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Abstract: Processor core count in high-end computing has seen a steady increase during the past decade
and next generation supercomputers will likely deploy many-core based systems. At the same time, from a
software environment point of view, Linux-compatibility has become wide-spread in the High Performance
Computing (HPC) domain. We consider the challenges of operating system (OS) design targeting next gen-
eration high-end computing. We believe that the most urging issues to be addressed are as follows. (1)
Exploiting deep memory hierarchies, (2) Reducing cache pollution by OS services and minimizing OS noise,
(3) Making it easy to design and deploy application specific kernels, (4) Providing a Linux compatible pro-
gramming / run-time environment and (5) Enabling seamless tracking of upstream Linux kernel changes.
We contend that existing approaches to HPC operating systems, which either employ a stripped down Linux
environment or a specific light-weight kernel built from scratch, are not feasible to deal with these chal-
lenges. In this paper, we discuss the design decisions of our proposed hybrid kernel design for providing a
Linux-compatible light-weight kernel.

1. Introduction

Next generation supercomputers should embrace and ex-

ploit technological advances of the recent past and the fu-

ture. For example, it is anticipated that in future systems a

new layer in the memory hierarchy will be added to proces-

sor architectures, and the number of CPU cores applications

can use will reach the order of a million. Application devel-

opers have been increasingly relying on the standard Linux

APIs, but at the same time, application specific kernels have

been proven effective [1].

The most important challenges for OS design considering

these requirements are summarized as follows.

• Exploiting deep memory hierarchies Processors

will have multiple memory types with different charac-

teristics. The kernel should optimize the allocation of

kernel data structure to those memory-areas.

• Reducing cache pollution by OS services and

minimizing OS noise Kernel code should minimize

pollution of processor caches used by application code

and it should not waste valuable CPU cycles of the ap-
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plication. Most importantly, OS kernels for high-end

computing should ensure scalable application perfor-

mance.

• Facilitating deployment of application specific

kernels Applications may benefit from customized OS

kernels tailored for specific application needs and users

should have the freedom to choose the appropriate ker-

nel at job dispatching time.

• Linux compatibility A Linux compatible program-

ming and run-time environment should be provided be-

cause users have been increasingly relying on the Linux

APIs in the HPC domain as well.

• Maintainability An OS using a configuration of run-

ning a lightweight-kernel alongside with Linux ker-

nel and interacting with it should track Linux kernel

changes to incorporate its improvements. However,

careful design on which Linux modules to reuse or inter-

act with is required because more reuse and interaction

means more code we should modify when Linux kernel

changes.

Currently, there are two major approaches to operating

systems on high-end supercomputers. The first one is elimi-

nate features a Full-Weight Kernel (FWK), often Linux, that

prevent scalable application performance. The second one

is to implement a Light-Weight Kernel (LWK) from scratch

with minimal functions to provide an environment tailored

for HPC. However, existing work cannot deal with all of the

above mentioned challenges. For example, it is not easy for
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the FWK approach to provide users a choice of application

specific kernels. This is because it is difficult for kernel de-

velopers to create their own kernels since it is often the case

FWK’s concepts and representations ruling the code struc-

ture rarely matches those of the developers and they need

to modify a large part of FWK. On the other hand, the

LWK approach fails to provide the level of Linux compat-

ibility that would be required so that the same tool-chains

or executables could be run.

We have already proposed a new design of OS for next

generation many-core based supercomputers in response to

these requirements [2]. The kernel called McKernel is an

LWK which runs alongside with Linux kernel and commu-

nicates with it using a library/framework called Interface

for Heterogeneous Kernels (IHK). McKernel implements OS

services critical to application performance, e.g., process

management, memory management, signal management,

critical system calls, and others are delegated to Linux via

IHK. In this way, it can provide application with a Linux-

compatible environment and at the same time it still reduces

cache pollution and OS noise.

The design will be reviewed and the design issues obtained

on the course of its development is discussed in this paper.

The rest of the paper is organized as follows. Section 2 ex-

plains the background, Section 4 explains the related work,

Section 3 describes the design of the kernel and Section 5

concludes the paper.

2. Background

2.1 Environment

Trend in supercomputer environment are explained in

more detail.

2.1.1 Node Architecture and System Architec-

ture

There are three major changes that are expected to hap-

pen in node/system architecture. The first one is that the

number of nodes in a system is increasing so that the num-

ber of cores are reaching one million. The second one is a

processor will have more layers in memory hierarchy. For ex-

ample, Intel Xeon Phi, whose code name is Knights Landing

will have stacked DRAM modules (called MCDRAM) with

high bandwidth in addition to the traditional DRAM mod-

ules [3]. The third one is a many-core processor will have

many NUMA domains.

2.1.2 Application Specific Kernels

It is beneficial for an application to select a set of OS

functionalities that provide better performance to the ap-

plication. For example, paging can be replaced with seg-

mentation to eliminate TLB-miss and page-fault penalty[1].

Another example is to turn off time-sharing and timer inter-

rupt to reduce OS noise for applications that do not over-

subscribed threads which is often the case in HPC domain.

2.1.3 Programming Environment

Users of HPC domain rely on Linux environment. For ex-

ample, 97% of machines in TOP500 list in November 2014

uses Linux [4].

2.2 Challenges

Challenges derived from the changes in the environment

are explained in more detail.

2.2.1 Exploiting On-chip Memory Hierarchy

Kernel should optimize data allocation as in the same way

as in multithreaded application. That is, kernel allocates the

thread structures and page tables for the application thread

to the NUMA-node on which the application thread is run-

ning to reduce costly data transfer between NUMA-nodes.

2.2.2 Cache pollution and OS noises

OS service processing should not compete with appli-

cation threads for both hardware and software resources

shared with OS and applications. For example, application

would run hundreds of thread in parallel and a large part of

data set referred for calculation resides on the cache of the

individual cores. OS service processing could steal the cache

resource, resulting in performance degradation of applica-

tion. Shimosawa evaluated the performance degradation by

cache pollution on Knights Ferry processor of Intel[5]. Xeon

Phi processor of the current generation experiences a small

amount of performance degradation and this issue is not a

major one. However, the new processor architecture will

introduce more NUMA-nodes and it is possible that this is-

sue becomes more prominent. There are three methods to

reduce cache pollution.

( 1 ) Do not run processes other than application processes,

e.g. system processes, on the core on which the appli-

cation processes are running.

( 2 ) Do not perform device interrupt processing on such kind

of cores.

( 3 ) Do not perform system call processing on such kind of

cores.

Linux can employ the first two methods using cgroups.

OS noise should be reduced as well. OS noise refers to

the state that OS services, e.g. periodic file writes of dae-

mon processes and interrupt processing, utilizes processor

resources and it can degrade performance of massively par-

allel applications. For example, assume an application using

Bulk Synchronous Parallel (BSP) model. Its processes re-

peatedly synchronize in phases. The amount of OS noises

changes in time and space, which makes some processes take

longer time for the processing of a phase than others, which

in turn make others wait on synchronization.

OS noise can be reduced by dividing cores to the cores

for application and the cores for OS services and assigning

daemon processes and interrupt processing to the OS ser-

vice cores. However, timer interrupt handling and process

scheduling code remains on the application cores and it is

not possible to eliminate all of OS noises. It is possible to

eliminate the last part by making applications not create

more threads than the number of cores or making applica-

tions perform thread management.

2.2.3 Linux compatibility

Linux compatible environment should be provided when

taking an LWK approach. This is because many of the appli-

cations on supercomputers are developed on Linux. There
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are four major functionalities to provide Linux compatible

environment. The first one is to provide Linux compatible

system calls. For example, applications written in Fortran,

C, C++ languages utilize open, read, write, mmap, clone

and sched yield system calls. The second one is to provide

Linux compatible /proc and /sys file systems. /proc and

/sys file system is a special file system which provide access

to the system properties. For example, Intel OpenMP run-

time and gdb rely on those file systems. The third one is to

provide a job execution environment in a way that there is

no need for users to distinguish in terms of programming en-

vironment what kind of kernel they are using or to modify

their job-scripts according to the kernel type. The fourth

one is to enable users to choose which kind of cores, that

is, application cores or OS cores, to use for preprocessing

part of a job. For example, current McKernel provides poor

performance for fork/exec and hence preprocessing using

fork/exec runs efficiently on OS cores (i.e. Linux cores).

Another example is that preprocessing using fork/exec sys-

tem calls might require process scheduling which McKernel

does not offer and hence it runs only on OS cores. The last

two functionalities are discussed in [6] and not discussed in

this paper.

2.2.4 Facilitating creation of application specific

kernel

Code complexity should be reduced to facilitate creating

application specific kernel. One way to deal with this is to

take an LWK approach and create a new kernel from scratch.

The code complexity can be reduced if many OS services can

be delegated to Linux side.

2.2.5 Maintainability

The LWK code need to be modified when Linux kernel

changes and the cost should be minimized. This is because

Linux compatibility is often provided by interacting with

Linux and LWK should be modified when the way of the in-

teraction changes. For example, an LWK which runs along-

side with Linux can provide Linux-compatible /proc file sys-

tem by reusing an infrastructure provided by Linux and redi-

rect accesses to a sub-set of /proc files to files serviced by

Linux. However, the infrastructure or the sub-set changes as

Linux kernel changes and LWK side should keep up with the

change. And the amount of change depends on the design

on how much code to reuse and how deep the interaction is.

Therefore, design on providing Linux compatibility should

be done with those aspects took into consideration.

3. Design

3.1 Dynamic Resource Partitioning

McKernel relies on a low-level software infrastructure

called Interface for Heterogeneous Kernels (IHK). IHK en-

ables partitioning node resources and the management of

lightweight kernels on subsets of the resources and it pro-

vides a low-level inter-kernel communication (IKC) frame-

work. Figure 1 shows the architecture. A software module

embodied as a kernel module, called IHK-master, resides on

the Linux side and a software module embodied as a sub-

Fig. 1 Overview of the architecture.

module of McKernel, called IHK-slave, resides on the McK-

ernel side. They communicate each other by using IKC.

Further detail of the IHK-master is explained. IHK-

master consists of two types of modules. IHK-master core

provides the basic IHK framework and management infras-

tructure. It is required for registering/removing the so

called IHK-master drivers. IHK-master drivers represent

resources, such as CPU cores and the physical memory of

a given node or PCI-Express attached co-processors. Our

most recent IHK driver module, IHK-SMP x86 exposes a

virtual device that enables partitioning CPU cores of an x86

(Xeon) SMP chip as well as the physical memory attached to

the node among OS instances in a dynamic fashion. IHK-

SMP relies on the CPU hotplugging system of the Linux

kernel and it is also capable of handling NUMA specific dy-

namical memory allocation and assignment.

3.2 Tracking Linux Changes

As we outlined above, taking either path of integration be-

tween Linux and an LWK it is highly desired to keep Linux

changes minimal. The Linux code base is a rapidly evolving

target and keeping patches up-to-date with the latest kernel

changes can be a major development effort.

IHK and McKernel requires no changes to Linux and is

implemented in the form of a collection of stand-alone kernel

modules. However, IHK-SMP relies on accessing a couple

of unexported Linux kernel symbols (via the System.map

symbol file) for resource partitioning. While this is not the

intended usage of kernel modules in general, the Linux com-

munity seems to accept it and modules with similar mech-

anisms (e.g., the BLCR checkpoint/restart library [7]) are

part of major Linux distributions.

3.3 Proxy Model and System Call Delegation

One of the crucial points of the proposed hybrid ker-

nel configuration is the integration method between Linux

and the LWK. Ideally, the application running on McKer-

nel should not experience any difference in terms of Linux

API availability, regardless what is supported by McKernel

natively.

There are multiple possible approaches how the desired

symbiosis may be attained and the one followed by McKer-

nel is discussed here. We call this method the proxy model.
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The central idea of the proxy model is that for each applica-

tion executed on the LWK, a corresponding proxy process

(also referred to as ghost process) on the Linux side is cre-

ated. This architecture is shown in Figure 1. Five modules

are involved in the proxy model. The first one is the appli-

cation itself. The second one is the IHK-slave in McKernel.

The third one is the IHK-master in Linux. The fourth one

is a kernel module called mcctrl.ko in the Linux side. The

fifth one is the proxy process.

Because McKernel implements only a subset of the Linux

services, i.e., the performance sensitive system calls, the rest

of the OS services need to be executed on Linux. Essentially,

the proxy process provides the execution context on behalf of

the application (running on the LWK) so that the offloaded

calls can be directly invoked. The proxy process also ensures

that Linux maintains certain state information that would

have to be otherwise kept track of in the LWK. For example,

McKernel has no notion of file descriptors, but rather it sim-

ply returns the file descriptor number it receives from the

proxy process when a file is opened. The actual set of open

files (i.e., file descriptor table, file positions, etc..) are man-

aged by the Linux kernel. On the other hand, maintaining

state in Linux implies that a certain degree of synchroniza-

tion between McKernel and the Linux state, e.g., the unified

address space described below.

With respect to system calls, our approach is that McK-

ernel provides native support only for a minimal set of ker-

nel features, the ones that are either performance critical

or change the local processor’s state or extentions done by

McKernel. It has its own memory management, it supports

processes and multi-threading with a simple round-robin co-

operative scheduler, and it implements signaling. It also

allows inter-process memory mappings and it provides in-

terfaces to hardware performance counters. The minimal

configuration of McKernel has no native support for disk

device drivers, file systems, etc., and all these services are

available with the help of Linux.

Every system call not provided natively get offloaded to

Linux. In Linux, as part of IHK (See Section 3.1), a dele-

gator kernel module (mcctrl.ko) handles IKC channels for

system call delegation between McKernel and the proxy pro-

cess that performs the calls on behalf of the actual applica-

tion. During system call delegation, McKernel sends a mes-

sage to Linux via a dedicated IKC channel. As mentioned

earlier, for each application on the LWK, a corresponding

proxy process exists in Linux. The proxy process waits for

system call request messages via an ioctl() call into the del-

egator kernel module. The delegator kernel module’s IKC

interrupt handler wakes up the ghost process when it re-

ceives a system call request message, passing the informa-

tion necessary to execute the system call (i.e., system call

number and its arguments). The ghost process then exe-

cutes the system call and requests the delegator module to

send the result back to McKernel, which simply passes the

return value to user-space.

A problem arises, however, as to how the ghost process on

Linux can access the memory of the application running on

McKernel and how the virtual addresses in arguments can

be resolved. The problem arises because certain system call

arguments may be just pointers (e.g., the buffer argument

of a read() system call).
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Fig. 2 Unified virtual address space of the proxy pro-
cess on Linux and the corresponding application
on McKernel.

McKernel’s solution for the pointer issue is that the proxy

process employs the same virtual to physical mappings as

the actual application, as illustrated in Figure 2. This so-

called unified address space layout allows the ghost process

to access the memory area of the application using the same

virtual addresses. The code and data segments specific to

the proxy process are mapped in an address range which is

explicitly excluded from McKernel’s user space region.

The benefit is that there is no need to recognize which ar-

guments of a system call are addresses. Moreover, any side

effects of a system call (e.g., modifications to user-space data

carried out by the Linux kernel) can naturally proceed.

The proxy does not need to know in advance which virtual

address is mapped to which physical page. This is because

Linux uses a special pseudo file mapping that covers the

entire McKernel user space virtual address range, and ev-

ery time an unmapped address is accessed, the page fault

handler consults the page tables corresponding to the ap-

plication on McKernel. As mentioned above, this requires

that the mappings are occasionally synchronized, for in-

stance, when the application calls munmap() or modifies cer-

tain mappings.

3.4 Specialized Lightweight Kernels

We contend that providing application or hardware spe-

cific lightweight kernels can benefit application performance

due to fine grained tuning of related kernel services. For

example, certain HPC applications may oversubscribed the

node with more threads than CPU cores in order to ex-

ploit asynchronous operations, requiring the OS to support

time sharing. Other applications may not need support for

such configuration, leaving space for simplifying and opti-

mizing process management in the kernel. Similarly, dif-

ferent lightweight kernels may be developed for supporting
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specific hardware features, e.g., management of memory hi-

erarchies or heterogeneous core architectures.

Taking these disparities into account, there is no single

set of kernel characteristics that could fulfill all the possi-

ble application and/or hardware requirements. To this end,

IHK enables repartitioning node resources dynamically and

allows loading and booting different lightweight kernel im-

ages through its easy LWK reboot feature. In fact, in our

earlier work, we already demonstrated how applications may

benefit from such optimizations [1], [8], [9].

3.5 Linux-compatible environments

3.5.1 Linux-compatible system calls

McKernel provides Linux-compatible system calls by del-

egating some of them to Linux and servicing others inside

McKernel for the following two purposes. (1) Keep McK-

ernel code minimal to make it easy to customize / extend

its functionalities and (2) reduce cache pollution and OS

noise. System calls meet the following criteria are processed

in McKernel and others are delegated to Linux.

( 1 ) Application performance can be improved by processing

inside McKernel

( 2 ) There is no way other than to process inside McKernel

The system calls which meet the first criteria are catego-

rized as follows.

• Process management functions Creating thread

(clone()), synchronization (futex()), setting CPU

affinity (sched setaffinity())

• Memory management functions Allocating mem-

ory area (mmap()), duplicating memory area (fork())

and sharing memory area (process vm readv)

• Profiling functions Obtaining performance counters

(gettimeofday() and PAPI interface)

The system calls which meet the second criteria are catego-

rized as follows.

• Process management functions Setting signal han-

dlers (sigaction())

• Debugging functions Tracing and manipulating pro-

cess (ptrace())

System calls serviced by McKernel itself are show in Ta-

bles 1, 2, 3 and 4. All other system calls not shown in

these tables are delegated to Linux. The system calls ser-

viced by McKernel would change when Linux API semantics

changes.

There is a special case that Linux and McKernel perform

memory management in a cooperative way with the help of

IHK. That is, assume a process running on McKernel using

InfiniBand (IB) Host Channel Adapter (HCA). The McK-

ernel process instructs the kernel module, which is running

on Linux and the part of IB HCA driver, to pin-down a

memory-area of the McKernel process via Linux-kernel in-

ternal function so that the memory area can be transferred

from/to the HCA via DMA. IHK gives Linux a view of all

physical memory through struct page at the partitioning

time to allow the kernel module to perform such an opera-

tion.

Table 1 System calls serviced by McKernel itself (process man-
agement)

Implemented Planned  
arch_prctl	
  
clone	
  
execve	
  
exit	
  	
  
exit_group	
  
futex	
  
getpid	
  
getrlimita	
  
kill	
  	
  
pause	
  
ptrace2	
  
rt_sigaction	
  
rt_sigpending	
  
rt_sigprocmask	
  
rt_sigqueueinfo	
  
rt_sigreturn	
  
rt_sigsuspend	
  	
  
set_tid_address	
  
setpgid	
  
sigaltstack	
  
tgkill	
  
vfork	
  
wait4	
  	
  

get_thread_area	
  
getrlimit	
  
ptrace	
  
rt_sigtimedwait	
  
set_thread_area	
  
setrlimit	
  
signalfd	
  
signalfd4	
  	
  
	
  

a Some functions have not been implemented.	


Table 2 System calls serviced by McKernel itself (memory man-
agement)

Implemented Planned  
brk	
  
gettid	
  
madvise	
  
mlock	
  
mmap	
  
mprotect	
  
mremap	
  
munlock	
  
munmap	
  
remap_file_pages	
  	
  

get_robust_list	
  
mincore	
  
mlockall	
  	
  
modify_ldt	
  
munlockall	
  	
  
set_robust_list	
  
shmat	
  
shmctl	
  
shmdt	
  
shmget	
  
process_vm_readv	
  
process_vm_writev	
  

Table 3 System calls serviced by McKernel itself (scheduling)

Implemented Planned  
sched_getaffinity	
  
sched_setaffinity	
  	
  

alarmb	
  
getitimerb	
  
gettimeofdayb	
  
nanosleepb	
  
sched_yield	
  
setitimerb	
  
settimeofdayb	
  
timeb	
  	
  
timesb	
  	
  

b These system calls are delegated to Linux for the 
moment.	


3.5.2 Linux-compatible /proc and /sys file sys-

tems

McKernel provides Linux-compatible /proc and /sys file

systems by reusing some files served by Linux and servicing

others inside McKernel. Files of /proc and /sys file systems

are added by kernel modules through interfaces given by

Linux, with corresponding call-back functions which is called
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Table 4 System calls serviced by McKernel itself (performance
counters)

Implemented Planned  
Original Interface 
pmc_init	
  
pmc_reset	
  
pmc_start	
  	
  
pmc_stop	
  	
  

PAPI Interface  
 

Table 5 /proc and /sys files or directories serviced by McKernel
itself

File / Directory Description 
/proc/stat Process statistics 
/proc/<PID>/tasks/<TID>/stat Thread statistics 
/proc/<PID>/mem Process memory contents 
/proc/<PID>/task/<TID>/mem Thread memory contents 
/proc/<PID>/aux Auxiliary vectors put in stack 
/proc/<PID>/pagemap Virtual-physical map  

when access to them occur, and hence McKernel uses this

infrastructure. McKernel needs to provide files representing

the system properties to its processes but some of the files

can be obtained from Linux-provided /proc and /sys file sys-

tems because some of the system properties do not change

through resource partitioning and running McKernel along-

side with Linux. Therefore, McKernel emulates a file system

where accesses to some files are redirected to files served by

McKernel and accesses to other files just see the files served

by Linux. The examples of the files served by McKernel

are (1) the memory maps of McKernel processes and (2)

the number of cores in the McKernel partition. Accesses to

files served by McKernel is served using IKC because the

call-back function is called on the Linux side. Files and di-

rectories served by McKernel and implemented is shown in

Table 5. We are investigating files which need to be served

by McKernel.

3.5.2.1 Steps

Files served by McKernel are created at the boot time of

McKernel and the boot time of McKernel thread.

File view where both files served by McKernel and files

served by Linux coexist are performed using the following

steps.

( 1 ) Create files served by McKernel on /proc file system.

Use the paths of /proc/mcos<OS number>/<path> for

files to be shown as /proc/<path> to McKernel pro-

cesses.

( 2 ) Check the path when open() system call is delegated

to mcexec and mcctrl.

( 3 ) If the path has the prefix of /proc/, then replace the

prefix with /proc/mcos<OS number>/ and then per-

form open().

( 4 ) If there is not a file with the redirected path, perform

open() using the original path.

Files served by McKernel are deleted in the following two

ways. The first one is McKernel deletes files for threads

when destroying them. The second one is mcctrl deletes

files created at the boot time of McKernel.

File accesses to files served by McKernel are performed

using the following steps.

( 1 ) Linux detects access to a file served by McKernel and

calls the call-back function registered by mcctrl using

file operations interface

( 2 ) mcctrl redirects the access request to McKernel using

IKC

( 3 ) McKernel writes expected value to memory owned by

Linux

( 4 ) McKernel notifies mcctrl of the completion of the mem-

ory write using IKC

( 5 ) mcctrl sends the result back to Linux using

file operations interface

4. Related Work

This section surveys related work covering studies on op-

erating system design for many-core CPUs, lightweight ker-

nels for high-performance computing, and existing hybrid

kernel solutions.

4.1 Kernels for Multi/Many-cores

Operating system organization for manycore systems has

been actively researched in the past decade. In particular,

issues related to scalability over multiple cores have been

considered.

K42 [10] was a research OS designed from the ground up

to be scalable. Similarly how IHK/McKernel selectively im-

plement a set of performance sensitive system calls on the

LWK side, K42 allowed the application to circumvent the

Linux APIs and call native K42 interfaces. However, it in-

volved a significant entanglement with Linux which made it

difficult to keep track of the latest kernel changes. Although

McKernel also relies on Linux, as discussed above, one of its

important design criteria is to minimize the engineering ef-

fort required to keep it up-to-date with the rapidly evolving

Linux kernel codebase.

Corey [11], an OS designed for multicore CPUs, argues

that applications must control sharing in order to achieve

good scalability. Corey proposes several operating system

abstractions that allow applications to control inter-core

sharing. The IHK/McKernel infrastructure enables fine

grained control over sharing by allowing explicit resource

partitioning and the execution of multiple LWK instances.

Turning towards multiple kernels, Tessellation [12] and

Multikernel [13] are built upon the observation that modern

node hardware resembles a networked system and so the OS

should be modelled as a distributed system as well. The

Tessellation project [12] follows a resource partitioning ap-

proach called Space-Time Partitions. It divides CPU cores

into groups called cells, where each cell is responsible for a

particular application or some system services. Since ap-

plications and system services can be assigned to separate

cells, To some extent, Tessellation’s structure also resem-

bles IHK/McKernel, where HPC workloads are explicitly

assigned to LWK cores while system daemons reside on the

Linux partition. On the other hand, Multikernel [13] runs a
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small kernel on each CPU core and the OS is built as a set

of cooperating processes, where each process is running on

one of the kernels and communicating via message passing.

Similarly to Multikernel, the IHK/McKernel model employs

a low level message passing facility which enables communi-

cation between the two types of kernels.

4.2 Lightweight Kernels

Lightweight kernels developed from scratch and designed

for high performance workloads have been around for over

two decades now. Notably, Catamount [14] from Sandia Na-

tional Laboratories was one of the first systems which has

been successfully deployed on a large scale supercomputer.

IBM’s BlueGene line of supercomputers have also been run-

ning an HPC targeted lightweight kernel called the compute

node kernel (CNK) [15]. The most recent in Sandia National

Lab’s lightweight compute node kernels line of effort is Kit-

ten [16], which distinguishes itself from their prior LWKs by

providing a more complete Linux-compatible user environ-

ment. As opposed to McKernel, Kitten relies on the Linux

bootstrapping code, it directly takes advantage of the Linux

device drivers, but it implements most of the HPC sensi-

tive kernel services independently. It also features a virtual

machine monitor via Palacios [17] that allows full-featured

guest OSs to be deployed along the lightweight kernel. Con-

trary to McKernel, Kitten requires a set of patches to be

carried over to newer Linux kernel versions.

Another approach to lightweight kernels is to start with

Linux, but apply heavy modifications to meet HPC require-

ments ensuring low noise, scalability and predictable appli-

cation performance. Cray’s Extreme Scale Linux [18] and

ZeptoOS [19] follow this approach. Techniques, such as elim-

inating daemon processes, simplifying the scheduler or re-

placing the memory management system are often applied.

There are primarily two problems with this approach. First,

the heavy modifications occasionally break Linux compati-

bility, which is not desirable. Second, because HPC tends

to follow (or rather dictate) rapid hardware changes that

need to be reflected in kernel code, Linux often falls behind

with the necessary updates which results in difficulties for

maintaining Linux patches. In contrast, IHK/McKernel is

trying to embrace the bests of both worlds aiming at full

Linux compatibility without sacrificing LWK performance.

4.3 Hybrid Kernels for HPC

FusedOS [20] was the first proposal to combine Linux

with an LWK. It’s primary objective was addressing core

heterogeneity between system and application cores and at

the same time providing a standard operating environment.

Contrary to McKernel, FusedOS runs the LWK at user level.

In the FusedOS prototype, the kernel code on the applica-

tion core is simply a stub that offloads system calls to a cor-

responding user-level proxy process called CL. The proxy

process itself is similar to that in IHK/McKernel, but in

FusedOS the entire LWK is implemented within the CL pro-

cess on Linux. The FusedOS work was the first to demon-

strate that Linux noise can be isolated to the Linux cores

and avoid interference with the HPC application running

on the LWK cores. This property has been one of the main

driver for the IHK/McKernel model.

Argo [21] is one of the DOE OS/R project targeted at ap-

plications with complex workflows. They envision using OS

and runtime specialization inside the compute node relying

on containers. In Argo’s architecture, each node may con-

tain a heterogeneous set of compute resources, a hierarchy

of memory types with different performance (bandwidth, la-

tency) and power characteristics. Given such a node archi-

tecture, Argo expects to use a ServiceOS like Linux to boot

the node and run management services. It then expects to

run different ComputeOS containers that cater to the spe-

cific needs of the application.

Hobbes [22] is another DOE founded Operating System

and Runtime (OS/R) framework for extreme-scale systems.

The central theme of the Hobbes design is to explicitly sup-

port application composition, which is emerging as a key ap-

proach for applications to address scalability and power con-

cerns anticipated with coming extreme-scale architectures.

Hobbes makes use of virtualization technologies to provide

the flexibility to support requirements of application com-

ponents for different node-level operating systems and run-

times. At the bottom of the software stack, Hobbes relies on

Kitten [16] as its LWK component, on top of which Palacios

[17] is in charge to serve as a virtual machine monitor. Con-

trary to Hobbes, IHK/McKernel currently does not consider

utilizing virtualization technology.

Finally, the project which resembles IHK/McKernel the

most is Intel’s mOS [23]. mOS also explicitly partitions CPU

cores and physical memory and assigns part of the resources

to Linux, while the rest is utilized by an HPC LWK. Al-

though mOS and McKernel has very similar goals, the main

difference is in their system call offloading mechanism. Un-

like relying on a low level messaging layer such as IKC in

IHK/McKernel’s, mOS’ LWK retains Linux compatibility at

the kernel data structures level and migrates threads to the

Linux partition when system call offloading if performed.

5. Conclusion

Operating system design for next-generation supercom-

puter faces challenges which are produced by the changes in

the environment, i.e., many-core will be used and the Linux-

compatible environment should be provided. We have been

investigating and developing a design of a hybrid Linux plus

LWK approach, called McKernel, to deal with those chal-

lenges, and detailed the approaches in this paper. In sum-

mary, the compact nature of LWK makes it easy to exploit

change in memory hierarchy and facilitates creating appli-

cation specific kernels, and LWK plus Linux hybrid model

makes it easy to provide Linux compatible environment and

reducing the cost of tracking Linux kernel changes and del-

egating OS services is effective in reducing cache pollution

and OS noises.

The progress of McKernel development is reported briefly.
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The implementation of system calls is validated using Linux

Test Project (LTP) test programs and gdb test suite. Sys-

tem call part of LTP which has 1013 tests are used and all

but one tests passes. “ gdb.base”part of gdb tests which

has 312 tests are used and 216 tests pass so far.
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