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A New Approach to Approximate the Collision Probability in an
Automated Production Line

Eishi Chiba*
Abstract

Flat Panel Displays (FPDs) are manufactured through
many different processing equipments arranged sequen-
tially in a line. Although the constant inter-arrival time
(i.e., the tact time) of glass substrates in the line should be
kept as short as possible, the collision probability between
glass substrates increases as the time becomes shorter.
Since the glass substrate is expensive and fragile, the col-
lision should be avoided. In this paper, we give a simpler
expression of the collision probability by a new approxi-
mation approach, which enables us to easily compute nu-
merical values of the collision probability over a wider
range of parameter values. We also carry out some sim-
ulations to evaluate the exact probabilities and confirm
that our approximation approach yields reasonable results
compared to the simulated results.

1 Introduction

Reflecting the increasing demand on Flat Panel Dis-
plays (FPDs) such as LCD, plasma display panel, etc.,
more effective method for their manufacturing is required.
The production rate improves with technological advance-
ments such as the rapid enlargement of glass substrates
and the miniaturization of patterns. Accordingly, pro-
duction line has to be modified to accommodate such ad-
vancements, and new optimization problems to be solved
continue to arise. Lately an advanced system called a
Crystal Flow [5] has been introduced in the production
line of FPDs. It targets a higher level of line control in
the next-generation production processes as well as in ex-
isting lines.

The main flow of FPD process is shown in Fig. 1 [7].
Each processing equipment in Fig. 1 is a specialized one
such as cleaning, coater, proximity exposure, developer,
etcher, resist remover, etc., and those equipments are con-
nected in-line. Most of the production lines adopts a sim-
ple strategy to feed each glass substrate to the first equip-
ment with a constant inter-arrival time, which is called
the tact time. This strategy is simple and enables us to
estimate the number of products precisely.

Due to solution foaming, chemicals, heat treating, etc.,
the processing time at each equipment is uncertain and
may vary according to the condition at that time. If a
substrate is sent to an equipment which is processing the
previous substrate, the current substrate cannot be pro-
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cessed on the equipment. This phenomenon is called a
collision between substrates. Since the glass substrate is
expensive and fragile, the collision should be avoided as
much as possible.

A collision-like phenomenon is called a blocking in
scheduling theory, and is studied as an important factor
to determine line efficiency [4]. However, depending on
the rule how to process collisions (blocked calls cleared,
blocked calls delayed, etc.), previous work mainly focused
on performance measures in the steady state [3]. In this
paper, given the number of jobs to be processed in the pre-
scribed time span, our performance measure is the prob-
ability that there is at least one collision.

The tact time (i.e., the inter-arrival time of substrates
at the first equipment) should be minimized to maximize
the production rate, which however increases the collision
probability. Thus there is a trade-off between the tact
time and the collision probability. To consider this trade-
off it is important to evaluate the collision probability
under a given tact time.

The probability density function (pdf) of actual pro-
cessing time is often represented by a bell-like curve such
as Fig. 2 (e) . The pdf of the normal distribution is also
bell-shaped, but it has a weakness that the pdf takes posi-
tive value in the negative domain, which is not true in the
pdf of actual processing time. In this paper, we assume
that the processing time follows an Erlang distribution.

The pdf of the Erlang distribution is defined as follows.

Akxk—le—)\x

flm;k,A) = &=

for z > 0, (1)

where two parameters k and A are a positive integer and
a positive real number, respectively. Its expectation and
variance are given by k/A and k/)2, respectively. There-
fore, under the Erlang distribution, we can set the expec-
tation and the variance independently by setting param-
eters A and k appropriately. In Fig. 2, five different pdfs
are plotted, where expectations of all cases are the same,
but their variances decrease with cases of Fig. 2 (a) — (e).
Some of these pdfs are bell-shaped, and the pdf of the
Erlang distribution takes zero value for z < 0. Thus the
Erlang distribution is flexible enough to represent actual
processing times.

Based on a simplified model of the production line of
FPDs, we derive the collision probability analytically as
well as by numeric computing. It was shown in [2] that the
collision probability can be approximately expressed by a
closed form formula under the stated model. However,
the formula proposed in [2] is not meant for numerical
evaluation since it is quite complex. In this paper, we
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Fig. 1. FPD Process Flow.

Fig. 2. The pdf of the Erlang distribution: (a) k=1, A=1
(exponential distribution); (b) k=2, A =2; (c) k=5, A =5;
(d) k = 10, A = 10; (e) k = 30, A = 30.

give a simpler expression of the collision probability by
a new approximation approach, which enables us to eas-
ily compute numerical values of the collision probability
over a wider range of parameter values. We also carry out
simulations to evaluate the exact probabilities, and con-
firm that our approximation approach yields reasonable
results in comparison with the simulated results.

2 Model

In this paper, the following notations will be used:

o My, Mz,...,My,: m different machines in the line.
o Ji,Ja,...,Jn: n jobs to be processed.

. Tl.(j ) (> 0): Processing time of job J; on machine M;.
® Tigcr (> 0): Tact time, ie., the time difference be-

tween the start time instants of J; and J;4; for all
1 <4< n—1 at the entrance to the line.

The production model is illustrated in Fig. 3. With
the same time interval Tioc¢, jobs are successively fed to
the line from the entrance. Every job is first processed on
machine M;. It is then automatically transported to the
next machine M after finished on M;. It is assumed for
simplicity that the transportation time between machines
is nil. As soon as M receives the job, it starts processing.

Entrance ™M, M, ™ " M, Exit

Fig. 3. The production model.

In this manner, every job is processed on machines in the
order of My, Ms,..., M,., and then sent to the exit.

The collision occurs if the next job arrives at M; while
M; is still processing the current job. The following
lemma on the collision condition between jobs was given
in [1).

Lemma 1 Suppose that Ti(j) = tfj) foralll <i<n and
1 < j<m. Forn jobs, n > 2, there is no collision in the
above production line of m machines if and only if

1 -1
S A9 < T 38
j=1 j=1
holds forall1 <i<n—-1and1<Il<m.

We assume that the processing time Ti(j ) on M; is a
random variable that follows the Erlang distribution with
parameters k; and A;. Furthermore we assume that all
Ti(j) (1 €£i<n,1 <j < m) are independent of each
other.

3 Approximation of collision probability

‘We sketch a derivation of approximate collision probabil-
ity. By Lemma. 1, the probability that there is no collision
is given by

1 -1

Pr (ZTi(J) < Taet + » T :1<i<n—1, 15l5m) .
i=1 j=1

2)

Unfortunately, it does not seem that (2) can be simplified
further. Therefore, we first approximate (2) by

™m m-1
Pr (ZT;(j) ST+ 3 T 1 1<i<n— 1) . 3)
j=1 ji=1
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i.e., the probability that there is no collision on the last
machine My, since the collision is most likely to occur
on M, if it occurs at all. Note that (3) approximates
(2) from above, since collisions on other machines are ne-
glected. Moreover, we try to approximate (3) by consid-
ering only two consecutive jobs.

For this, we introduce the following event.

E; : Event that, under the assumption that there are
only two consecutive jobs J; and Ji4+1, there is no
collision between them on the last machine M,.

The probability of event E; is given by

m m—1
Pr(E:) = Pr (Z T < Tract + Y :1;(1;)1> Y

j=1 I=1

We introduce the following random variables:
m m—1
X=319 wa v =378,
i=1 i=1

Since the probability distribution of the sum of two in-
dependent random variables is the convolution of their
distributions, fx = fT(l) * fT(z) R ngm) holds for the
pdf fx of random variable X , where fq:m is the pdf of

random variable Ti(j ) and « is the convolution operator.
The Fourier transform translates a convolution into a

multiplication of functions. In this paper, we define the

Fourier transform of a function h(z) and inverse Fourier

transform of H(w) as follows:

Flh(z)] = f_ ” h(z)e~ e dz,

FUHW)] = % /_ " H(w)e* dw.

Then, since the Fourier transform of the convolution is
given by the product of the Fourier transforms,

F [fo1) * Sy * oo T,.("“]
ol C A R

holds. Computing the inverse Fourier transform of the
above expression, the convolution of the former functions
is obtained, i.e.,

fe= 7 [F o] # ] 7 (]

In the same way, the pdf fy of random variable Y is also
obtained.

Similarly, when X and Y are independently distributed,
the pdf fx_vy of the difference X — Y is given by

[fmw+wn@@.

This integral is known as the cross-correlation fy x fx. It
satisfies F[fy « fx] = (F[fr])* - F[fx], where the super-
script asterisk denotes the complex conjugate. We then
have

fx—vy = fy*x fx = FH(FIfyD)" - Flfx]].

Therefore, (4) can be rewritten as

Ttact

PT(X -Y S Ttact) = / fX—Y(m)dm‘ (5)

-0

Since we assume that all Ti(’ ) (i=1,2,...,n) have the
same distribution function, Pr(E;) = Pr(E;) = .- =
Pr(E,._1) holds. Although two events FE; and E; (i # j)
are not independent, precisely speaking, we approximate
the no-collision probability on the last machine M., over
all n jobs (i.e. (3)) by the (n — 1)-th power of (5). In this
case, the no-collision probability (i.e. (2)) is approximated

by .
([ vt} ©)

The approximate probability of collision is then given by
subtracting (6) from 1.

Note that (6) is valid even if the processing time of each
machine follows a general distribution. We can express (6)
as a closed form formula if Erlang distribution is assumed.
However, it may be quite complex. Therefore, it seems to
be more effective to evaluate (6) numerically.

We focus on a special case in which Ay = A2 =--- = A
holds. Due to the property of the Erlang distribution, the
pdfs of X and Y are obtained as

)\meKm—le——Ax
Km—11
AKm_lme_l—le—)\:v
(Kmo1—1)!

fx(z) =

fr(e) =

for z > 0, where Km = 377", k;. Then (F[fy])" - F[fx]
can be written as
AKm‘(’KmAl (A _ w)km
(2 + w?)Km

4 Numerical Results

Based on the above formulae, we obtain some numerical
results by using MATHEMATICA [8]. For our computa-
tion in this section, the number of jobs is set to n = 1, 000,
and parameters of the Erlang distributions are set so that
the expectation and the variance of the processing time on
each machine become equal to 1 and 0.001, respectively
(i.e., kK = 1000, A = 1000 in (1)). The numerical results
are shown in Table 1.

We also carried out the following simulations to eval-
uate the exact probabilities. The procedure is stated as
follows: Given the number of jobs n, the number of ma-
chines m, the tact time T}..:, parameters of the Erlang
distribution, and a positive integer ¢ (specifying the num-
ber of iterations, which is related to the accuracy), derive
the collision probability by the following algorithm.

Simulation Algorithm

Step 1: loop :=1.

Step 2: Generate the processing time tgj ) 1<i<n1<L
j < m) randomly from the Erlang distribution.
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Table 1: Collision probability evaluated by approximate formula. [%)]

Tta.ct

1.20 1.25 130 135 140 145 150 155 160 1.65 1.70

3| 90.86 19.18 1.19 0.04 000 0.00 0.00 0.00 0.00 0.00 0.00

4|l 9998 76.00 1590 1.50 0.09 0.00 0.00 0.00 0.00 0.00 0.00

5 || 100.00 9856 54.77 10.86 1.28 0.11 0.01 0.00 0.00 0.00 0.00

m 6 || 10000 9998 88.14 3484 6.73 091 0.10 0.01 0.00 0.00 0.00
7| 100.00 100.00 98.61 66.01 20.39 3.95 059 0.07 0.01 0.00 0.00

8 || 100.00 100.00 99.92 88.28 42.26 11.36 2.24 0.36 0.05 0.01 0.00

9 || 100.00 100.00 100 9740 66.15 2448 6.15 124 0.21° 0.03 0.00

Table 2: Collision probability evaluated by simulation. [%]
Tta,ct

1.20 1.25 1.30 135 140 145 150 1.55 160 1.65 1.70

3| 91.39  19.27 1.21 0.04 000 000 0.00 0.00 0.00 0.00 0.00

41 9999 7783 1632 1.52 0.09 0.00 0.00 0.00 0.00 0.00 0.00

5| 100.00 99.16 5761 11.35 1.29 0.11 0.01 0.00 0.00 0.00 0.00

m 6 | 100.00 100.00 91.23 3752 7.19 098 0.10 0.01 0.00 0.00 0.00
7 || 100.00 100.00 99.40 71.11 2236 4.26 0.63 0.07 0.01 0.00 0.00

8 || 100.00 100.00 99.99 9239 47.06 12.72 246 0.39 0.05 0.01 0.00

9 || 100.00 100.00 100.00 98.95 72.81 27.97 6.95 1.37 0.23 0.03 0.00

Step 3: Based on the condition in Lemma 1, check Acknowledgments

whether a collision occurs. Let loop := loop + 1.
If loop < c, return to Step 2; otherwise go to Step 4.

Step 4: Output the collision probability (the number of
collisions observed in Step 3)/c.

The computation time is ©(cmn). Through all simu-
lations, we use Mersenne Twister [6] as the pseudoran-
dom generator, and the number of iterations is set to
¢ = 1,000, 000. The simulation results are shown in Table
2.

Those Tables shows that, as the tact time becomes
larger, the collision probability decreases, clearly exhibit-
ing the trade-off between the tact time and the collision
probability. We also confirmed that the collision probabil-
ity increases with m. We may conclude that the numerical
and simulation results are reasonably close in most cases.

5 Conclusions

We have presented a new approach to approximate the
collision probability. Our approximate formula can evalu-
ate the collision probability much faster than simulation,
and has good accuracy as experimentally confirmed.

Although the production model in this paper doesn’t
have any buffer space between machines, such space may
be very useful to avoid collisions between jobs. Analysis
of the collision probability in the production model with
buffer space is one of our future topics.
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