直並列グラフのリスト全彩色

1 まえがき

点集合 V, 邊集合 E からなるグラフを $G = (V, E)$ と書く．また，$V = V(G)$, $E = E(G)$ とも書くことがある．多重辺やループを含まないグラフを単純グラフという．グラフ $G = (V, E)$ の全彩色とは，隣接する任意の 2 条件，端点を共有する任意の 2 条件，任意の点とそれに対接する任意の辺が異なる色になるように，G のすべての点と辺に彩色することである．したがって全彩色は $V \cup E$ から色集合 C への写像 $f: V \cup E \to C$ である．グラフ G における点 v の次数を $d(v, G)$ と書く．また G の最大次数を $\Delta(G)$ と書く．グラフ G を全彩色するために必要な最少色数を $\chi(G)$ すると，明らかに $\chi(G) \geq \Delta(G) + 1$ である．

写像 $L: E \cup V \to 2^{C}$ を G のリストという．L に対するグラフ G のリスト全彩色 $f: V \cup E \to C$ とは，各要素 $x \in V \cup E$ に対して $f(x) \in L(x)$ なる色が存在する．このような L のリスト全彩色を G の L-全彩色という．リスト全彩色は全彩色の一般化である．k が自然数である，各要素 x について $|L(x)| \geq k$ なる任意のリスト L に対して G の L-全彩色の存在するとき，G は k-リスト全彩色可能であるという．

本文では単純直並列グラフを扱う．直並列グラフとは 4 条件からなる完全グラフ K_4 の細分を部分グラフとしてもたないグラフである．

2 定理

本文の主な結果は次の定理である．

定理 1 $\Delta(G) \geq 3$ なる単純直並列グラフ G は，$(\Delta(G) + 1)$-リスト全彩色可能である．

2.1 直並列グラフの部分構造について

グラフ G が単純直並列グラフであるれば，次にあげる（a）～（f）の部分構造の中の少なくとも一つが G に部分構造として含まれている．

(a) G は高々 1 条件点 u を持つ．
(b) G は次の（b1）,（b2）を満たす相異なる 3 条件 u, v, w を持つ．
(b1) v は 2 条件での隣接条件は v, w である．
(b2) v は 2 条件での隣接条件は u, w である．

(c) G は次の（c1）～（c3）を満たす相異なる 5 条件 v_1, v_2, u_1, w_1, w_2 を持つ．
(c1) w_1 は 4 条件での隣接条件は v_1, v_2, u_1, u_2 である．
(c2) v_1 は 2 条件での隣接条件は u_1, w_1 である．
(c3) v_2 は 2 条件での隣接条件は w_2, w_2 である．
(d) G は共通の隣接条件を持つ 2 条件の 2 条件点 u, v を持つ．
(e) G は次の（e1）,（e2）を満たす相異なる 4 条件 u, v, w, x を持つ．
(e1) v は 2 条件での隣接条件点 v, w である．
(e2) v は 2 条件での隣接条件点 v, x である．
(f) G は次の（f1）,（f2）を満たす相異なる 4 条件 u, v, w, z を持つ．
(f1) v は 2 条件での隣接条件点 u, w である．
(f2) v は 2 条件での隣接条件点 v, w, z である．

2.2 定理の証明

$G = (V, E)$ をグラフとし，L は G のリストとする．各要素 $x \in V \cup E$ に対して $|L(x)| \geq \Delta(G) + 1$ であるとき，リ

図 1：直並列グラフの部分構造
スト \(L \) は適切であると言う。このとき定理 1 は、\(\Delta(G) \geq 3 \) なる単純頂並列グラフ \(G \) は任意の適切なリスト \(L \) に対し \(L \)-全彩色を持つと言い換えられることができる。

\(G \) が単純頂並列グラフであるとき、\((a) \sim (f) \) の部分構造のうち少なくとも 1 つが \(G \) で部分グラフ \(H \) として含まれることが用いて、\(|G| \) による帰納法により定理 1 を証明する。ここで \(|G| = |V| + |E| \) である。

明らかに 1 点からなるグラフに対して、定理 1 が成立立つ。

\(G \) の任意の真部分グラフに対して、定理 1 が成立回りに仮定する。

\(G \) から辺集合 \(E \) に対し\(E(H) \) により誘導される部分グラフ \(G' = (V', E') \) とする。\(G \) のリスト \(L : V \rightarrow 2^G \) の \(V \cup E' \) への制限を \(L' \) と書き、\(L' = L \) は \(G' \) に制限して得られるリストである。\(L \) が \(G \) の適切なリストであるので、明らかに \(L' \) は \(G' \) の適切なリストである。したがって帰納法の仮定により、\(G \) の部分グラフ \(G' = (\Delta(G') + 1) \)-リスト全彩色可能であるから、\(G' \) の \(L' \)-全彩色 \(f' : V(G') \cup E(G') \rightarrow C \) が存在する。\(f' \) と各要素 \(x \in (V \cup E \cup V' \cup E') \) に対して、

\[L_\alpha(x, f') = \{ c \in L(x) \mid x \text{ に隣接または接続する} \}
\text{全ての} \ y \in V' \cup E' \text{ に対して} f'(y) \neq c \]

と定義し、この \(L_\alpha(x, f') \) を \(f' \) に関する \(x \) の \(L \)-欠色集合と言う。このように \(G' \) の \(L' \)-全彩色 \(f' \) を \(G \) の \(L \)-全彩色 \(f \) へ拡張できる。

\([G \text{ が部分構造 (a) を含む場合}]\)

\(G \) が部分構造 (a) を含むから、\(G \) は高々 1 次の点 \(u \) を含む。\(u \) の隣接頂点を \(v \) とし、\(H \) は \(u \) の \(L \) による誘導される \(G \) の部分グラフであるとする。このとき \(G' \) は \(G \) から点 \(u \) を除いて得られるグラフ \(G' = G - u \) である。このとき明らかに \(|G'| < |G| \) だから、\(G' \) は \(L' \)-全彩色 \(f' \) を持つ。

\(d(u, G) = 0 \) の場合は明らかに \(f' \) を \(G \) の \(L \)-全彩色 \(f \) に拡張できるから、\(d(u, G) = 1 \) の場合だけ考えればよい。\(L \) は適切だから、\[|L(u)| = |\Delta(G)| + 1 \]

であり、\(c_1 \in L_\alpha(u, f') \) なる色 \(c_1 \in L(u) \) が存在する。

また

\[|L_\alpha(u, f') - \{ c_1 \} | \geq |L_\alpha(u, f')| - 1 = |L(u)| - 2 \]

\[\geq |\Delta(G) - 1| \]

であるので、\(c_2 \in L_\alpha(u, f') \) かつ \(c_2 \neq c_1 \) なる色 \(c_2 \in L(u) \) が存在する。よって、\(f' \) を次のように \(G \) のリスト全彩色 \(f \) へ拡張できる。

\[f(x) = \begin{cases} f'(x) & x \in V(G') \cup E(G') \text{ のとき} \\ c_1 & x = u \text{ のとき} \\ c_2 & x = u \text{ のとき} \end{cases} \]

\(f \) は明らかに \(G \) の \(L \)-全彩色である。

\([G \text{ が部分構造 (b) を含む場合}]\)

\(u \) は 2 次点でその隣接点は \(v, w \) であり、\(v \) は 2 次点であり、\(v \) の隣接点は \(u, w \) である。\(H \) は \(u, v, w \) により誘導される \(G \) の部分グラフとする。このとき \(G' = G - u - v \) である。

\([|G'| < |G| \) であるので、\(G' \) は \(L' \)-全彩色 \(f' \) を持つ。このとき次の式が成り立つ。

\[|L_\alpha(u, f')| = |L(u)| - 1 \]

\[\geq |\Delta(G)| + 1 - 1 \]

\[= |\Delta(G)| \]

\[\geq 3 \]

(1)

同様に \[|L_\alpha(v, f')| \geq 3, |L_\alpha(v, f')| \geq 4, |L_\alpha(w, f')| \geq 2, |L_\alpha(w, f')| \geq 2 \]

である。次の 2 の場合がある。

\((\text{場合 1}) \alpha \in |L_\alpha(v, f') \cap L_\alpha(v, f')| \neq \phi \) のとき

点 \(v \) と辺 \(uw \) を \(\alpha \) で数える。このとき \[|L_\alpha(u, f') - \{ \alpha \}| \geq 2, |L_\alpha(w, f') - \{ \alpha \}| \geq 3, |L_\alpha(w, f') - \{ \alpha \}| \geq 1 \]

なので、次の式を満たすような異なる色 \(c_1, c_2, c_3 \in C \) が存在する。

\[c_1 \in L_\alpha(u, f') - \{ \alpha \} \]
\[c_2 \in L_\alpha(u, f') - \{ \alpha \} \]
\[c_3 \in L_\alpha(u, f') - \{ \alpha \} \]

よって \(f' \) を次のように \(G \) のリスト全彩色 \(f \) へ拡張できる。

\[f(x) = \begin{cases} f'(x) & x \in V(G') \cup E(G') \text{ のとき} \\ \alpha & x \in \{ v, uw \} \text{ のとき} \\ c_1 & x =uw \text{ のとき} \\ c_2 & x =u \text{ のとき} \\ c_3 & x =uw \text{ のとき} \end{cases} \]

\((\text{場合 2}) L_\alpha(u, f') \cap L_\alpha(v, f') = \phi \) のとき

(場合 1) と同様の方法で証明できる。本文では省略する。 ■

\((c) \sim (f) \) の各部分構造については同様に証明できるが、本文では省略する。

3 結び

\(\Delta(G) \geq 3 \) なる単純頂並列グラフ \(G \) は、\((\Delta(G) + 1) \)-リスト全彩色可能であることを証明した。これは \(\Delta(G) \geq 3 \) なる単純頂並列グラフ \(G \) の全彩色数が \(r(G) = \Delta(G) + 1 \) であるという結果も含んでいる。本文の証明は構成的であるので、その証明から単純頂並列グラフのリスト全彩色を求めるアルゴリズムが直ちに得られる。

参考文献