ユビキタス環境における
ユーザ情報を利用した資源利用調停方式の提案

一瓢 達也 † 縄木 良太 †† 島田 秀輝 † 小坂 隆浩 † 佐藤 健哉 ††
† 同志社大学工学部情報システムデザイン学科 †† 同志社大学大学院工学研究科情報工学専攻

1 はじめに

昨今の家電機器の普及に伴い、ユーザ1人あたりの家電機器数は増加し、ユーザはより柔軟かつ快適な居住環境を享受できるようになった。しかし現在においても、公共空間では、家庭をはじめとするプライベートな空間と比較して、ユーザ1人あたりの家電機器数が少なく、複数のユーザで家電機器の共有を強いる場面が存在する。こうした複数のユーザで家電機器を共有する環境においては、ユーザひとりひとりの要求は、家電機器に反映されにくいという問題がある。

そこで本稿では、これら家電機器を資源と定義し、公共空間において、ユーザの要求を反映させることで、資源を効率的に共有するためのシステムを提案する。提案システムはユビキタス環境においての運用を前提とするが、このユビキタス環境とは、ユーザが無意識のうちにコンピュータを制御できるような環境を示す。

2 資源利用調停

2.1 スマート環境の現状

ユーザによる操作を介さず、適切な動作を行う機器として、オートメーション機器がある。これより本稿で実現されたユーザ情報に基づいて、自動的にユーザの要求を満たす動作を実現するものである。ユーザ情報とは、機器の制御内容の決定基準となる、ユーザ自身の嗜好や特性を指す。例えば、空調機器に必要となるユーザ情報は、ユーザが好む温度、湿度などの情報となる。

このオートメーション機器の現状に伴って、スマート環境の開発も顕在化している [1]。スマート環境とは、空間内のセンサと各ホームオートメーション機器が連携し、空間単位でユーザによって快適な環境を自動的に構築する仕組みを指す。

しかし、このスマート環境は、いずれも個人や家庭など、公共空間に比べると小規模かつユーザを限定したものである。不特定多数のユーザ情報をオートメーション機器に反映させる仕組みが現状不存在しない。

2.2 資源利用調停の必要性

前述の問題を解決するための仕組みとして、資源利用調停を提案する。資源利用調停とは、複数のユーザが資源共有する場面で、ユーザ同士の資源に対する要求が衝突した場合に、どの要求を優先させるかを決定することである。つまり本稿での調停とは、多様な要求を持つ複数のユーザの仲介を行うことを指す。

具体的には、駅や病院などの待合室において、複数のユーザが1台のテレビを視聴している場合に、待合室にいるユーザ全体の満足度が得られるだけ高くなる番組を、自動的に決定するような仕組みである。

3 ユーザ情報を考慮した資源利用調停の提案

本システムの概要を図1に示す。まずユーザは、前もって個人のユーザ情報を各の携帯端末に登録しておく。

任意の公共空間内へのユーザの立ち入りが確保されると、公共空間の資源を管理するサーバは、ユーザの持つ携帯端末に対して、ユーザ情報の送信を要求する。

携帯端末はユーザ情報をサーバに返信し、サーバは受け取ったユーザ情報を、各資源用制御内容の決定に用いる。

制御内容を決定したサーバは、それにに基づき各資源を制御する。公共空間内のユーザの出入口が確認されると、遅れたユーザのユーザ情報を削除し、制御内容を決定を行い、この繰り返しにより、公共空間は動的にユーザ情報が反映される環境を提供し続けることができる。

本システムでは、不特定多数のユーザが利用する公共空間での運用が可能である他、ユーザ情報の登録
4 評価実験

4.1 実験
本稿では、公共空間のテレビ、および鉄道の液晶広告の広告内容決定を想定したシュミュレーションを行う。番組内容や、広告内容の決定に用いるユーザ情報は、各ユーザの視聴履歴、広告ジャンルそれぞれに関する興味の度合いである。ユーザは各ジャンルに対する興味の度合に応じて、1から5までの評価値を持つ。評価値を持ち、空間内のできる限り多くのユーザが興味を持つ番組や広告を放送、表示する。

4.2 評価

4.2.1 評価方法
評価にあたって、一定のないユーザ情報の持つ500名のユーザの公共空間への出入りを想定したシナリオを用意した。

シュミュレーションの初期状態では50名が公共空間内に存在する。その後ユーザがランダムに出入りを行うが、公共空間への立ち入り、公共空間からの退出、合計450回行われる。したがって、公共空間内に存在するユーザの組み合わせのパターンは、初期状態も含め451個となる。

451個のパターンすべてにおいて、空間内のユーザのユーザ情報が、正しく最終的な制御に反映されているかを評価した。システムを利用した場合と、そうでない場合で比較を行う。

4.2.2 テレビ番組内容決定システムの評価
テレビ番組については、放送されている番組内容に満足しているユーザの割合を計測する。任意のユーザのユーザ情報の番組ジャンル別の評価値で、4あるいは5の値の評価値を持つジャンルの番組、そのユーザの満足を得られる番組であるものとする。システム運用時と番組内容をランダムに決定した場合で比較を行った。

結果を図2に示す。図2の縦軸は、ユーザの割合（満足しているユーザ数／全ユーザ数）、横軸はユーザの出入り回数（空間内のユーザの出入りの回数）を示す。結果から、番組内容をランダムに決定した場合は、満足しているユーザの割合はばらつきが見られるが、システムを利用した場合は、6割から8割程度のユーザの満足を、常に得られていることがわかる。

4.2.3 広告内容決定システムの評価
広告内容の決定については、表示された全広告のうち、広告効果があった広告の割合により評価する。
ユーザ情報の広告ジャンル別の評価値で、1と2の値を持つジャンルの広告は、そのユーザに対して広告効果がなく、それ以外の広告には広告効果があるものとする。

システム適用時と、全てのジャンルの広告を偏らずに表示した場合とで比較を行う。結果を図3に示す。グラフにまとめた、ジャンルの縦軸は広告効果（広告効果のあった広告数／ユーザ視聴広告数）、横軸はユーザの入力回数で示す。

システム適用時の方が、広告効果がなかった広告の割合が低まっている。

図2：テレビ番組内容に満たないユーザの割合
図3：販売促進効果がある足したユーザの割合

5 まとめ
実験の結果、本システムの利用によって、公共空間内の資源をより効率的と共有できることがわかった。
さらに本システムを活用させ、ユーザのblogからユーザ情報を取り得る情報を自動的に発行するなど、ユーザ情報の登録更新も自動化すれば、より簡易かつ柔軟にユーザ情報を資源制御に反映できる。
一方で、システム導入に際する問題としては、資源提供側、資源利用側双方で導入コストが必要となる点や、ユーザ情報の管理への懸念が考えられる。また一部流動性や病院など、電波通信が禁止された公共空間における、携帯端末とユーザの接続方法を考える必要がある。

新たな運用方法の模索、ユーザ満足度の更なる向上、そして問題点の解決が今後の課題である。

参考文献

Copyright © 2010 Information Processing Society of Japan. All Rights Reserved.