The LR-dispersion problem

Toshihiro Akagii* Tetsuya Araki† Shin-ichi Nakano*

1 Introduction

The facility location problem and many of its variants have been studied[7, 8]. A typical problem is to find a set of locations to place facilities with the designated cost minimized. By contrast, in this paper we consider the dispersion problem, which finds a set of locations with the designed cost maximized.

Given a set \(P \) of \(n \) points, and the distance \(d \) for each pair of points, and an integer \(k \) with \(k \leq n \), we wish to find a subset \(S \subset P \) with \(|S| = k \) such that some designated cost is maximized[1, 5, 6, 10, 11, 12, 13].

In one of typical cases the cost to be maximized is the minimum distance between two points in \(S \). If \(P \) is a set of points on the plane then the problem is NP-hard[12, 13], and if \(P \) is a set of points on the line then the problem can be solved in \(O(max\{n \log n, kn\}) \) time[12, 13] by dynamic programming approach, and in \(O(n \log n) \) time[1] by sorted matrix search method[4, 9].

In this paper we consider two variants of the dispersion problem on the line. Let \(P \) be a set of points on the horizontal line. We wish to find a subset \(S \subset P \) with \(|S| = k \) maximizing cost(\(S \)) defined as follows.

Let the cost cost(\(s \)) \(s \in S = \{s_1, s_2, \ldots, s_k\} \) be the sum of the distance to its left neighbor in \(S \) and the distance to its right neighbor in \(S \). We assume \(s_1, s_2, \ldots, s_k \) are sorted from left to right. Especially the leftmost point \(s_1 \in S \) has no left neighbor, so we define the cost of \(s_1 \) is \(d(s_1, s_2) \). Similarly the cost of the rightmost point \(s_k \) is \(d(s_k, s_{k-1}) \). And the cost(\(S \)) of \(S \) is the minimum cost among the costs cost(\(s_1 \)), cost(\(s_2 \)), \ldots, cost(\(s_k \)). We call the problem above the LR-dispersion problem. An \(O(kn^2 \log n) \) time algorithm based on dynamic programming is known[2].

In this paper we design an algorithm to solve the LR-dispersion problem. Our algorithm runs in \(O(n \log n) \) time, and based on matrix search method[4, 9].

2 \((\lambda, k)\)-LR-dispersion

In this section we give a linear time algorithm to solve a decision version of the LR-dispersion problem.

Given a set \(P = \{p_1, p_2, \ldots, p_n\} \) of points on a horizontal line, and two numbers \(k \) and \(\lambda \) we wish to decide if there exists a subset \(S \subset P \) with \(|S| = k \) and cost(\(S \)) \(\geq \lambda \). We call the problem as the \((\lambda, k)\)-LR-dispersion problem. We have the following lemma.

Lemma 1. If \((\lambda, k)\)-LR-dispersion problem has a solution \(S = \{s_1, s_2, \ldots, s_k\} \subset P \), then \(S' = \{p_1, s_2, s_3, \ldots, s_{k-1}, p_n\} \) is also a solution of the \((\lambda, k)\)-LR-dispersion problem.

Proof. Since cost(\(S \)) \(\leq \) cost(\(S' \)), if \(S \) is a solution then \(S' \) is also a solution and cost(\(S \)) = cost(\(S' \)).

The algorithm below is a greedy algorithm to solve the \((\lambda, k)\)-LR-dispersion problem. Note that cost(\(s_i \)) for \(i = 3, 4, \ldots, k-1 \) is \(d(s_{i-2}, s_i) \). By setting a dummy point \(s_0 = s_1 \), cost(\(s_2 \)) is also \(d(s_2, s_2) \). Also note that cost(\(k \)) = \(d(s_{k-1}, s_k) \).

Algorithm 1 find \((\lambda, k)\)-LR-dispersion \((P, k, \lambda)\)

\[
\begin{align*}
&\text{/} * \ P = \{p_1, p_2, \ldots, p_n\} \text{ and } p_1, p_2, \ldots, p_n \text{ are sorted from left to right } * /
&\text{/} * \text{ Choose } s_1 \text{ and } s_k * /
& s_1 = p_1, s_k = p_n
& s_0 = s_1 \quad \text{/} * \text{ Dummy } * /
&\text{/} * \text{ Choose } s_2, s_3, \ldots, s_{k-1} * /
& c = 2
&\text{for } i = 2 \text{ to } k - 1 \text{ do}
& \quad \text{while } d(s_{i-2}, p_c) < \lambda \text{ and } d(p_c, p_n) \geq \lambda \text{ do}
& \quad \quad c++
& \quad \text{end while}
& \quad \text{if } d(p_c, p_n) < \lambda \text{ then}
& \quad \quad \text{/} * \text{ no solution since } d(p_c, p_n) < \lambda * /
& \quad \quad \text{return NO}
& \quad \text{else}
& \quad \quad \text{/} * \ d(s_{i-2}, p_c) \geq \lambda \text{ holds } * /
& \quad \quad s_i = p_c \quad \quad \text{/} * s_i \text{ is found } * /
& \quad \quad c++
& \quad \text{end if}
&\text{end for}
&\text{/} * \text{ Output } * /
&\text{return } S = \{s_1, s_2, \ldots, s_k\}
\end{align*}
\]

Now we prove the correctness of the algorithm. Assume for a contradiction that the algorithm output NO for a given problem but it has a solution.

Let \(G = \{g_1, g_2, \ldots, g_k\} \) with \(k' < k \) be the points chosen by the algorithm, and \(O = \{o_1, o_2, \ldots, o_k\} \) the

*Department of Computer Science, Gunma University
†National Institute of Informatics, Japan
points of a solution. By Lemma 1 we can assume $o_1 = p_1$ and $o_k = p_n$. Note that $g_1 = o_1 = p_1$ and $g_k = o_k = p_n$ hold. We have the following two cases.

Case 1: For all i, $1 \leq i < k'$, $g_i \leq o_i$ holds.

Then our greedy algorithm can choose at least one more point $o_{k'}$ or more left point. A contradiction.

Case 2: For some i, $1 \leq i < k'$, $g_i > o_i$ holds.

Since g_2 is chosen in a greedy manner, we can assume $g_2 \leq o_2$. Let j be the minimum such i. Since $g_1 - 2 \leq o_j - 2$ and $g_1 - 1 \leq o_1 - 1$ hold, our greedy algorithm choose o_i or more left point as g_i. A contradiction.

Theorem 1. One can solve the decision version of the LR-dispersion problem in $O(n)$ time.

3 LR-dispersion

One can design an $O(n \log n)$ time algorithm to solve the LR-dispersion problem, based on the sorted matrix search method[4, 9]. See the long version[3] for detail.

Theorem 2. One can solve the LR-dispersion problem in $O(n \log n)$ time.

4 Generalization

In this section we consider one more variant of the dispersion problem and give an algorithm to solve the problem, which runs in $O(n \log n)$ time. In the original dispersion problem the cost is the minimum distance between two points s_i and s_{i+1}. We generalize this to the minimum distance between s_i and s_{i+h}, for given h.

Given a set $P = \{p_1, p_2, \ldots, p_n\}$ of points on a horizontal line, and a distance d for each pair of points, and two integers k, and h with $k, h \leq n$, we wish to find a subset $S = \{s_1, s_2, \ldots, s_k\} \subset P$ maximizing $\text{cost}(S)$ defined as follows.

$$L\text{cost}(S) = \min \{d(s_1, s_2), d(s_1, s_2), \ldots, d(s_1, s_k)\},$$

$$R\text{cost}(S) = \min \{d(s_{k-h+1}, s_k), d(s_{k-h+2}, s_k), \ldots, d(s_{k-h}, s_k)\},$$

$$M\text{cost}(S) = \min \{d(s_1, s_{1+h}), d(s_2, s_{2+h}), \ldots, d(s_{k-h}, s_k)\},$$

then $\text{cost}(S) = \min \{L\text{cost}(S), R\text{cost}(S), M\text{cost}(S)\}$.

We call the problem above the h-dispersion problem. The original dispersion problem on the line is the h-dispersion problem with $h = 1$ and the LR-dispersion problem is the h-dispersion problem with $h = 2$.

See the long version[3] for detail.

Theorem 3. One can solve the h-dispersion problem in $O(n \log n)$ time.

5 Conclusion

In this paper we have presented two algorithms to solve the LR-dispersion problem and the h-dispersion problem. The running time of the algorithms are $O(n \log n)$.

An $O(n \log \log n)$ time algorithm to solve the original dispersion problem on the line is known[1]. Can we design an $O(n \log \log n)$ time algorithm to solve the h-dispersion problem?

References

