TE AL 2 5 T8 Rl = [E R &

1H-08

Frix: Feasible and Reconfigurable IBM PC Compatible SoC

Yuki Matsuda, Eri Ogawa, Tomohiro Misono, Ryohei Kobayashi and Kenji Kise

Graduate School of Information Science and Engineering, Tokyo Institute of Technology

1 Introduction

In order to develop high performance computer
system, the evaluation environment for architectural
ideas is desired. The evaluation is more reliable when
their ideas are evaluated on the environment running
a general-purpose OS.

Full system software simulators are widely used
for this purpose. Software simulators are very flex-
ible and developers are easy to use them, but the
full system simulation with software takes too much
time. FPGA (Field Programmable Gate Array) is re-
configurable hardware and users can implement their
own circuits. FPGA-based simulators can run much
faster than the software-based ones. Thus, full system
FPGA-based simulators are desired.

We have proposed a feasible and reconfigurable
IBM PC Compatible SoC, named Frix [1]. Frix is an
FPGA-based computer system with an x86 soft core
processor which is compatible with Intel 80486SX.
Frix can boot FreeDOS 1.1 and TinyCore 5.3 (Linux
kernel 4.3). The corresponding FPGA board is Tera-
sic’s Altera DE2-115 FPGA board and Digilent’s
Nexys4 (DDR) FPGA board.

The source code of Frix is written in Verilog HDL,
and we have released it as open-source. Frix can
downloaded from http://www.arch.cs.titech.ac.
jp/a/Frix. Researchers can add their proposed ar-
chitecture to Frix and evaluate its performance. On
the other hand, learners can understand how com-
puter systems run, by reading the source code of Frix.

In this paper, we firstly show the design of Frix
and finally evaluate the efficiency of Frix as evaluation
environments.

2 Frix

Figure 1 shows the design overview of Frix. Frix
uses a VGA monitor, a SD card (storage) and a PS/2
keyboard as inout. The interconnection of Frix is
written in Verilog HDL, and the processor is an x86
processor. In this section, we firstly explain the base-
line of our research, called a0486 SoC[2]. Finally, we
explain the design of Frix.

2.1 ao0486 SoC

Upon developing this system, we used the open-
source SoC called a0486 SoC[2] as a baseline. Ao486
SoC has an soft core processor which is compatible
with Intel 80486SX and is written in Verilog HDL.
The corresponding board of a0486 SoC is Terasic’s
Altera DE2-115 FPGA board. According to the au-

1-151

_— Hﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
ﬂ!%iﬁﬁﬂ =
il

Monitor

Verilog-written Interconnect

o 30486)
processor
sD Ps2
controller controller
Sto

AR

Figure 1: The design overview of Frix.

—> Data Flow —> Reset Signal —— Control Signal

FPGA
DRAM
- ! F—E;%mw

| VGA

Main Memory

AAAAAARAR

UWUUUUUUUUU

1 4

Eey board

PS/2

SD Card
(Storage)

o

Figure 2: The block diagrams of Frix.

thor’s document, this system can boot Windows95
and Linux Kernel 3.13. However, the a0486 SoC
uses soft core processors called Nios II and a bus sys-
tem called Avalon Interconnect, which are Altera’s IP
cores.

2.2 Design of Frix

Figure 2 shows the block diagrams of Frix. We
use several ao486 modules for this system: ao0486
processor, some controllers (VGA, PS/2, SD, HDD),
PIT (Programmable Interval Timer), RTC (Real
Time Clock) and PIC (Programmable Interrupt Con-
troller). We newly added BIOS loader module and
bus module, both of which are written in Verilog
HDL, and Frix can run on two major vendors’ FPGA.

Figure 3 shows the snapshot of DOOM running
on Nexys4 DDR FPGA board. DOOM is running
on FreeDOS 1.1. Frix can also boot TinyCore 5.3
(Linux kernel 4.3). Researchers can evaluate their
proposed architecture on Frix with general purpose
benchmarks, like SPEC CPU, on TinyCore.

For more information about Frix, please refer to
our MCSoC paper [1].

All Rights Reserved.

Copyright ©2016 Information Processing Society of Japan.

Table 1: Execution time and miss rate

exec time (sec) gzip gce mcf crafty parser perlbmk gap vortex bzip2 twolf gmean
baseline 362.5 224.5 26.8 670.1 439.4 244.3 130.6 1172.1 907.4 330.0 306.0

AMI 358.5 224.0 28.4 6674 438.6 241.6 129.5 1170.2 906.1 330.0 306.5

relative 0.989 0.998 1.059 0.996 0.998 0.989 0.992 0.998 0.999 1.000 1.002

miss rate gzip gcce mcf crafty parser perlbmk gap vortex bzip2 twolf gmean
baseline || 3.72% 3.34% 18.95% 1.73% 6.41% 1.24% 3.04% 1.50% 1.63% 0.50% 2.56%

AMI || 3.68% 3.35% 21.46% 1.62% 6.45% 1.30% 3.05% 1.47% 1.61% 0.53% 2.59%

relative 0.991 1.002 1.132 0.934 1.007 1.049 1.005 0.980 0.989 1.054 1.013

Figure 3: The snapshot of DOOM running on Nexys4
DDR FPGA board. DOOM is the first FPS game and

very famous one.
Table 2: Hardware Resource

prove the system performance.

Table 2 shows the hardware resource on each config-
uration. AMI increases occupied logic cells by 1.131
times in the scale of dcache, and by only 1.011 times
in the scale of overall system. Hence the overhead
of AMI is enough small. In this evaluation, occupied
memory is not affected by AMI.

Cyclone IV EP4CE115 FPGA has 114,480 logic
cells and 3.888 Kbits embedded memory. In the
result of baseline, the usage of logic cells are
54568/114480 = 47.7%. Researchers can use more
than the half of logic cells to implement their pro-
posed architecture. The usage of embedded memory
are 2585.9/3888 = 66.5%, and thus researchers also
use about the 1/3 of total embedded memory.

For every application of the SPEC CPU 2000
benchmark, we confirm that the output results of
Frix exactly match the golden output provided

Logic Cells Memory (Kbits) by the benchmark.
deache total | dcache total These results mentioned above shows researchers
baseline 1202 545683 1546 2585.9 can evaluate their proposed architecture with Frix.
AMI 4751 55162 154.6 2585.9 4 C lusi
relative | 1.131 1.011 | 1.000 1.000 onclusion

3 Evaluation

3.1 Setup

In order to show the efficiency of Frix as evalua-
tion environments, we redesign data cache on ao486
processor, and evaluate the system performance. The
data cache is 16KB 4-way set associative cache. The
line size of the cache is 16B, and the number of cache
lines per way is 256.

We implement a cache with 255 cache lines on each
way, with a novel method called Arbitrary Modulus
Indexing (AMI)[3]. Non-power-of-2 cache lines can
reduce cache line conflicts, and thus improve system
performance.

In our evaluation we use DE2-115 FPGA board,
which has Cyclone IV EP4CE115 FPGA. We run sub-
set of SPEC CPU 2000 benchmark on TinyCore 5.3,
and evaluate the system performance.

3.2 Result

Table 1 shows execution time and miss rate while
the run of each application. The “relative” means di-
vision of the result with AMI by the one on baseline.
On the result of geometric mean, AMI increases ex-
ecution time by 1.002 times and miss rate by 1.013
times. This result shows AMI does not always im-

1-152

We proposed a reconfigurable IBM PC Compatible
SoC, named Frix. We released Frix as open-source,
and it can be downloaded from http://www.arch.
cs.titech.ac.jp/a/Frix. Our evaluation showed
the efficiency of Frix on computer architecture re-
search.

Acknowledgement
This work is supported in part by JSPS KAKENHI
Grant Number 25330056.

References

[1] E. Ogawa, Y. Matsuda, T. Misono, R. Kobayashi,
and K. Kise, “Reconfigurable IBM PC Com-
patible SoC for Computer Architecture Edu-
cation and Research,” in Proceedings of 2015
IEEE 9th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC),
Sept 2015, pp. 65-72.

[2] “ao486,” https://github.com/alfikpl/a0486.

[3] J. Diamond, D. Fussell, and S. Keckler, “Arbi-
trary Modulus Indexing,” in Proceedings of 201/
47th Annual IEEE/ACM International Sympo-
stum on Microarchitecture (MICRO), Dec 2014,
pp. 140-152.

All Rights Reserved.

Copyright ©2016 Information Processing Society of Japan.

