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1. Introduction
Large Geometric Margin Minimum Classification Er-

ror (LGM-MCE) training aims to enhance the robust-
ness of trained classifiers to unseen samples through
the joint execution of classification error minimization
and geometric margin maximization [1]. To do so, it
needs to appropriately control the smoothness of its
classification error count loss.

Conventionally, an optimal smoothness setting is
searched for empirically based on many experimental
training runs, each using a different degree of smooth-
ness. However, such a heuristic setting does not guar-
antee that a resulting setting is optimal. To solve this
problem, methods based on the Parzen estimation of
the Bayes risk have been proposed [2, 3]. In these meth-
ods, smoothness was automatically determined by the
Parzen window width used in the Parzen estimation
that was performed in the geometric misclassification
measure space *

The Parzen-estimation-based methods successfully
superseded the conventional empirical way. However,
because they used a uniform window width value for
all the Parzen windows, their resulting smoothness
was not always sufficiently optimized. Therefore, since
there is room for further improvement in the smooth-
ness estimation, we propose in this paper a new refor-
malization of LGM-MCE training using Parzen esti-
mation with sample weighting [4], where each window
width is adapted based on the sample density in the
geometric misclassification measure space. In the fol-
lowing sections, we detail our new formalization and
report its experimental evaluation results.

2. Large Geometric Margin Minimum
Classification Error Training

2.1 Geometric Misclassification Measure
We consider the task of classifying input sample x,

extracted from infinite feature space X , into one of the
J classes (C1, . . . , CJ). For the convenience of subse-
quent discussions, we assume x is of fixed dimension,
although LGM-MCE training can also handle variable-
length patterns. Classification process C( ) takes the
following general form:

C(x) = Ck iff k = arg max
j

gj(x; Λ), (1)

where Λ is a set of classifier parameters (class models)
to be trained and gj(x; Λ) is a discriminant function of
Cj , which is differentiable in Λ. The value of gj(x; Λ)
represents the degree to which x belongs to Cj .
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*For presentation purposes, we refer to the misclassification

measure defined using geometric margin as geometric misclassi-
fication measure.

To represent the classification result, LGM-MCE
training computes the following geometric misclassifi-
cation measure for training input x belonging to Cy:

Dy(x; Λ) =
dy(x; Λ)

∥∇xdy(x; Λ)∥
, (2)

where x† is the closest training sample to the class
boundary and dy(x; Λ) is a misclassification measure,
usually defined as

dy(x; Λ) = −gy(x; Λ) + max
j,j ̸=y

gj(x; Λ). (3)

Dy(x; Λ) represents the classification result for x using
Λ. When the value of Dy(x; Λ) is negative, its corre-
sponding classification is correct and incorrect for the
positive value. Dy(x; Λ) is also a sign-reversed ver-
sion of the geometric margin that approximates the
geometric (Euclidian) distance† between input x and
its closest class boundary. Maximizing the geometric
margin increases the robustness to unseen samples [5].
Note here that a geometric margin value observed in
the (single-dimension) geometric misclassification mea-
sure space equals that in the (usually high-dimension)
sample space. This relation is illustrated in Fig. 1,
where r expresses the geometric margin. LGM-MCE
training increases the absolute measure values (correct
classification results) for the training inputs in the neg-
ative region of the geometric misclassification measure
space and thus maximizes geometric margin value r.
We elucidate this mechanism in the next subsection.

Figure 1: Sigmoidal smooth error count loss

2.2 Loss
For each training sample x, LGM-MCE training

maps a classification result observed in the geometric
misclassification measure space to a score whose value
is between 0 and 1, which approximates the classifi-
cation error count. A typical mapping function is the
following sigmoidal loss (right side of Fig. 1):

ℓy((Dy(x; Λ)) =
1

1 + exp(−αy(Dy(x; Λ))
, (4)

†When gj(x; Λ) is the linear discriminant function and the
(sign-reversed) prototype-based distance, Dy(x; Λ) is equal to
the geometric margin without approximation.



where α is a positive constant that expresses the loss
smoothness. As α takes larger values, the loss tends to
the 0-1 ideal classification error count. The classifica-
tion correctness (resp. incorrectness) increases as the
score gets closer to 0 (resp. 1).

The above individual loss scores are then combined
into the following penalty function that is called em-
pirical average loss L (Λ), which is minimized to reduce
the classification errors over the entire set of training
samples and pursue the desirable status of classifier pa-
rameters Λ:

L(Λ) =
1

N

N∑
n=1

ℓyn(Dyn(xn; Λ)). (5)

The smoothness of L(Λ) in Λ enables such minimiza-
tion procedures as the probabilistic descent method [6],
the steepest descent method, or Rprop [7].
2.3 Automatic determination of loss smooth-

ness
The mechanism of increasing the geometric margin

through the minimization of the smooth classification
error count loss requires hyperparameter α to be deter-
mined to accelerate the geometric margin maximization
as well as the classification error minimization. Con-
ventionally, this determination was empirically con-
ducted based on many training trials. Clearly, such
an experimental process is time-consuming and does
not guarantee an optimal determination, which leads
to the accurate estimation of the Bayes risk, or in other
words, high training robustness to unseen samples.

To solve this problem, a method separately estimat-
ing αy for each class Cy was proposed by reformalizing
LGM-MCE training using Parzen estimation in geo-
metric misclassification measure space [2]. The refor-
malization starts by rewriting the expected loss (Bayes
risk) R(Λ) in the geometric misclassification measure
space:

R(Λ) =
J∑

y=1

P (Cy)

∫
X
1 (Dy(x; Λ) > 0) p(x|Cy)dx

=

J∑
y=1

P (Cy)

∫ ∞

0

p(z|Cy)dz, (6)

where z is a sample point in the misclassification mea-
sure space. Eq. (6) suggests that the expected loss,
which was originally defined in a high-dimension sam-
ple space, can be represented by estimating conditional
probability density p(z|Cy) in one-dimensional misclas-
sification measure space. For example, p(z|Cy) can be
estimated by the following Parzen estimate:

p̂(z|Cy;hy) =
1

Ny

Ny∑
n=1

1

hy
ϕ
(z −Dy(x

y
n; Λ)

hy

)
, (7)

where xy
n denotes the n-th training sample belong-

ing to Cy, Ny denotes the total number of train-
ing samples belonging to Cy (N =

∑J
y=1 Ny), and

1
hy

ϕ
(

z−Dy(x
y
n;Λ)

hy

)
represents a Parzen window whose

width hy is centered on Dy(x
y
n; Λ) in the geometric

misclassification measure space.
Substituting the density estimate in Eq. (7) to the

true density in (6) leads to a finite-sample-based esti-
mate of R(Λ), i.e., RN (Λ):

RN (Λ) =
1

N

J∑
y=1

Ny∑
n=1

∫ ∞

0

1

hy
ϕ
(z −Dy(x

y
n; Λ)

hy

)
dz,

(8)

where P (Cy) is approximated by Ny/N . Approximat-
ing in turn RN (Λ) in (8) with L(Λ) in (5) redefines the
smooth error count loss (4) as an integral defined in
the misclassification measure space.

ℓy(Dy(x; Λ)) =

∫ ∞

0

1

hy
ϕ
(z −Dy(xy

n; Λ)

hy

)
dz. (9)

Following the above preparations, an optimal value
of hy is estimated with the risk�fs maximum likelihood
estimation. By applying the Cross-Validation Maxi-
mum Likelihood (CVML) method, the following likeli-
hood function is defined:

f(hy) =

Ny∏
n=1

{∑Ny

m ̸=n
1
hy

ϕ
(

Dy(xy
n;Λ)−Dy(xy

m;Λ)
hy

)
Ny − 1

}
.

(10)

Maximizing f(hy) in terms of hy leads to an optimal
value of hy, which is expected to correspond to an ac-
curate estimation of the Bayes risk.

Among many, the Gaussian window is a natural and
handy selection. In this case, identifying (9) with the
original definition (4) leads to the following relation
between Parzen window width hy and loss smoothness
parameter αy [8]:

αy =
4√
2πhy

. (11)

Accordingly, substituting the hy value gained through
the maximization of (10) to (11) provides an optimal
setting of the loss smoothness.

3. Variable Parzen Window Width Es-
timation of Loss Smoothness

Usually, the dataset contains more training sam-
ples in the center of the sample distribution (often far
from the class boundaries), while there are fewer sam-
ples near the class boundaries. This nature of sample
distribution affects the estimation of hy. When the
Parzen window adopts a uniform window width, the
estimated width tends to be heavily influenced by the
(many) training samples in the region far from the class
boundaries and is probably unsuited for achieving high
robustness. To solve this problem, we adopt Parzen
estimation using variable window widths and assign



wider windows (smoother loss) to the regions where
the sample distribution is sparse and set narrower win-
dows (sharper loss) to the regions where the samples
are densely located.
3.1 Parzen Estimation with Sample-

Dependent Weighting
The Parzen estimate with variable window widths in

the original sample space can be formally written [10]:

p̂(x;h1, ..., hN ) =
1

N

N∑
n=1

1

hn
ϕ
(x− xn

hn

)
, (12)

where hn denotes the window width for sample xn.
Following the automatic loss smoothness determination
procedure in 2.3, we rewrite (12) for the estimated den-
sity defined in the geometric misclassification measure
space in the class-by-class mode:

p̂y(z;h
y
1, ..., h

y
Ny

) =
1

Ny

Ny∑
n=1

1

hy
n
ϕ
(z − zyn

hy
n

)
, (13)

where xy denotes a sample of Cy, hy
n denotes the

window width for the n-th sample belonging to Cy,
z = Dy(x

y; Λ), and zyn = Dy(x
y
n; Λ).

A straightforward way of estimating the sample-
dependent window widths {hy

1, · · · , h
y
Ny
} is to apply

the maximum likelihood estimation, as in 2.3. How-
ever, this step is obviously undesirable. Unfortunately,
performing the maximum likelihood estimation in re-
gard to Ny variables, {hy

1, · · · , h
y
Ny
}, over Ny samples

results in less robust estimation. To avoid this prob-
lem, we perform the following decomposition into com-
mon factor hy and sample-dependent contribution wy

n

to preserve class-by-class formalization through class
common factor hy while producing sample-dependent
Parzen windows {hn}

Ny

n=1:

hy
n = hyw

y
n (14)

Algorithm 1 introduces a practical procedure for
weights estimation, assuming that common factor hy

is adequately re-estimated at each step. In the al-
gorithm, the geometric mean (line 3) merely acts as a
normalization factor so that the product of the sample
weights amounts to 1.
3.2 Cross Validation Maximum Likelihood Es-

timation of Common Factor hy

In this subsection, we detail line 4 in Algorithm 1,
which corresponds to the estimation of common factor
hy based on a fixed set of widths {wy

i }(k). Following
the procedure in 2.3, we adopt the CVML estimation
method, which consists of the following two steps: max-
imum likelihood and cross validation.

In the maximum likelihood estimation step, we need
to define a likelihood function over the geometric mis-
classification measure space as an objective function for
maximization. According to (6), its maximization im-
proves the quality of the risk estimation in regard to
which parameters Λ should be optimized.

Input: k = 0, hy
(0); ∀n ∈ [1, Ny], wn

(0) = 1

Output: hy
(k+1), {wy

i }
(k+1)
i=[1,Ny ]

1 while convergence condition not reached do
/* Step 1: Computations of weights
{wy

i }(k+1) */
2

∀n ∈ [1, Ny], w
y
n
(k+1) =

(
p̂(xy

n, {h
y
i }(k))

g

)−η

(15)

3 where g =
{∏Ny

n=1 p̂
(
xy
n, {h

y
i }(k)

)} 1
Ny

// previous studies [4] recommend
η = 0.5 to reduce the bias in (13)
/* Step 2: Estimation of common factor

hy */
4 Estimate hy

(k+1) based on {wy
i }(k+1) // cf.

Algorithm 2
/* Parzen widths update */

5 ∀n ∈ [1, Ny], h
y
n
(k+1) ← hy

(k+1)wy
n
(k+1)

6 k ← k + 1

7 end
Algorithm 1: Sample-weighted Parzen width estima-
tion relative to class y

The step starts by defining a density estimate on the
entire training set:

p̂(z|Cy;hy, {wy
i }) =

1

Ny

Ny∑
m=1

1

hyw
y
m
ϕ
(z − zym
hyw

y
m

)
. (16)

However, this estimate simply returns an optimal but
meaningless value hy = 0 when it is used in the maxi-
mum likelihood estimation [11].

To avoid this problem, we redefine the density es-
timate for the n-th transformed data point zyn (=
Dy(x

y
n; Λ)) by removing zyn itself from given Ny data

points {zym}m∈[1,Ny]:

p̂−n(z|Cy;hy, {wy
i }) =

1

Ny − 1

Ny∑
m ̸=n

1

hyw
y
m
ϕ
(z − zym
hyw

y
m

)
.

(17)

As an objective function of hy to maximize, we next
define the likelihood function that is the product of the
density estimates over {zyn}n∈[1,Ny]:

f(hy; {wy
i }) =

Ny∏
n=1

p̂−n (z
y
n|Cy;hy, {wy

i }) (18)

The maximization (18) improves the quality of the
risk estimation (in regard to which parameters Λ should
be optimized) in the geometric misclassification mea-
sure space. Although such gradient descent methods as



the steepest descent method are possible ways of max-
imizing f(hy; {wy

i }), they require careful manual ini-
tialization of the learning coefficient. To alleviate this
problem, we reformalize the CVML estimation proce-
dure using the concept of auxiliary function. First,
we rewrite f(hy; {wy

i }) in a more optimization-friendly
form:

Fy(hy; {wy
i }) =

Ny∑
n=1

ln


Ny∑

m ̸=n

1

hyw
y
m
ϕ

(
zyn − zym
hyw

y
m

) .

(19)

Since Eq. (19) is a monotonically increasing function of
(18), optimizing either (19) or (18) is equivalent. Here
we define

qyn,m(hy; {wy
i }) =

1
hyw

y
m
ϕ
(

zy
n−zy

m

hyw
y
m

)
∑Ny

k ̸=n
1

hyw
y
k
ϕ
(

zy
n−zy

k

hyw
y
k

) , (20)

where {qyn,m}
Ny

m ̸=n satisfies qyn,m > 0 and
∑Ny

m ̸=n q
y
n,m =

1. Assuming that Fy(hy; {wy
i }) is optimized by an iter-

ative procedure and that estimate ĥy has already been
calculated before the last preceding iteration step, we
define the following auxiliary function for successive it-
eration steps:

Wy(hy; {wy
i }) =

Ny∑
n=1

Ny∑
m ̸=n

qyn,m(ĥy; {wy
i })

× ln


1

hyw
y
m
ϕ
(

zy
n−zy

m

hyw
y
m

)
qyn,m(ĥy; {wy

i })

 (21)

We also define the following difference function:

Ky(hy; {wy
i }) = Fy(hy; {wy

i })−Wy(hy; {wy
i }). (22)

Substituting (19) and (21) into (22) and considering
(20), we reach the following expression:

K(hy; {wy
i })

= −
Ny∑
n=1

Ny∑
m ̸=n

qyn,m(ĥy; {wy
i })ln {Q}

≥
Ny∑
n=1

Ny∑
m ̸=n

qyn,m(ĥy; {wy
i }) {1−Q}︸ ︷︷ ︸

0

, (23)

where Q = qyn,m(hy; {wy
i })/qyn,m(ĥy; {wy

i }). In (23),
we used logarithm-based inequality ∀x > 0,−ln(x) ≥
1−x, which only achieves equality for x = 1. Therefore,
the inequality in (23) becomes an equality if and only if
∀n,m ∈ [1, Ny],m ̸= n, qyn,m(hy) = qyn,m(ĥy). In other
words, Ky(hy; {wy

i }) is minimized at hy = ĥy, and the
minimum value is zero. Considering (22), this leads to:{

Fy(ĥy; {wy
i }) = Wy(ĥy; {wy

i }),

∇hyFy(ĥy; {wy
i }) = ∇hyWy(ĥy; {wy

i }).

(24)
(25)

It can be seen from (23) and (24) that Fy(hy; {wy
i })

exceeds Fy(ĥy; {wy
i }) when Wy(hy; {wy

i }) exceeds
Wy(ĥy; {wy

i }) based on the following expression:

Fy(hy; {wy
i }) ≥Wy(hy; {wy

i }) >(
Wy(ĥy; {wy

i }) = Fy(ĥy; {wy
i })
)
.

Furthermore, based on (25), unless ĥy is a
stationary point of Fy(hy; {wy

i }), gradient
∇hyWy(ĥy;w

y
1 , ..., w

y
n) is nonzero, and we can

find hy such that Wy(hy; {wy
i }) > Wy(ĥy; {wy

i }).
Consequently, by finding hy such that Wy(hy; {wy

i }) >
Wy(ĥy; {wy

i }),replacing ĥy with hy, and repeating this
process with a proper initial value of ĥy, Fy(hy; {wy

i })
monotonically increases until hy reaches its local
maximum point.

Consequently, point hy, which maximizes auxiliary
function Wy(hy; {wy

i }), is given as the following closed-
form formula:

hy =

√√√√ 1

Ny

Ny∑
n=1

Ny∑
m ̸=n

qyn,m(ĥy; {wy
i }) (z

y
n − zym)

2
. (26)

Using the converged value of hy, we achieve a desired
value of loss smoothness hyperparameter αy by (11) in
the newly-formalized LGM-MCE framework described
in Section 3.3.

In the case of a Gaussian kernel, qyn,m(hy; {wy
i }) takes

the form shown in (28), and the likelihood function
becomes:

F (hy; {wy
i }) =

J∑
y=1

Fy(hy; {wy
i }) =

J∑
y=1

Ny∑
n=1

ln
(

Ny∑
m ̸=n

1

wy
m

exp
{
−1

2

(zyn − zym
hyw

y
m

)2})

−
J∑

y=1

Ny lnhy. (27)

The implementation of the above CVML estima-
tion is summarized in Algorithm 2, which is in the
Expectation-Maximization (EM) optimization form.
To start the algorithm effectively, we must appropri-
ately initialize hy. Variable qyn,m corresponds to the de-
gree to which each data point zyn is assigned to another
point zym(m ̸= n). Considering this, we can assume
the following possible initialization for this variable by
redefining qyn,m(hy):

qyn,m(hy) =

{
1, if m = k(n),

0, otherwise.
(30)

In other words, each data point zyn is assigned to its
nearest-neighbor zyk(n). Substituting (30) into (29)



Input: l← 0, hy
(0)

; /* cf. Equation 31 */
Output: Optimized window width hy

(l+1) relative
to class y

1 while hy
(l+1) does not meet convergence condition

do
2 (Expectation step) Compute:

qyn,m(hy; {wy
i }) =

1
wm

ϕ
(

zy
n−zy

m

hyw
y
m

)
∑Ny

k ̸=n
1
wk

ϕ
(

zy
n−zy

k

hyw
y
m

) (28)

(Maximization step) Optimized Parzen width

hy
(l+1) =√√√√ 1

Ny

Ny∑
n=1

Ny∑
m ̸=n

qyn,m(ĥy; {wy
i })Z2 (29)

3 l← l + 1

4 end
Algorithm 2: Class-by-class Cross Validation Maxi-
mum Likelihood estimation of common factor hy rel-
ative to class y. Here, Z =

(
zy
n−zy

m

wy
m

)
.

gives the following initial value for hy:

hy
(0) =

√√√√ 1

Ny

Ny∑
n=1

(
zyn − zyk(n)

wy
k(n)

)2

(31)

3.3 Reformalization of LGM-MCE Training
Incorporating Sample-Dependent Weights

The definition of the geometric misclassification mea-
sure is directly influenced by the weighting of the sam-
ples in the misclassification measure space, and the
LGM-MCE training procedure should be rewritten ac-
cordingly. Once we estimate the sample weights, we
can in turn compute and use the weighted misclassifi-
cation measures in the optimization process. We call
the resulting procedure Weighted LGM-MCE training.

To define the weighted misclassification measures, we
first review the general form of the Parzen window es-
timation in the misclassification measure space:

1

hy
ϕ
(z −Dy(x

y
n; Λ)

hy

)
. (32)

In the case of a variable width estimation, the window
includes weight wy

n assigned to sample Dy(xy
n; Λ) in the

misclassification measure space:

1

hyw
y
n
ϕ
(z −Dy(x

y
n; Λ)

hyw
y
n

)
. (33)

Following the same reasoning as in 2.3 leads to a redef-
inition of the smooth error count loss in the misclassi-

fication measure space:

ℓy(Dy(x
y
n; Λ)) =

∫ ∞

0

1

hyw
y
n
ϕ
(z −Dy(x

y
n; Λ)

hyw
y
n

)
dz.

(34)

For a Gaussian kernel, (34) can be identified as a sig-
moid function of the geometric misclassification mea-
sure, which appears weighted by {wy

n} in this case:

ℓy

(
Dy(x

y
n; Λ)

wy
n

)
=

1

1 + exp
(
−αy

Dy(x
y
n;Λ)

wy
n

) . (35)

Here we define weighted geometric misclassification
measure D

(w)
y (xy

n; Λ):

D(w)
y (xy

n; Λ) ,
1

wy
n
Dy(x

y
n; Λ),where wy

n > 0. (36)

In (36), wy
n > 1 implies a weighted misclassification

measure closer to zero than its original counterpart, in
other words the sample is closer to the class boundary.
This situation corresponds to a larger impact of the
training sample on the LGM-MCE optimization pro-
cess (Fig. 1), and also to a flatter Parzen width around
the training sample in the misclassification measure
space which implies more virtual samples surrounding
this training sample.

The formulation of the variable Parzen estimation
implies that higher weights are assigned to the samples
located in areas where the density in the misclassifica-
tion measure space is sparser, which likely corresponds
to samples located near the class boundaries. To in-
crease the reliability of the classification decision on
future samples, the influence of such samples on the
training should be weighted more heavily during the
training, which is precisely the effect of the weighted ge-
ometric misclassification measure; conversely, wy

n < 1
corresponds to a sample located in the higher den-
sity regions further from the class boundaries, where
samples are less relevant to discriminate between the
classes. In other words, the weighting of the misclassi-
fication measure can be seen as a way of increasing the
robustness of LGM-MCE training at two levels:

1. The weighted widths during the risk estimate.

2. The weighted misclassification measures that di-
rectly influence the minimization of the empirical
average loss (5).

The training procedure of Weighted LGM-MCE can be
implemented in Algorithm 3.

4. Experimental Evaluation
4.1 Experimental Conditions
4.1.1 Classifier

To evaluate our proposed scheme, we adopted a multi-
prototype classifier, where each class was modeled by
multiple prototypes and its discriminant function was



Input: {Λ}(0), e← 0, E′, E
Output: {Λ}(e+1)

1 while
(e < E)∥(convergence condition not reached) do

/* Periodical loss smoothness
estimation */

2 if e ≡ E′ (mod 0) then
3 for y ∈ [1, C]) do
4 Initialize ∀n ∈ [1, Cy], w

y
n ← 1 and hy ;

/* Equation 31 */
5 Estimate {wy

n}
Ny

n=1 and hy ;
/* Algorithms 2 and 1 */

6 αy ← 4√
2πhy

; /* Equation 11 */
7 end
8 end

/* Probabilistic Descent optimization
*/

9 Shuffle ΩN ;
10 for n ∈ [1, N ] do
11 Λ(e+1) ← Λ(e) − ϵ(t)∇Λly

(
Dw

y (x
y
n; Λ)

)
12 end
13 e ← e+ 1 ;
14 end

Algorithm 3: Weighted LGM-MCE training incor-
porating class-by-class automatic loss smoothness de-
termination. Here, E is number of LGM-MCE train-
ing epochs, where epoch denotes the classifier param-
eter update sequence using all training samples once.

defined by the (minus) distance between an input and
its closest prototype. Here, the closest prototype was
one that had the minimum distance to input among
the prototypes assigned to each class. Accordingly, the
discriminant function for class Cj is given as

gj(x; Λ) = − ∥ x− pj ∥2, (37)

where pj is Cj ’s closest prototype for x. Then the
corresponding geometric misclassification measure be-
comes:

Dy(x; Λ) =
∥ x− py ∥2 − ∥ x− pi ∥2

∥ py − pi ∥
, (38)

where Cy, py, Ci, and pi are the correct class, its cor-
responding closest prototype, the best incorrect class,
and its corresponding closest prototype for x, respec-
tively.

4.1.2 Dataset

We conducted all of our experiments on the Let-
ter Recognition (LR) dataset, which consists of 16-
dimensional feature vectors extracted from 20 000 char-
acter font-images of the English alphabet (26 classes).
The dataset was divided into a training set (1000 sam-
ples) and a testing set (18 000 samples) for computing
the classification rate of unknown data.

4.1.3 Optimization Method

We used the Probabilistic Descent method to minimize
the average empirical loss of the LGM-MCE training.
The learning parameter must still be set empirically.
Because our analysis aims to analyze the robustness of
the weighting scheme performed on the training set,
we tuned this hyperparameter in regard to the training
set instead of a traditional validation set. Practically,
we swept range ϵ0 = [2−5, 25] by exponents of 2 and
set the number of LGM-MCE epochs E to 10 000. For
Weighted LGM-MCE, the update rule of prototype pj

based on training sample xy
n becomes:

pj
(t+1) = pj

(t) − ϵt∇pj ℓy

(
D(w)

y (xy
n; Λ

(t)
)
=

pj
(t) − ϵtℓ

′
y

(
1

wy
n
Dy(x

y
n; Λ

(t))

)
1

wy
n
∇pjDy(x

y
n; Λ

(t)),

where ϵt = ϵ0(1 − t
T ), T denotes the total number of

iteration steps over E epochs, and xy
n is a training sam-

ple randomly extracted from ΩN .
We repeated 10 weight updates and 100 CVML itera-

tions for each set of weight values and tried ten different
values from E′ = 10 to E′ = 100 at ten intervals.
4.2 Results and Considerations
4.2.1 Analysis of Variable Parzen Width Esti-

mation

The observations in Fig. 2 for analyzing the conver-
gence property of the sample-dependent Parzen width
estimation are introduced in Algorithm 1. Indeed, even
though the CVML procedure introduced in 3.2 guaran-
tees the monotonic increase of each Fy for a fixed set of
sample weights {wy

n}
Ny

n=1, no specific guarantee is pro-
vided regarding the convergence of Fy from one sample
weight update to another.

To analyze the algorithm�fs convergence, we per-
formed the observations displayed in Fig. 2.

1. Fig. 2(a) monitors likelihood F0 relative to cate-
gory 0 computed on the training data during the
whole width estimation process (similar trends can
be observed for the other 25 categories). In this
experimental setting, four weight re-estimations
performed every 100 iterations result in a total of
4 ∗ 100 = 400 algorithm iterations, the first 100
iterations of which correspond to the fixed-width
Parzen estimation initialization, while each of the
3 ∗ 100 subsequent iterations correspond to EM
optimization under fixed sample-dependent weight
setting {w0

k}(l),∀l ∈ [0, 3].

2. Fig. 2(c) focuses on one of the four succes-
sive EM optimizations (the same trend is strictly
observed for all four EM repetitions). As ex-
pected from the EM optimization procedure, F0

increases monotonically during EM optimization
[k ∗ 100, (k + 1) ∗ 100],∀k ∈ [0, 3], which aims to
improve the quality of the risk estimate based on
finite training data, as described in (6).



Figure 2: Evolution of likelihood F0 (19) relative to
category 0 during sample-dependent width estimation.
Likelihood is observed at the end of each CVML es-
timation. Note that only four weight re-estimations
are shown on the graph, which is sufficient to illustrate
convergence of F0: (a) Likelihood computed on train-
ing set; (b) Likelihood computed on testing set; (c)
Detailed observation of the second CVML performed
in (a).

3. Despite the maximization of F0 inside each EM
repetition, Fig. 2(a) showed a surprisingly neat
decrease at every weight re-estimation. Further-
more, such decrease initially clearly overweighs the
increase of F0 during the previous EM optimiza-
tion. A possible interpretation is that by assign-
ing wider Parzen window widths to samples lo-
cated in sparser density areas in the misclassifica-
tion measure space, Algorithm 2 reduces the po-
tential overfitting to the training distribution. To
understand this, assume an extreme case where
kernel width h0

n is set to 0 for each training sam-
ple z0n. This situation corresponds to a mere repli-
cation of the original finite training distribution
for class 0. Hence, based on the density in the
misclassification measure space, setting an appro-
priate degree of smoothness of existence around
each original training sample can be seen as an at-
tempt to increase the estimation quality over the
whole (misclassification-measure-mapped) feature
space. In other words, decreasing likelihood F0 is

a measure that improves the quality of the density
estimation regarding unseen samples and the risk
estimate.

4. To validate our interpretation, we monitored like-
lihood F0 over the testing data during the weight
optimization process performed on the training
data, as shown in Fig. 2(b). As expected, each
weight re-estimation (and the decrease of F0 over
the training data) corresponds to a significant in-
crease of F0 over unseen data, which validates
the robustness of the sample-dependent weighting
scheme.

4.2.2 Classification Performance of Weighted
LGM-MCE

To validate the impact of the weighting scheme on the
robustness of the training, we recorded the classifica-
tion rates on the training and testing data in Fig. 3.
The more detailed settings are provided in Table 1.
The upper (resp. lower) panel shows the classification
accuracy over training (resp. testing) data, for preced-
ing LGM-MCE training using fixed-width loss smooth-
ness estimation (red bars) and weighted LGM-MCE
(Algorithm 3) (blue bars).

The results show that five prototypes are enough
to achieve perfect accuracy on the training set,
which likely corresponds to overfitting. Interestingly,
Weighted LGM-MCE almost always achieves a higher
score on testing data for k > 3, which can be inter-
preted as reducing the overfitting incurred by a higher
number of prototypes.

Figure 3: Comparison of classification rates on LR
data between fixed-width estimation LGM-MCE and
Weighted (variable width) LGM-MCE).

Though more systematic experiments exploring dif-
ferent settings are necessary, the results in Table 1 show
a tendency for the Weighted LGM-MCE to outperform



its standard counterpart in terms of generalization per-
formance to unseen samples, which validates the ro-
bustness of the sample-dependent weighting scheme.

Table 1: Details of classification rates on LR
data between fixed-width estimation LGM-MCE and
Weighted (sample-dependent width) LGM-MCE. For
all prototype settings, value of learning parameter µ0

leading to best performance on the training set is pro-
vided.

Classification rates on training data
k Fixed-width (ϵ0) Variable width (ϵ0)
1 89.50 (2−4) 90.50 (2−5)
3 99.20 (2−3) 98.70 (2−1)
5 99.80 (2−1) 99.80 (2−2)
7 100.0 (2−1) 100.0 (2−1)
9 100.0 (2−1) 100.0 (2−1)

Classification rates on testing data
k Fixed-width (ϵ0) Variable width (ϵ0)
1 75.36 74.24
3 76.73 78.44
5 77.38 76.70
7 76.62 77.46
9 74.93 75.99

5. Conclusion
We proposed a new LGM-MCE scheme that intro-

duced a density-based weighting of samples in geo-
metric misclassification measure space. By automati-
cally assigning an appropriate degree of smoothness to
each training sample in the geometric misclassification
measure space, not only does the objective function
(i.e., empirical average loss) become closer to the ideal
goal of classifier (i.e., Bayes risk) but the optimization
process itself is also refined by incorporating the rele-
vance of each training sample while updating the clas-
sifier parameters. Experimental results confirmed the
increased quality of the Bayes risk estimate using a
weighting scheme as well as the possible increase of
accuracy over unseen samples of the Weighted LGM-
MCE-trained classifier.
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