

 1

Parameter Optimization Framework on Apache Hadoop using

Steady-State Genetic Algorithm

PHYO THANDAR THANT†1 AKIYOSHI SUGIKI†2

MASAHARU MUNETOMO†2

Abstract: This paper proposes a Hadoop parameter optimization framework based on a Genetic Algorithm (GA) search strategy.

In the proposed framework, steady-state GA is applied to obtain optimal configuration of Hadoop parameters on various

workloads. We can also identify the parameters that are necessary to tune for a particular type of application based on the

optimized parameter list. The proposed framework has been implemented and tested on an updated Hadoop 2.7.1 based 24 node

cluster.

Keywords: Hadoop, Configuration Optimization, Genetic Algorithm, Search-based Strategy

1. Introduction

 The digital universe is expanding with data at 40% per year

and is projected to continue this trend into the next decade, as a

result of widespread adoption of computing devices in our

everyday lives. The major sources of these big data include

public web, social media, business applications, mobile and

sensor applications, machine log data and scientific and

simulation data. The use of big data is also becoming crucial for

leading companies to outperform their peers [1].

 The most popular technique for big data processing is using

the MapReduce parallel data processing framework across

thousands of machines. Apache Hadoop is an open-source

MapReduce implementation and it exposes hundreds of

configuration parameters [2]. Parameter Tuning is a daunting

and time consuming task because it is very difficult to identify

the parameters that can impact the performance of a particular

application [3]. Although several approaches are available, there

are some limitations and further research is still necessary

because of the complex nature of Hadoop configurations.

Moreover, the Hadoop framework is always being updated,

posting another challenge for ideal parameter optimization.

 This paper proposes a parameter optimization framework in

which steady-state Genetic Algorithm (GA) iteratively searches

for the fittest parameter combination and outputs an optimized

configuration parameter list for a particular type of application.

We chose a GA approach because it conducts an aggressive

search that results in near-optimal configuration. Further, this

search based optimization approach is also suitable for the

dynamic nature of the Hadoop framework. In this system,

processing execution time is considered as the fitness evaluation

values and the fittest one is the parameter configuration values

that can give the shortest execution time. Our experimental

results show that, we can also identify the effective parameters

for a particular type of application which can improve later

configuration decisions for big data applications.

2. Proposed Framework

 This section presents the proposed framework in detail. The

 †1 Graduate School of Information Science and Technology,Hokkaido University

 †2 Information Initiative Center, Hokkaido University

objective function of the proposed framework is first explained,

followed by the flow of the optimization system, system

encoding scheme and the associated optimization algorithm.

2.1 Objective Function

 The target optimization problem is minimization of the total

execution time to finish the MapReduce tasks stated below:

 min ET(p1,p2,p3,…,pm)

where,

 ET = execution time of each MapReduce task

 pj = configuration parameter list to control each

MapReduce task (1 ≤j≤m)

2.2 Flow of the Optimization System

This section explains the steps in the steady-state GA

optimization system. First, an initial population step generates

random initial chromosome parameter lists to initiate the

process. Next, the fitness values of the initial chromosomes are

evaluated. Then, parents are selected from the initial search

pool and, based on the parents, successive evolution continues

until the predefined number of generations is reached. Finally,

the system gives the fittest chromosome within the evolution

process. The optimal chromosome parameter values will be

recommended to use for future processing in the system. The

algorithm for this process is presented in section 2.4.

2.3 System Encoding Scheme

 The system uses a binary encoding scheme, the most

common representation of chromosomes in GA. In this system,

the genes in the chromosomes are in the form {0,1} with each

gene,- a single bit or two consecutive bits, representings its

respective Hadoop configuration parameter values. Further,

strings of 24 parameter values (genes) are coded as 34-bit binary

chromosome strings that are then used in the parameter

optimization process of the proposed system.

2.4 Parameter Optimization Algorithm

Algorithm: Steady-State GA based parameter optimization

 Input : population size N, number of generations G

Output : optimized chromosome solution Copt

Step 1: Generate random initial population, IP

1.1 Generate binary chromosome randomly Ci

(I=1,2,…N)

IPSJ SIG Technical Report

ⓒ 2015 Information Processing Society of Japan

Vol.2015-MPS-105 No.16
2015/9/30

 2

1.2 Calculate the fitness of each random chromosome,

 fi = ET(Ci)

Step 2: Evolve the Population (P, G)

 2.1 Select 2 parents at Random (P1, P2)

 2.2 Perform two-point dynamic crossover operation on

parents (P1, P2) with probability, Pc = 1 to produce

(C1, C2)

 2.3 Perform mutation operation on random points

applied to (C1, C2) (probability,Pm=0.01)

 2.4 Calculate fitness of new offspring (C1, C2) and

replace the best two of (P1,P2,C1,C2) with the worst

two chromosomes in the population, P

Step 3: Repeat step 2 until the predefined number of generations

 is reached

Step 4: Output the optimal chromosome solution, Copt

3. Performance Evaluation

3.1 Experimental Setup

 This section presents the test environment and test workloads

used to evaluate the optimization framework.

Test Environment

 Figure 2 shows the Hadoop cluster testing environment,

implemented using 24 virtual machines on our Academic cloud

system. It comprises one NameNode that serves as the front end

for the cluster system and 23 Datanodes. Each node comprises

4GB RAM, an Intel Xeon E7 CPU, and 100GB of storage.

Hadoop 2.7.1 and jdk 1.8.0 are used in the cluster development.

Figure .2. Hadoop Cluster Test Environment

Test Workloads

 Several benchmarks are available to evaluate the processing

performance of a Hadoop cluster environment. Among them, we

used workloads from HiBench 4.0 for this Hadoop parameter

optimization framework. Table I shows the selected workloads

used to evaluate the effectiveness of the proposed framework.

Table I. Workload List

Type Workload

MicroBenchmark - Sort

- TeraSort

Machine Learning - PageRank

3.2 Results

Figures 3-5 show the gradual optimization process for terasort,

sort and pagerank workloads in different generations using the

proposed system. The system eventually outputs the optimized

solution. On the basis of that solution, effective parameters that

can pave the way to optimized configuration of future big data

processing applications are identified.

Figure .3. Fitness optimization on terasort

Figure .4. Fitness optimization on sort

Figure .5. Fitness optimization on pagerank

4. Conclusion and Future Work

Big data processing places is one of the most challenging

tasks in the current IT arena. Efficient big data processing is

possible with the use of Hadoop’s open-source MapReduce

implementation. However, Hadoop exposes hundreds of

configuration parameters and so parameter tuning is a daunting

and time consuming task because it is very difficult to identify

the parameters that can impact the performance of a particular

application. This framework performs Hadoop parameter tuning

using a steady-state GA based search strategy. Currently, the

system utilizes parameters from HDFS and MAPRED

configuration files. Our experimental results show that the

system is effective. In future work, performance tuning of

YARN parameters and comparison of the system’s performance

to that of similar research works will be conducted.

References
[1] H. Herodotou, H.Lim, G. Luo, N. Borisov, L. Dog, “Starfish: A

Self tuning system for Big Data Analytics,” 5th Biennial
Conference on Innovative Data Systems Research (CIDR’11),
Asilomar, California, USA, 2011.

[2] G. Liao, K. Datta, T. L. Wilke, “Gunther: Search Based Auto
Tuning of MapReduce,” Intel Labs, Hillsboro, Oregon, USA,
LNCS8097, pp 406-419, Springer-Verlag Berlin Heidelberg, 2013.

[3] M. Li, L. Zeng, S. Meng, “MRONLINE: MapReduce Online
Performance Tuning” HPDC 14, June 23-27 Vancouver, Canada,
2014.

IPSJ SIG Technical Report

ⓒ 2015 Information Processing Society of Japan

Vol.2015-MPS-105 No.16
2015/9/30

