ∈ R|V|×|V| of partially observed

graph G = (V,EP) is defined as

ai j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if (vi, v j) ∈ EP

0 otherwise.
(1)

An adjacency matrix is symmetric here because we focus on undi-
rected graphs.

Next, incidence matrix B = (bi j) ∈ R|V|×|EP | of graph G =

(V,EP) is defined as

bi j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if vi ∈ e j

0 otherwise.

Here, any column vector b ∈ R|V| of B represents a positive link.
By definition, any b has exactly two ones with remaining ele-
ments set to zeros because any positive link is incident with ex-
actly two nodes. Note that we exploit this feature in our method,
which we present in Section 3.1.

2.3 Truncated SVD
Given matrix M ∈ Rm×n and integer k ≤ rank M, truncated

SVD allows us to factorize the matrix approximately into the
product of three matrices Uk ∈ Rm×k, Σk ∈ Rk×k, and Vk ∈ Rn×k

such that

M ≈ UkΣkVk
� =: M̃,

where Σk denotes a diagonal matrix diag(σ1, . . . , σk) that consists
of the k largest singular values of M. Matrix M̃ is the best rank-k
approximation of M in terms of the Frobenius norm, i.e.,

M̃k = arg min
M̃∈Rm×n

∥∥∥M − M̃
∥∥∥2

F
s.t. rank M̃ ≤ k.
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2.4 AMF-based Method
In this subsection, we introduce a baseline method that utilized

the AMF approach. This method is composed of the following
three steps:
( 1 ) Represent given graph G = (V,EP) by adjacency matrix

A ∈ R|V|×|V|.
( 2 ) Factorize adjacency matrix A via truncated SVD, i.e.,

A ≈ UkΣkVk
� = XX� =: Ã = (ãi j), (2)

where X = (x1, . . . , x|V|)� = UkΣ
1/2
k = VkΣ

1/2
k and Σ1/2

k :=
diag(

√
σ1, . . . ,

√
σk). Note that Vk equals Uk because adja-

cency matrix A is symmetric. Each row vector xi
� of matrix

X denotes a latent vector of node vi ∈ V.
( 3 ) Predict a link by scoring function sAMF : V×V → R, which

is defined as

sAMF(vi, v j) := ãi j = 〈xi, x j〉,

where 〈·, ·〉 denotes the standard inner product.

3. IMF-based Method

In this section, we propose an optimization-based link predic-
tion method that adopts the IMF approach. As we noted out in
Section 1 above, IMF is expected to counter the sparsity problem
substantially better than AMF; however, a technical challenge we
face in implementing IMF is that, unlike AMF, there is not an
obvious method for making link predictions using a factorized
incidence matrix. IMF only provides latent vectors of nodes and
positive links; i.e., IMF lacks those of unlabeled pairs of nodes,
which are necessary for link prediction, as illustrated in Fig. 1,
[Bottom]. To address this challenge, we propose that a link be-
tween an unlabeled node pair is expected if we can successfully
recover its latent vector that is consistent with those of the posi-
tive links. Our approach here is simple, fast, and appropriate for
conducting a large number of comparative experiments to confirm
our hypothesis.

3.1 Overview
Figure 2 shows an overview of our method. Given inci-

dence matrix B of the given graph, IMF first factorizes matrix
B ≈ XY using truncated SVD, which provides us latent vec-
tors of nodes {xk}vk∈V and those of positive links

{
y(i, j)
}
(vi ,v j)∈EP

such that b(i, j) ≈ Xy(i, j) for any positive link (vi, v j), where
b(i, j) := (0, . . . , 0, 1

i
, 0, . . . , 0, 1

j
, 0, . . . , 0)� is a column vector of

B. Our idea here is to predict a link on unlabeled node pair (v′i , v
′
j)

based on how well we can recover its latent vector y(i′ , j′) that is
consistent with the positive links, i.e.,

b(i′ , j′) ≈ Xy(i′ , j′).

Since we have matrix X and binary vector b(i′ , j′) (whose i’th and
j’th elements are one, with remaining elements set to zero), we
formulate our above idea as following scoring function

sIMF(vi, v j) := −min
y∈Rk

∥∥∥b(i, j) − Xy
∥∥∥2

2
.

Here

Fig. 2 An overview of our link prediction method based on IMF. For any
positive link (vi, v j) ∈ EP, equation b(i, j) ≈ Xy(i, j) holds. For unla-
beled node pair (v1, v3) � EP, if we can find latent vector y(1,3) such
that b(1,3) ≈ Xy(1,3), then we consider there to be a link between v1
and v3. Note that matrix X and binary vector b(1,3) are known.

∇y
∥∥∥b(i, j) − Xy

∥∥∥2
2
= 0 ⇐⇒ y =

(
X�X
)−1

X�b(i, j),

because

∇y
∥∥∥b(i, j) − Xy

∥∥∥2
2
= ∇y

(
y�(X�X)y − 2(X�b(i, j))

�
y + 2

)

= 2X�Xy − 2X�b(i, j).

Thus, the optimization problem can be solved in a closed form as

sIMF(vi, v j) = −〈wi + w j,wi + w j〉, (3)

where wi is the i’th column of matrix W, which is given as

W := X(X�X)−1X� − I|V| ∈ R|V|×|V|, (4)

and I|V| is the |V| × |V| identity matrix.

3.2 Algorithm
Similar to the AMF-based method, the procedure of our IMF-

based method is composed of the three steps that follow:
( 1 ) Represent given graph G = (V,EP) by incidence matrix

B ∈ R|V|×|EP |.
( 2 ) Factorize incidence matrix B into the product of two matri-

ces X and Y using truncated SVD, i.e.,

B ≈ UkΣkVk
� = XY�, (5)

where X := UkΣk and Y := Vk. Next, calculate matrix
W ∈ R|V|×|V| (i.e., Eq. (4)).

( 3 ) Predict a link by using scoring function sIMF : V×V → R in
conjunction with the i’th and j’th columns of matrix W (i.e.,
Eq. (3)).

3.3 Computational Efficiency
At first glance, the computational cost of IMF appears to

be more expensive than that of AMF because the size of inci-
dence matrix (|V| × |EP|) is larger than that of adjacency matrix
(|V| × |V|); however, with a simple contrivance, the cost of the
matrix factorization of our method can be as small as that of the
AMF-based method. Observing that we only need matrices Uk

and Σk of Eq. (5), it is sufficient to apply truncated SVD to posi-
tive semi-definite symmetric matrix BB�. We then obtain Uk and
Σk as

Uk = Qk, (6)

Σk = Λ
1/2
k , (7)
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where

BB� ≈ QkΛkQk
�. (8)

Since the size of BB� is the same as adjacency matrix A, the
computation time required for matrix factorization in our method
is the same as that of AMF.

Moreover, the construction of matrix BB� requires almost the
same computation time as that of constructing adjacency matrix
A because

BB� = A + D (9)

holds, where D denotes diagonal matrix diag(d1, . . . , d|V|), and
each di corresponds to the degree of node vi.

4. Experiments

To demonstrate that IMF actually counters the sparsity prob-
lem better than AMF, we conducted comparative experiments us-
ing large datasets. To examine the capabilities of IMF versus that
of AMF as a building block in link prediction, we employed the
simplest methods described above. We used synthetic datasets in
our first set of experiments, then used real-world datasets in our
second set of experiments. Further, we conducted comparative
experiments to compare IMF with AMF in terms of the computa-
tion times required to learn the given models so as to clarify the
usefulness of IMF in practical applications.

4.1 Datasets
In the subsection that folow, we introduce the datasets we used

in our experiments.
4.1.1 Synthetic Datasets

In the first set of experiments, we generated synthetic graphs
that possess scale-free and small-world properties by utilizing
the Barabási–Albert preferential attachment model [5]. Fur-
ther, we used the graph generator available in NetworkX,
a Python language software package [9]. We generated 10
synthetic graphs using parameters n = 10, 000 and k ∈
{1, 2, 3, 4, 5, 7, 10, 15, 25, 100}, where n denotes the number of
nodes, and k denotes the number of links between a new node
and existing nodes; i.e., each generated graph has approximately
k × n positive links.
4.1.2 Real-World Datasets

In the second set of experiments, we used real-world datasets
from KONECT (the Koblenz Network Collection) [12], which is
a de facto online graph repository that provides a large number of
real-world graphs. We extracted all unweighted and undirected
graphs from KONECT, and from this group, we selected the 24
smallest graphs in terms of |V|. Table 1 summarizes all of the
datasets we used in the second set of experiments.

4.2 Predictive Performance
In this subsection, we describe the experiments to examine the

relationship between predictive performance and graph sparsity,
all of which supports the validation of our hypothesis that IMF
performs better than AMF as networks become sparser.

Table 1 Statistics for real-world datasets extracted from KONECT, sorted
by the Sparsity measure (|EP |/|V|2), and AUC scores (complete).
Here, |V| represents the number of nodes and |EP | represents the
number of positive links. For each row, the best result is shown in
bold.

Name |V| |EP | Sparsity AMF IMF
Zebra 27 111 1.5e-01 0.867 0.748
Jazz musicians 198 2,742 7.0e-02 0.913 0.740
Zachary karate club 34 78 6.7e-02 0.628 0.766
Contiguous USA 49 107 4.5e-02 0.676 0.448
Dolphins 62 159 4.1e-02 0.714 0.580
David Copperfield 112 425 3.4e-02 0.716 0.715
Reactome 6,327 147,547 3.7e-03 0.978 0.890
arXiv hep-ph 28,093 4,596,803 5.8e-03 0.988 0.907
PDZBase 212 244 5.4e-03 0.576 0.694
arXiv hep-th 22,908 2,673,133 5.1e-03 0.963 0.905
U. Rovira i Virgili 1,133 5,451 4.2e-03 0.819 0.760
Hamsterster friendships 1,858 12,534 3.6e-03 0.870 0.847
Hamsterster full 2,426 16,631 2.8e-03 0.890 0.815
Euroroad 1,174 1,417 1.0e-03 0.530 0.492
Human protein (Vidal) 3,133 6,726 6.9e-04 0.677 0.745
Protein 1,870 2,277 6.5e-04 0.575 0.687
arXiv astro-ph 18,771 198,050 5.6e-04 0.937 0.840
Facebook (NIPS) 2,888 2,981 3.6e-04 0.523 0.996
Route views 6,474 13,895 3.3e-04 0.621 0.836
US power grid 4,941 6,594 2.7e-04 0.563 0.519
Pretty Good Privacy 10,680 24,316 2.1e-04 0.755 0.780
Facebook friendships 63,731 817,035 2.0e-04 0.880 0.864
CAIDA 26,475 53,381 7.6e-05 0.655 0.941
Brightkite 58,228 214,078 6.3e-05 0.764 0.872

4.2.1 Performance Measure
To quantitatively measure performance, we used the area under

the receiver operating characteristic curve (ROC-AUC, AUC) to
evaluate the performance of scoring function s.

In general, for a binary classification problem, given a set of
positive examples Δp and a set of negative examples Δn in a test
set, the AUC of scoring function s : Δ→ R is calculated as

1
|Δp||Δn|

∑

xp∈Δp ,xn∈Δn

I[s(xp) > s(xn)],

where I[condition] = 1 if the condition is true and I[condition] =
0 otherwise.

In the link prediction problem for a partially observed graph,
since negative examples do not exist, we substitute a set of ran-
domly selected min{1, 000, |EU|} unlabeled node pairs E(1,000)

U ⊂
EU as a set of negative examples. With a test set E(test)

P ⊂ EP as a
set of positive examples, AUC is calculated as

1

|E(test)
P ||E(1,000)

U |
∑

ep∈E(test)
P ,en∈E(1,000)

U

I[s(ep) > s(en)].

Lichtenwalter et al. noted that AUC is an appropriate performance
measure for link prediction because it does not rely on an arbi-
trary or unjustified threshold [16].
4.2.2 Experimental Procedures

We conducted five fold cross validation to measure the perfor-
mance of IMF and AMF using the following protocol.
( 1 ) Given partially observed graph G = (V,EP), we randomly

divide G into
• a training set G(train) =

(
V,E(train)

P

)
,

• a development set G(dev) =
(
V,E(dev)

P

)
,
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Table 2 AUC scores on the synthetic datasets sorted by sparsity measure
(|EP |/|V|2). Here, n and k correspond to the parameters of the
Barabási–Albert model introduced in Section 4.1.1. For each row,
the best result is shown in bold.

n k |V| |EP | Sparsity AMF IMF
10,000 100 10,000 989,999 9.9e-03 0.722 0.723
10,000 25 10,000 249,374 2.5e-03 0.712 0.727
10,000 15 10,000 149,774 1.5e-03 0.693 0.723
10,000 10 10,000 99,899 1.0e-03 0.674 0.722
10,000 7 10,000 69,950 7.0e-04 0.657 0.713
10,000 5 10,000 49,974 5.0e-04 0.629 0.711
10,000 4 10,000 39,983 4.0e-04 0.610 0.707
10,000 3 10,000 29,990 3.0e-04 0.571 0.708
10,000 2 10,000 19,995 2.0e-04 0.533 0.698
10,000 1 10,000 9,998 1.0e-04 0.495 0.682

Fig. 3 A scatter plot illustrating the relationship between sparsity (x-axis)
and the performance improvements of IMF over AMF (y-axis). Each
point corresponds to a result for each synthetic dataset. Here, Spear-
man’s ρ = −1.0 (p = 0.0 < 0.01).

• and a test set G(test) =
(
V,E(test)

P

)
,

such that |E(train)
P | : |E(dev)

P | : |E(test)
P | = 3 : 1 : 1.

( 2 ) With the training set G(train), we learn scoring function sk for
each
k ∈
{
20, 21, . . . ,min

{
214, 2�log2(rank M)�}}, where k is the rank

of truncated SVD and matrix M is the incidence or adjacency
matrix of G(train). For each k, we evaluate scoring function sk

by AUC with the development set G(dev), then select the best
k.

( 3 ) We calculate AUC of sbest k with the test set G(test) as the re-
sults.

We repeat this process five times, then we report the mean of AUC
of sbest k.
4.2.3 Experimental Results

In this subsection, we present our experimental results for both
types of datasets and discuss the validity of our hypothesis.
Synthetic Datasets

Table 2 and Fig. 3 show our experimental results on the syn-
thetic datasets generated by the Barabási–Albert model. To con-
firm our hypothesis that IMF counters the sparsity problem better
than AMF, we calculated Spearman’s rank correlation coefficient
(Spearman’s ρ) between the sparsity measure (|EP|/|V|2) and the
performance improvements of IMF over AMF (AUC(IMF) −
AUC(AMF)). If Spearman’s ρ is negative, we conclude that the
performance gain of IMF over AMF increases as the original
graph becomes sparser; i.e., the hypothesis is supported. Spear-
man’s ρ was calculated as −1.0 and its p-value is 0.0 (< 0.01),
which strongly supports our hypothesis.

Fig. 4 A scatter plot illustrating the relationship between the sparsity (x-
axis) and the performance improvements of IMF over AMF (y-axis).
Each point corresponds to result for each real-world dataset. Here,
Spearman’s ρ = −0.55 (p = 0.0054 < 0.01).

Table 3 An excerpt of experimental results for AUC scores on the real-
world datasets. For each row, the best result is shown in bold. We
compared results of all pairs of graphs such that the relative differ-
ence of their sizes (|V|) was < 20%, and one graph had more than
five times as many positive links (|EP |) as the other graph.

Name |V| |EP | Sparsity AMF IMF
Jazz musicians 198 2,742 7.0e-02 0.913 0.740
PDZBase 212 244 5.4e-03 0.576 0.694
Hamsterster friendships 1,858 12,534 3.6e-03 0.870 0.847
Protein 1,870 2,277 6.5e-04 0.575 0.687
Hamsterster full 2,426 16,631 2.8e-03 0.890 0.815
Facebook (NIPS) 2,888 2,981 3.6e-04 0.523 0.996
Reactome 6,327 147,547 3.7e-03 0.978 0.890
Route views 6,474 13,895 3.3e-04 0.621 0.836
arXiv hep-th 22,908 2,673,133 5.1e-03 0.963 0.905
CAIDA 26,475 53,381 7.6e-05 0.655 0.941
arXiv hep-ph 28,093 4,596,803 5.8e-03 0.988 0.907
CAIDA 26,475 53,381 7.6e-05 0.655 0.941

Further, Table 2 demonstrates that (i) the AUC score using IMF
was more robust to the sparsity of the original graph versus that
of AMF and (ii) the performance of AMF decreased further as the
original graph became sparser. These observations suggest that if
the original graph possesses scale-free or small-world properties,
IMF is able to achieve nearly consistent performance regardless
of the sparsity of the graph, whereas the performance of AMF
degrades by the sparsity.
Real-world Datasets

Table 1 and Fig. 4 show the complete set of experimental re-
sults on the real-world datasets that we used. Similar to our exper-
iments with the synthetic datasets, Spearman’s ρ was −0.55 with
a p-value of 0.0054 (< 0.01); therefore, we conclude that IMF
also alleviated the sparsity problem for the real-world datasets.

An excerpt of our experimental results are shown in Table 3;
these results also support our hypothesis. More Specifically, Ta-
ble 3 shows all pairs of graphs whose sizes were in the same range
and whose sparsity measures differed radically. Here, the relative
difference of their sizes (|V|) was less than 20%, and one graph
had more than five times as many positive links (|EP|) as the other
graph. For all sparser datasets, IMF outperformed AMF in terms
of AUC, which also supports our hypothesis.
4.2.4 Discussion: Strengths and Weaknesses

In this subsection, we discuss the strengths and weaknesses of
IMF as compared to AMF in terms of network statistics. We ana-
lyze our experimental results for real-world networks by examin-
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Table 4 Correlations between network statistics and predictive perfor-
mance on real-world datasets. Here, the highest correlated method
in each row is shown in bold.

AMF IMF
Normalized edge distribution entropy −0.08 −0.81
Gini coefficient 0.54 0.85
Clustering coefficient 0.68 −0.08
Average degree (another measure of density) 0.97 0.40

ing the correlation between various types of statistics of networks
and the predictive performance of IMF and AMF. Next we detect
some statistics with large differences in correlation with IMF and
AMF; i.e., we find effective features of a network to make a judg-
ment as to which method is more suitable for the given network,
the results of which are summarized in Table 4.
Strengths
Non-uniformity: IMF has the advantage in predicting a link on
non-uniform networks. It is well known that the degree dis-
tribution and edge distribution of real-world networks are non-
uniform. In other words, only a few nodes have a considerable
number of links, whereas most nodes have very few links. As
noted by Kunegis and Preusse, the normalized edge distribution
entropy and Gini coefficient are appropriate to use here to mea-
sure the non-uniformity of a network [13].

Interestingly, these measures of non-uniformity are highly cor-
related with the performance of IMF on real-world datasets, as
shown in Table 4. For non-uniform networks, i.e., networks with
low normalized edge distribution entropy or high Gini coefficient,
IMF is expected to predict links with great accuracy.

This observation also shows that the predictive performance of
IMF is stably high on synthetic datasets (Table 2) because the
Barabási–Albert model generates scale-free networks with de-
gree distribution following a power law, which is a typical non-
uniform distribution.
Weaknesses
Clustering Coefficient: AMF has the advantage in predicting
links on networks with high clustering coefficients. According
to our experimental results for real-world networks, the clus-
tering coefficient is highly correlated with AMF performance
(ρ = 0.68). Complex networks typically have high clustering
coefficients, as well as the scale-free property.

Given this, IMF is not suitable for networks with high cluster-
ing coefficients, because AMF is expected to predict links with
high accuracy on these networks. Conversely, if the clustering
coefficient of a network is low, we can utilize IMF instead of
AMF. For example, from Table 1, the clustering coefficients of
PDZBase, Facebook (NIPS), Route views, and CAIDA are quite
low (< 0.01), and the corresponding predictive performance of
AMF is low while the AUC of IMF is relatively high for these
networks.

Average Degree: AMF has the advantage in predicting links on
networks that have high average degrees. On real-world datasets,
the AUC of AMF strongly correlates to the average degree of the
graph (ρ = 0.97), as shown in Table 4.

Note that the average degree is sometimes called density.
Therefore, AMF can perform on dense networks and not be ex-
pected to predict links well on sparse networks, at least in terms

of average degree. This phenomenon also reinforces our main
claim; i.e., IMF performs better than AMF as the given network
becomes sparser in terms of average degree.

4.3 Computation Time
In Section 3.3, we theoretically compare the computational ef-

ficiency of IMF with that of AMF. In this subsection, we confirm
the actual computation time.
4.3.1 Experimental Settings

We focus on the time required to learn the IMF and AMF mod-
els, which is comprised of matrix construction, matrix factoriza-
tion, and matrix multiplication.
• AMF
– Matrix construction: A (see Eq. (1)).
– Matrix factorization: UkΣkVk

� ≈ A (see Eq. (2)).
– Matrix multiplication: Ã = UkΣkVk

� (see Eq. (2)).
• IMF
– Matrix construction: BB� = A + D (see Eq. (9)).
– Matrix factorization: QkΛkQk

� ≈ BB� (see Eq. (8)).
– Matrix multiplication: W = X(X�X)−1X� − I|V|, where

X = QkΛ
1/2
k (see Eqs. (4), (6), and (7)).

As in the case of Table 3, we handle all pairs of graphs such that
the relative difference of their sizes (|V|) is less than 20% and one
graph has more than five times as many positive links (|EP|) as the
other graph. We conducted our experiments using the following
common conditions: k = min{1, 024, 2�log2(rank M)�}, where matrix
M is the incidence or adjacency matrix; the Python’s version was
2.7.11; and the algorithm used for truncated SVD was random-
ized SVD *1. Finally, note that the computer we used was with
Ubuntu 14.04, Xeon E5-2680 v2 (2.8 GHz) CPU, and 256 GB
RAM.
4.3.2 Experimental Results

Table 5 shows our results of measuring computation times.
Regardless of density, the computation time of matrix factoriza-
tion is almost the same between IMF and AMF for all networks.
As shown theoretically in Section 3.3, even in a network where
the size of its incidence matrix becomes extremely large, such as
arXiv hep-ph or arXiv hep-th, the empirical computation time of
matrix factorization of IMF is almost equal to that of AMF, pri-
marily because IMF learns the model through the factorization
of matrix BB� of the same size as adjacency matrix A ∈ R|V|×|V|
(Section 3.3).

For matrix construction, i.e., loading data, IMF generally takes
twice as long as AMF, because unlike the adjacency matrix, it is
necessary to consider the diagonal components of BB� (Eq. (9)).
The cost of matrix multiplication of IMF is also higher than that
of AMF, because IMF must solve the linear equation whereas
AMF must only calculate simple matrix products in the matrix
multiplication phase.

Finally, looking at the total time, learning with IMF completed
within a few minutes, like the simplest instantiation of AMF with
no expansion, even for huge networks with millions of edges (i.e.,
incidence matrix of the given graph is huge). Therefore, despite

*1 We used the sklearn.utils.extmath.randomized svd() function imple-
mented in scikit-learn, a machine learning library in Python (http://
scikit-learn.org/stable/developers/utilities.html).
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Table 5 Empirical computation times for learning the given models. The
use of “construct,” “factorize,” and “multiply” here represents the
time for matrix construction, matrix factorization, and matrix mul-
tiplication, respectively; similarly, the use of “Total” represents the
sum of these. Units are in seconds. The times listed in the table are
the average execution times in five fold cross validation.

Name |V| |EP | AMF IMF

Jazz musicians 198 2,742 Total 0.109 0.154
construct 0.038 0.093
factorize 0.071 0.057
multiply 0.000 0.004

PDZBase 212 244 Total 0.066 0.083
construct 0.004 0.010
factorize 0.061 0.069
multiply 0.001 0.004

Hamsterster 1,858 12,534 Total 1.555 1.981
friendships construct 0.154 0.350

factorize 1.123 1.078
multiply 0.278 0.553

Protein 1,870 2,277 Total 1.414 1.671
construct 0.037 0.080
factorize 1.116 1.102
multiply 0.261 0.489

Hamsterster full 2,426 16,631 Total 2.139 2.925
construct 0.203 0.469
factorize 1.517 1.653
multiply 0.419 0.803

Facebook (NIPS) 2,888 2,981 Total 4.360 2.625
construct 0.047 0.096
factorize 3.773 1.388
multiply 0.540 1.141

Reactome 6,327 147,547 Total 9.264 14.645
construct 1.626 4.135
factorize 5.048 5.079
multiply 2.590 5.431

Route views 6,474 13,895 Total 7.690 11.034
construct 0.186 0.386
factorize 4.896 4.967
multiply 2.608 5.681

arXiv hep-th 22,908 2,673,133 Total 84.145 160.527
construct 33.745 82.091
factorize 21.569 19.630
multiply 28.831 58.806

CAIDA 26,475 53,381 Total 51.776 90.675
construct 0.665 1.537
factorize 19.880 6.331
multiply 31.231 82.807

arXiv hep-ph 28,093 4,596,803 Total 88.305 221.525
construct 58.198 138.912
factorize 13.466 13.406
multiply 16.641 69.207

CAIDA 26,475 53,381 Total 51.776 90.675
construct 0.665 1.537
factorize 19.880 6.331
multiply 31.231 82.807

the disadvantages noted above, we believe that IMF can withstand
practical use sufficiently.

5. Supplemental Experiments

For completeness, we also compared the performance of IMF
with a variant of AMF, i.e., the alternating least squares (ALS)
matrix factorization, which is referred to as either ALS matrix

factorization [10] or regularized SVD [21] in the collaborative fil-
tering domain. The objective of our supplemental experiments
are to confirm whether our hypothesis holds even if the baseline
method is ALS. In this section, we first introduce ALS, then show
our experimental results.

Table 6 Results of our supplemental experiments. The AUC scores on the
synthetic datasets, sorted by the sparsity measure (|EP |/|V|2). Here,
n and k correspond to the parameters of the Barabási–Albert model
introduced in Section 4.1.1. For each row, the best result is shown
in bold.

n k |V| |EP | Sparsity AMF ALS IMF
100 10 100 899 9.0e-02 0.651 0.640 0.675
100 9 100 818 8.2e-02 0.660 0.651 0.689
100 8 100 737 7.8e-02 0.642 0.628 0.670
100 7 100 650 6.5e-02 0.635 0.637 0.687
100 6 100 563 5.6e-02 0.648 0.632 0.718
100 5 100 474 3.7e-02 0.620 0.623 0.695
100 4 100 385 3.9e-02 0.621 0.624 0.697
100 3 100 290 2.9e-02 0.554 0.569 0.654
100 2 100 195 2.0e-02 0.486 0.506 0.700
100 1 100 98 9.8e-03 0.495 0.470 0.637

Fig. 5 A scatter plot illustrating the relationship between the sparsity (x-
axis) and the performance improvements of IMF over ALS (y-axis).
Each point corresponds to a result for each synthetic dataset. Here,
Spearman’s ρ = −0.92 (p = 0.0 < 0.01).

5.1 ALS Matrix Factorization
ALS learns latent vectors of the given nodes by using gradient

descent to minimize following loss function

L(X) =
1
2

∑

(vi ,v j)∈EP

(〈xi, x j〉 − 1)2 +
λ

2
‖X‖2F ,

where λ is a regularization hyperparameter. To predict a link, we
use scoring function sALS : V ×V → R defined as

sALS(vi, v j) = 〈xi, x j〉,
which is a similar approach to that of AMF.

5.2 Experimental Setting
For our experiments, we generated 10 synthetic graphs again

using the Barabási–Albert model, this time with parameters n =

100 and k ∈ {1, 2, . . . , 10}. We essentially used the same exper-
imental procedure described in Section 4.2.2. Specifically, for
ALS, we employed a grid search to tune two hyperparameters k

and λ ∈ {1.0, 0.1, 0.01, 0.001}.

5.3 Experimental Results
Table 6 shows the resulting AUC scores for AMF, ALS, and

IMF on the generated synthetic graphs, Fig. 5 illustrates the per-
formance improvements of IMF over ALS.

From these results, we identify two key findings. First, Fig. 5
shows that IMF performed better than ALS as the graph became
sparser. More specifically, Spearman’s ρ was −0.92 with a p-
value of 0.0. These results show that our hypothesis holds for
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IMF and ALS on small synthetic datasets. Second, the relation-
ship between the sparsity and the performance of ALS is quite
similar to results for AMF. These findings can be quantitatively
supported by Spearman’s ρ between the AUC scores of AMF and
those of ALS, i.e., ρ = 0.95 (p = 0.0). This second finding also
allows us to reason that the first finding is also valid for large-
scale datasets. Therefore, we conclude that our hypothesis may
indeed hold for ALS and IMF.

6. Related Work

In this section, we review existing studies on (i) link prediction
methods based on graph structures and (ii) devising countermea-
sures against the sparsity problem; further, we state the relation-
ships these previous works have with our present research.

6.1 Link Prediction Based on Graph Structure
To learn scoring function V × V → R for predicting a link

on an unlabeled node pair, there are typically three approaches to
constructing the features of node pair (vi, v j) from the topology
of the graph; these three approaches are based on(i) neighboring
nodes of v1 and those of v2,(ii) the ensembles of paths from v1 to
v2, and(iii) factorizing a matrix of the given graph. We follow this
third line of research in our present work.

Typical examples of node-neighborhoods-based features are
“common neighbors” and Adamic/Adar [2]. A probabilistic
model of node neighborhoods using a Markov random field has
also been presented by Wang et al. [23].

Katz is one of the features based on the ensembles of paths
between a pair of nodes [11]. Further, Rooted PageRank [15]
and PropFlow [16] are based on path information and are both
founded on PageRank.

Matrix factorization is also used to calculate the feature on a
node pair in a number of studies [1], [6], [14], [19]. Our study
follows this line of research because of its computational effi-
ciency. There are a number of various computationally efficient
techniques for matrix factorization [18]. The modern real-world
networks we want to model and use are massive; therefore, com-
putational efficiency is of considerable importance. In this study,
we utilized truncated SVD, a lightweight approach to the simplest
matrix factorization that we use, to conduct thorough experiments
and investigate the difference between the capabilities of IMF and
AMF. When we put IMF to practical use, we can utilize various
matrix factorization techniques to improve the performance.

Further, we utilize the incidence matrix rather than the adja-
cency matrix, the latter of which most studies have applied for
link prediction. To the best of our knowledge, only Nori et al.
used an incidence matrix for link prediction [20]. They repre-
sented multi-relational data as an incidence matrix and embedded
the matrix into a low-dimensional space to avoid local optimal so-
lutions from occurring when using tensor decomposition methods
in multi-relation prediction. They noted that their method was po-
tentially robust to data sparsity. The contribution of our research
compared with theirs is that we (i) propose a new approach for
utilizing a factorized incidence matrix for prediction and formu-
late our idea as a simple optimization problem that can be effi-
ciently solved, and (ii) experimentally demonstrate that IMF ac-

tually alleviates the sparsity problem on both synthetic and real-
world datasets.

For more detailed information about existing link prediction
methods that make use of graph structure, there are several com-
prehensive surveys that address extensive information regarding
link prediction [4], [17]. Further, some studies have compared the
performance of multiple methods using several real-world net-
works [15], [19].

6.2 Sparsity Problem
As Rattigan and Jensen have noted, a fundamental problem

in link prediction is a highly skewed class distribution, i.e., the
data sparsity problem [22]. There are three main approaches to
addressing this sparsity problem, i.e., (i) using an ensemble of
classifiers, (ii) down-sampling, and (iii) combining with domain-
specific side information. Our approach does not conflict with
these three approaches, because some of them can be combined
with our method, and the others cannot be applied to our problem
setting.

First, Lichtenwalter et al. concluded that using an ensemble of
classifiers is useful for sparse graphs after careful investigation
of various issues that involve link prediction such as degrees of
imbalance and variance reduction [16]. Our method can be incor-
porated into their framework.

Another set of approaches for addressing the sparsity problem
including down-sampling and up-sampling [3], [23]. These tech-
niques cannot be applied to our problem setting because they re-
quire both positive and negative examples, whereas only positive
examples are available in our problem setting.

The third approach is to incorporate domain-specific side
information—i.e., feature vectors of nodes or of node pairs—into
graph-structure-based methods. Menon and Elkan reported that
the combination of graph structure and side information was ex-
pected to be useful in predicting links, especially when a node
was only sparsely connected [19]. They presented a method
for incorporating side information into an adjacency matrix fac-
torization approach; they experimentally demonstrated that this
combination was able to yield better performance results than
models based on either graph topology or node attributes. Our
method can also be combined with side information by modify-
ing Step 2 of our approach in a similar way to that of Menon’s
work. Combining side information is a fascinating expansion of
our work.

7. Conclusion

To address the sparsity problem in link prediction, we pre-
sented a new direction that utilizes incidence matrix factorization
(IMF) as a building block rather than adjacency matrix factor-
ization (AMF), the latter of which has been used in a number of
previous studies.

The key technical challenge was to establish a method for pre-
dicting a new link using the factorized incidence matrix. Our idea
here was that a link on an unlabeled node pair is expected if we
can successfully recover a latent vector of the pair that is consis-
tent with latent vectors of positive links. We formulated this idea
into a simple optimization problem that we then solved efficiently.
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To validate our hypothesis, we conducted comparative experi-
ments using synthetic datasets generated by the Barabási–Albert
model and real-world datasets obtained from KONECT. Our
experimental results showed that Spearman’s ρ between spar-
sity measure |EP|/|V|2 and the performance gain of IMF over
AMF was negative (p < 0.01) for both synthetic and real-world
datasets. Therefore, we concluded that the IMF approach is able
to successfully counter the sparsity problem better than the AMF
approach. Our experimental results also showed that IMF was
very robust to the sparsity of the synthetic datasets, whereas that
of AMF worsened further as the graph became sparser. Therefore,
we concluded that if the original graph has scale-free or small-
world properties, IMF is more robust to the sparsity of the graph
than AMF.

An interesting direction for future work is to apply our method
to multinomial relation prediction problems. The sparsity prob-
lem is more serious in such problems because of the inherent high
dimensionality. We expect our approach as being able to over-
come the sparsity problem in multi-relation prediction because
multi-relational data can quite naturally be represented as an in-
cidence matrix.

Another future study we would like to conduct involves a set
of large-scale comparative experiments with other link prediction
methods, including ALS, which we discussed in Section 5. While
this paper showed the promising property that IMF is more robust
to network sparsity as compared with AMF, experimental verifi-
cation of whether IMF always has this advantage versus other link
prediction methods is important future research.
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