Vol. 47 No. SIG 2(PRO 28) goooooooooooooooo Feb. 2006

good

guooubbgooobbbooooboond

O O o of O o ot o o o of
0O o o of o o o of

oooooooooooooooooooooooooooooooboOobOObObOOobObboooo
goooobooOoooooOo0oooOoO0oOoO0oOoOoOboOoOoO0OoOoO0ObOOOO0OOOO0OO0b0O0O00O0
gooo0ooooooo0o0oOoooOooooOOOoOOOOOODOOOOOOOOO0OO00O0OoOoooo
goooooooooooooooooOoOOOOOCOOCOOOOOOODOOOoOoOoooooooo
00o0ooo00o00o0o0oo0oo0oOooD/000000000000bD0oO0O0O0OD0OoO0Oo
go0ooooooooooooOooOoOOOOOOOOOOOOOOOOOOO0OO0OO0O0O0O0O0000
goooooooooooooooOoOOOOOOOCOOOO0O0OOOOOOOOOODOoOooooooo
gooooOo0ooooOoO0oOoO0o0O0O0oOO00O0O0O00C0O0O00COO00COOO0O00CO000O0
gooooooooob 200000000000000O0O0O000O0DOO0O0O0O0O0O0O0O00OO0O0OO
gooooooooooooooobooooOoOOOOOOOOOOOOOODOooooooooooo
goooooooO0ooOoOo0oO0OO0bOO000O0000b0O000O0000O0O00000000O0
gooooooooooOooOoOoobooOooooOoOoOoOooOoOoOoOoOoOoOoboOoOoOooOoOoboOoOoooon
goooooooooooooOoOoOoOOOO0OOOO0OObOUOUOoObObOObObOUOOoOoooooooo
goooo0oooooO0oO0ooboOO0o00O0boOO0OO00O0OoOoO0OO0O0O0oO0O000

A Preliminary Implementation of a Load-balancing Framework
Based on Lazy Partitioning

RyuTa OBAYASHI,t TASUKU HIRAISHI,t MASAHIRO YASUGI,?
SELT UMATANT and TAIICHI YUASA®

In this presentation, we explain a load-balancing framework based on lazy partitioning;
sequential programs augmented with capabilities for lazy partitioning and joining can be ex-
ecuted in parallel on this framework. Lazy partitioning means that tasks are partitioned only
when a request has arisen. The usual execution of a sequential program without prior cre-
ation of tasks or any forms of threads involves quite low parallelization overhead. Each node
uses a communication/thread library to supervise tasks in that node and exchange tasks and
others with other nodes. Each node keeps a connection to a central server and communicates
with other nodes via central servers. When a task on some node is finished or is suspended
waiting for a result of another task on any other node, that node tries to get a new task by
partitioning its other tasks or sending a task-request to some other node. The node which
receives the request tries to partition its running task into two tasks then sends a new task
to the requester and continues the remaining task. We employ nested functions for the task
partitioning with backtracking to the caller as original as possible. We are planning to de-
velop a translator for reducing the cost of augmenting sequential programs with capabilities
for lazy partitioning and joining. Our goal is to construct a framework which works in various
environments, such as shared-memory systems and distributed (Grid computing) systems. A
preliminary implementation of this load-balancing framework exhibits good speedup even in
a distributed environment if each node has a sufficient amount of work compared to the cost
of exchanging messages for lazy partitioning and joining.

Oo0b0 1708030000

000000000000 ODOO0O00OOoooOOO
Department of Communications and Computer Engi-
neering, Graduate School of Informatics, Kyoto Uni-

versity

105



