IPSJ SIG Technical Report

Vol.2017-HPC-158 No.11
2017/3/8

Assessing the Interference Between Inter-node
Communication and Network 1I/O Traffic

(Unrefereed Workshop Manuscript)

2

Kevin BRown!"® NIKHIL JAIN

SarosHr MATsuokA

ABHINAV BHATELE

1

2 2

ALFREDO GIMENEZ? KATHRYN MOHROR?
MARTIN ScHULZ?

Abstract: Parallel file systems are used by supercomputers to support a range of applications that require concurrent
access to high-performance shared storage for data workflow and resilience. The design of most of these systems
result in the logical storage network sharing the same physical network infrastructure that is used for inter-process
communication. Resource sharing in this manner on shared systems is a potential area of contention, which can
be significant for communication and I/O intensive applications. We assess the interference caused by inter-process
communication on the I/O throughput to parallel file system when they both traffic share the same network resources.
For our experiments, we used miranda_io and IOR I/O benchmarks for generating 1/O traffic, and we used pF3D FFT
kernel and NBP FT MPI benchmark for generating inter-node communication traffic. Our preliminary results from
running I/O and communication benchmarks simultaneously indicate that inter-process communication does not affect

the performance of typical I/O workloads.

1. Introduction

The complete system architecture of a supercomputer typically
comprises of tightly-coupled, high-performance components.
Each subsystem is designed to meet the needs of distributed
application and highly parallel workloads that require low-latency
and/or high throughput. The I/O subsystem, for example, is
engineered using low-latency, high-bandwidth communication
channels and distributed storage hardware that is capable of
servicing thousands of I/O requests per second.

The I/O subsystem involves both on-node and off-node storage
devices that are used to feed data into the application, to stage
intermediate results and checkpoints, and to store the appli-
cation’s output for consumption by the user or other appli-
cations. The complexity of the storage subsystem is hidden
behind the overlaying file systems, which provides an efficient
File
system operations may involve main memory, multiple commu-

method of managing the data on the storage devices.

nication mediums and network interconnects, and numerous
storage devices. Hence, bottlenecks within the I/O subsystem are
often difficult to diagnose.

Parallel file system designs also vary greatly to meet the
requirements of the systems that they support and the intended
workloads. Furthermore, the trend of these system is to adapt to
new hardware and technologies that improve the performance of

' Tokyo Institute of Technology, 2-12-1 W8-33 Oo-okayama, Meguro-ku,

Tokyo 152-8550, Japan

Lawrence Livermore National Laboratory, 7000 East Ave., Livermore,
CA 94550-9234, U.S.A.

¥ brown.k.aa@m.titech.ac.jp

© 2017 Information Processing Society of Japan

I/O operations. However, one common feature of many parallel
file systems is to share the infrastructure that is also used for
applications’ inter-process communication. While this is usually
done for economic reasons, it increases the potential for inter-
ference between inter-process communication and network I/O
traffic.

A better understanding of the network interference is crucial
for many applications that use parallel I/O for performing
their work or ensuring resilience. Additionally, understanding
this interference can enable improved I/O performance without
negatively affecting application communication performance.

The challenges with understanding the I/O-communication
interference stem from many design and operational issues. Such
issues include: (1) a single I/O operation can span multiple nodes
and involve multiple shared component of the system, (2) I/O
benchmarking is usually done without the presence of realistic
communication workloads and ignores other activities on the
system, and (3) richer storage-memory hierarchies that invalidate
traditional disk-based experiments since storage is being coupled
with main memory for increasing performance.

We investigate the interference between I/O traffic and MPI
communication to quantify its effect on I/O throughput and to
expose the points in the systems that are most susceptible to such
interference. Our results show that, for regular I/O workloads,
there is negligible interference caused by MPI traffic on Lustre
I/O operations. Our results are based on experiments on two
supercomputers running miranda_io and IOR (for generating I/O
workloads) and that pF3D-comm and NPB FT kernel (for gener-
ating MPI traffic).

IPSJ SIG Technical Report

0SS 0SS (O MDS

Fig. 1 Diagram of a typical cluster with luster nodes.

2. Communication Infrastructure and Storage

2.1 Network Infrastructure

Low-latency, high-speed networks are available in most super-
computers. These networks are used to accelerate inter-process
MPI communication in distributed applications that run on super-
computers. Such networks connect hundreds or thousands of
compute and management nodes, switches, storage servers, etc.

Efficient data communication is achieved by utilizing advanced
topologies and routing algorithms. Topologies such as the fat-
tree, torus, and tofu are constructed using InfiniBand, high-speed
ethernet, or proprietary technologies to provide high-throughput
and low-latency.

2.2 Storage

Local Storage: Some systems use on-node storage to provide
temporary storage for local processes, staging checkpoints, and
handling bursty I/O. Local processes can use the file system
on these local storage devices without needing to access the
network, ensuring interference-free performance. However,
remote processes usually have no direct access to these storage

devices.

Network Storage Lustre [1] is one of the most widely used
parallel file systems for providing access to network storage in
HPC systems. Figure 1 shows the design of a typical Lustre
cluster. The files are stored on the object storage targets (OSTs)
and presented via the the object storage servers (OSSs). The
OSTs collectively present a unified file system to the compute
nodes (clients) and the meta-data server (MDS) are used to track
file layout information. A single file may be spread across
multiple OSSs, and hence, multiple storage devices (OSTs).

The process of accessing files stored on Lustre involves
multiple network requests. Lustre uses the Lustre Network
protocol (LNET) to communicate between nodes in the the
cluster. LNET operates above the network layer and each Lustre
cluster.

2.3 MPI Communication

Inter-process communication is essential in HPC applications
MPI is the most
widely used standard for inter-process computation in HPC.

since it facilitates distributed processing.

Libraries that implement the MPI standard optimize communi-
cation over the network hardware and provide a unified interface

© 2017 Information Processing Society of Japan

Vol.2017-HPC-158 No.11
2017/3/8

for performing communication.

Efficient MPI libraries implement communication optimization
algorithms for inter-process communication. However, these
algorithms do not usually consider external interference.

3. Resource Contention and Interference

One way for large-scale HPC systems to achieve high
utilization is by providing simultaneous access to many different
users and many different applications. While this means more
efficient usage of the system’s resources, it also increases
contention for shared resources such as network bandwidth and
shared storage devices. Contention for the storage devices
can occur within an application (during parallel I/O operations)
and between applications (when multiple applications access the
storage device simultaneously). Similarly, contention for network
resources can be caused by processes within a single application
as well as processes across applications.

Modern MPI libraries and parallel I/O infrastructure are
designed to minimize bottlenecks in inter-process communication
and parallel I/O operations, respectively. However, the I/O infras-
tructure is agnostic of the MPI network activities even though the
network used for MPI communication is typically partially/com-
pletely shared by the I/O subsystem. The reverse also holds true
for MPI libraries.

The bottlenecks within MPI libraries and the bottlenecks
within the I/O subsystem have been the subject of numerous
studies. However, the interference between MPI communication
and I/O traffic over the network has not been explored in much
detail.

4. Experiment Setup

To understand the potential impact of interference between
MPI communication and 1/O traffic, we analyze the performance
of representative communication-bound application kernels and
I/O-bound application kernels running on supercomputers at the
Tokyo Institute of Technology (TITECH) and the Lawrence
Livermore National Laboratory (LLNL). We design test cases
that expose the performance of Lustre I/O operations with and
without interference from MPI network traffic.

4.1 System

In TITECH, we use 256 nodes of the TSUBAME2.5 system
and, in LLNL, we use 300 nodes of the Catalyst system for our
experiments. The system specification for TSUBAME2.5 and
Catalyst are shown in Table 1 .

For the TSUBAME?2.5, the Lustre file system used in these
experiments are connected to the same network as the compute
nodes. We use the same set of compute nodes for all experi-
ments (per system) with the node-process placements described
in Section 4.3.

4.2 Benchmarks

miranda_io is chosen as the I/O benchmark to run on Catalyst.
miranda_iois the 1/O kernel of Miranda [2], a hydrodynamics
code that was developed at LLNL. In each miranda_iobenchmark,
each process writes 111 MB of data to a file and then reads the

IPSJ SIG Technical Report

Vol.2017-HPC-158 No.11
2017/3/8

TSUBAME2.5 Catalyst
of Nodes 1442 324
oS SLES SP3 TOSS
CPU pernode | 2 x Intel Xeon X5670 (12 cores total) | 2 x Intel Xeon E5-2695v2 (24 cores total)

Memory per node 56GB 128GB

On-node scratch (SSD) 51GB 800GB
Network Infrastructure QDR Infiniband QDR InfiniBand

Network Topology Fat-tree (16 nodes per edge switch) Fat-tree (18 nodes per edge switch)
Size of Lustre file system used 1.5PB 2.0PB

Table 1 The composition of each test cases (run/trial).

equivalent amount of data from a file. For our experiments, the
benchmark has been modified to provide additional timing infor-
mation and to ensure that each application writes to and reads
from its own file.

miranda_io is used for experiments on Catalyst with 10
processes per node over 150 nodes. Associated experiments have
shown that this is sufficient for generating our expected workload.

IOR [3] is a tool for benchmarking parallel file systems that was
also developed at LLNL. A variety of file management options
are offered by IOR. We chose to use the POSIX API, with each
processing writing and reading 100MB to it’s own file. The full
configuration options are listed in Section aA.1. IOR is used for
experiments on TSUBAME2.5, using 10 processes per node over
128 nodes.

pF3D-comm is the communication kernel of the pF3D laser-
plasma interaction code[4] developed at LLNL. The kernel is
configured to perform 2D-FFT on a 3D Cartesian grid. We
modified the code to include additional timers and to synchronize
after each 2D FFT operation.

We use pF3D-comm for experiments on Catalyst with all-to-all
message sizes of 32KB and 4KB. This benchmark was ran with
16 processes per node over 150 nodes, totaling 2048 processes.

NPB FT kernel is a 3D fast Fourier Transform benchmark in the
NAS Parallel Benchmark suite (NPB) ?. We used problem size
E over 128 nodes on TSUBAME?2.5 with 8 processes per node,
totaling 1024 processes. pf3d-comm was not available to be ran
on TSUBAME2.5.

4.3 Test Cases

Table 2 shows the test cases executed on TSUBAME?2.5 and
Catalyst. As noted in Section 4.2, the benchmarks that were ran
on TSUBAME2.5 were NPB FT (for communication) and IOR
(for 10), while pf3d-comm (for communication) and miranda_io
(for I0) were ran on Catalyst.

Run/Trial
R1 [R2 | R3 | R4 | R5 | R6
Benchmark Communication v |V \/
/0 VIiVvIVIVI VIV

Table 2 The composition of each test cases (run/trial).

Runs R1-3 test the I/O performance without MPI interference
while R4-6 test the I/O performance in the presence of MPI inter-
ference. For each trial, the I/O benchmark is ran for approxi-

© 2017 Information Processing Society of Japan

mately 7-10 minutes, i.e., 30 iterations of IOR on TSUBAME2.5
and 25 iterations of miranda_io on Catalyst. The communication
benchmarks, NPB FT and pF3D-comm, are configured to run
continuously while the I/O benchmarks are running for trials R4-
6.

[l Node with 1/0 job [] Node with comm job

Placement B

Ll
Placement A

Fig. 2 The process-node mapping (node placement strategy) used in our
experiments.

Two process-node placements were used for each test case.
The placements, shown in Figure 2, were chosen to investigate
the variation in interference based on task placement.

5. Results

The I/O performance results are shown in Figures 3, 4, 5, and
6. Write performance is shown Figures 3 and 4 and read perfor-
mance is shown in Figures 5 and 6. The time for each read
and write operation is individually plotted for every iteration of
the I/O benchmarks and the mean of operation time for each
run is indicated on the charts. As mentioned in ??, IOR and
miranda_io are the I/O benchmark used for TSUBAME2.5 and
Catalyst, respectively. The standard deviations for the trials are
shown in Tablestable:std-data

R1, R2, and R3 are the trials without communication kernels
and R4, RS, and R6 are the trials with MPI traffic being generated
by our communication kernels. There are no RS and R6 trials for
TSUBAME2.5 because there was not enough time to run these
trials.

The results show no distinct nor consistent change in the I/O
operation times across all the trials, indicating that I/O traffic is
not significantly impacted by the presence of MPI activity for
these experiments. The noticeable spikes occur in cases with and
without our communication benchmarks, confirming that even
these outliers were not caused by MPI interference.

6. Discussion

The variations in the read and write times provided in the
Section 5 were similar to the variations caused by system noise,
instead of being caused by the MPI traffic that was generated in

IP IG Technical R r Vol.2017-HPC-158 No.11
SJ SIG Technical Report 8 Nold

T T T T T
% individual time % % individual time
50 - —— mean time | 50 = —— mean time |
S 40— - S 40— -
2 2
Py Py
E E
= =
=] X =} X
'§ 30 y — ‘5 30 —
3} % 13} x
& « % x & % bos X
o X o x x
= X 9 = X X g
X
20 |- % § . 0| X £ %{ .
L T x
g ﬁ x % x
| | | | | | | |
R1 R2 R3 R4 R1 R2 R3 R4
Trial/Run Trial/Run
(a) Placement A (b) Placement B
Fig. 3 IOR performance when writing to Lustre file system on TSUBAME?2.5
50 [~ [[] 50 [~ I [[-]
x individual time X x individual time
—— mean time —— mean time
X
_ 40| - _ 40 -
3 3
= =
=] =]
3 3
Py Py
£ 30| -+ E 30 -
g x g
s s
o} o}
a o
=] =)
O 21 . x - Q9 20} -
= y 3 9 =
x x x i x
X % —%— X X T X X ! i
—H— i X N] X N F] x X
10 x X X - 10 | X X -
| | | | | | | | | | | |
R1 R2 R3 R4 RS R6 R1 R2 R3 R4 RS R6
Trial/Run Trial/Run
(a) Placement A (b) Placement B
Fig. 4 miranda_io performance when writing to the Lustre file system on Catalyst
T T
% individual time % individual time
——— mean time ——— mean time x
12 g 12 X g
X X
— x X —_ x
2 " 2
2 X g
8 8 x x
g X a X X X
s 10 X X R s x .
£ x § % £ X : x x
= gé X R, S = X X
g . ; e | - ¢ -
g ¥ X % g X » %
o *g* X 5} X _—
& % x X s ; % g ¥
o 8 x . x | o 8t X . X § |
= X % X X = X i
X X
x X X
X
X
6 - 6 -
| | | | | | | |
R1 R2 R3 R4 R1 R2 R3 R4
Trial/Run Trial/Run
(a) Placement A (b) Placement B

Fig. 5 IOR performance when reading from Lustre file system on TSUBAME2.5

© 2017 Information Processing Society of Japan 4

IPSJ SIG Technical Report

T I T
x individual time "
—— mean time
0.85
)
<
1S
2
o 08] .
= x X X X
2 ol %
<
: ! § : f o0 3
15
o 075 E é g ‘g*
= ¥ X X
P g :
x % % x %
x
¥ X X % x
0.7 + x %
| | | | | |
R1 R2 R3 R4 R5 R6

Trial/Run

(a) Placement A

Vol.2017-HPC-158 No.11

2017/3/8
T I
x individual time
——— mean time
0.85 -
)
=
=]
3
S 08| . .
= ' X x
= x % x
2 %
E T S T
& oy " g
S 0751 % % -
= —¥— E X
i g % X g
x X X
X
07| % x -
| | | | | |
R1 R2 R3 R4 R5 R6
Trial/Run
(b) Placement B

Fig. 6 miranda_io performance when reading from Lustre file system on Catalyst

TSUBAME?2.5 Write Standard Deviation (s)
Run Placement-A Placement-B |

1 4.0798 3.318
2 2.0081 3.9568
3 3.7168 3.1864
4 8.7604 2.7212

TSUBAME?2.5 Read Standard Deviation (s)
Run Placement-A Placement-B

1 1.0748 0.9359
2 1.0413 1.2056
3 0.7601 1.4885
4 0.8813 0.5816

Catalyst Write Standard Deviation (s)
[Run Placement-A Placement-B l

1 0.6559 1.0148
2 2.969 6.4464
3 1.2174 1.0805
4 5.5699 1.1061
5 2.0233 1.0395
6 1.0907 0.9924

Catalyst Read Standard Deviation (s)
[Run Placement-A Placement-B |

1 0.017 0.0205
2 0.0206 0.0213
3 0.0209 0.022
4 0.0248 0.0172
5 0.0217 0.0169
6 0.0267 0.0205

Table 3 Standard deviation of I/O times (in seconds).

this experiment. The standard deviations were low (excepting in
cases with abnormal spikes) and there were no notable differences
in the times for cases with MPI traffic versus cases without MPI
traffic.

Variations caused by system noise

In looking more closely at this issue, we ran IOR without
network I/O, i.e., we wrote to the file system on the local SSD.
As with the other cases, we ran trials with and without gener-
ating MPI activity on the system. The results of these trials are
shown in Figure 7. The variations in the runtimes that we noted
when writing to Lustre are also present when writing to SSD. This

© 2017 Information Processing Society of Japan

confirms that this variation is not caused by network I/O traffic
interfering with MPI traffic.

T
x individual time
9.2 ——— mean time n
X
Q X X gg
i’)‘/ 9 X X x
9 % X
2 : s :
p= % x ¥ %
S — = x % ¥
g 8.8 ¥ % 2 X
- A S §
o
= : § : :
gg X
X
8.6 x x|
| | | |
R1 R2 R3 R4
Trial/Run

Fig. 7 IOR performance when writing to the on-node SSD on
TSUBAME2.5 with placement B

Generated traffic is less than the peak network bandwidth

TSUBAME?2.5 and Catalyst use InfiniBand QDR networks and
have a peak single-rail bandwidth of 40Gbps, respectively. At the
same time, each IOR and miranda_io process generates 111MB
and 100MB of traffic, respectively, for each operation. Hence
for the case of miranda_io, one node with 10 processes would
generate 1.1GB over a 6 seconds read operation, equating to a rate
of approximately 1.5 Gbps. This rate, while higher than the rate
of the communication benchmarks, is much less than the peak
bandwidth of each system. Furthermore, both systems use the fat-
tree network topology, which supports full-bisection bandwidth
and reduces bottleneck when multiple nodes are communicating
simultaneously.

Generated I/O traffic seems representative of regular
workloads

The amount of I/O traffic generated by our experiments was
similar to the usual workload of a production supercomputer.

IPSJ SIG Technical Report

workl-055 Cluster Lustre last week

jour

|trials

Bytes/sec

Thu @2 Sat 4 Mon 86

O write B Read

Fig. 8 Traffic measurements recorded for the /workl file system on
TUSBAME2.5 during our experiments. = Measurements were
reported at 6-minutes intervals over the period of one week.

This graph in Figure 8 shows the read and write throughput
for the /workl Lustre file system that was used in our experi-
ments on TSUBAME?2.5. The section within the red box indicate
the period of time when our experiments were conducted. The
increase in traffic during our experiments was not much larger
than some other periods earlier the same week, based on the 6-
minutes measurement granularity of TSUBAME?2.5’s monitoring
system.

7. Related Work

Extensive studies have been done related to parallel I/O perfor-
mance from the aspect of measurement [5], modeling [6], and
interference [7]. However, all of these work focus on interference
on I/O performance cause by other I/O activities. None of these
nor other surveyed literature investigate MPI traffic interference
on I/O performance.

To the best of our knowledge, ours is the first work to inves-
tigate the interference caused by MPI traffic on I/O performance
in this manner.

*Edited one Extensive studies have been done to assess
parallel I/O performance from the aspect of measurement [5],
modeling [6], and interference [7]. However, all of these works
focus on interference on I/O performance caused by other I/O
activities. None of these nor other surveyed literature to inves-
tigate MPI traffic interference on I/O performance.

To the best of our knowledge, ours is the first work to inves-
tigate the interference caused by MPI traffic on I/O performance
in this manner.

8. Conclusion

Even though Lustre file system traffic and inter-node MPI
traffic both utilize the same network infrastructure, our exper-
iments have shown that regular I/O-bound workloads are not
impacted by the presence of MPI traffic over the network.
The transfer rate of typical I/O workloads on our system is
well-below the capacity of modern high-speed HPC networks
with full bisection bandwidth, like those of TSUBAME?2.5 and
Catalyst. Therefore, optimizations efforts for [/O-bound applica-
tions should not be focused on the negligible network interference
from communication-bound applications. These efforts should
focus on other aspects of the I/O subsystem.

For future work, we aim to identify the types of workload
that can generate significant network interference for parallel I/O
operations. We will also assess the impact of bottlenecks in other

© 2017 Information Processing Society of Japan

15

Vol.2017-HPC-158 No.11
2017/3/8

parts of the I/O subsystem.

Acknowledgments This research was supported by JST,
CREST (Research Area: Advanced Core Technologies for Big
Data Integration).

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-
CONF-XXXXXX).

References

[1] Lustre: Lustre Parallel File System, http://lustre.org/.

Lawrence Livermore National Laboratory: Miranda, https://wci.
11nl.gov/simulation/computer-codes/miranda.

[3] Lawrence Livermore National Laboratory: Parallel filesystem 1/O
benchmark, https://github.com/LLNL/ior.

[4] Bhatele, A., Mohror, K., Langer, S. H. and Isaacs, K. E.: There Goes
the Neighborhood: Performance Degradation Due to Nearby Jobs,
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC *13, New York, NY,
USA, ACM, pp. 41:1-41:12 (online), DOI: 10.1145/2503210.2503247
(2013).

[5] Chang, Y.-T. S., Jin, H. and Bauer, J.: Methodology and Application of
HPC I/O Characterization with MPIProf and 10T, Proceedings of the
5th Workshop on Extreme-Scale Programming Tools, ESPT *16 (2016).

[6] Groot, S., Goda, K., Yokoyama, D., Nakano, M. and Kitsuregawa,
M.: Modeling 1/O Interference for Data Intensive Distributed Appli-
cations, Proceedings of the 28th Annual ACM Symposium on Applied
Computing, SAC *13 (2013).

[71 Zhang, X. and Jiang, S.: InterferenceRemoval: Removing Inter-
ference of Disk Access for MPI Programs Through Data Replication,
Proceedings of the 24th ACM International Conference on Supercom-
puting, ICS *10 (2010).

Appendix
A.1 1IOR Configuration File

IOR START
testFile =/path/to/file /on/lustreFS
useO_DIRECT=1
api=POSIX
repetitions =1000
verbose=2
transferSize=10m
blockSize=10m
segmentCount=10
writeFile=1
readFile=1
filePerProc=1
randomOffset=0
maxTimeDuration=8

IOR STOP

