ユーザ参加型無線LAN位置測定システムにおける
アクセススポイント移設の検出法

藤木 慎太郎†
東京大学大学院 工学系研究科 電気系工学専攻

相田 仁††
東京大学大学院 工学系研究科 電気系工学専攻

1 はじめに

近年、laptopPCやPDAに限らず、携帯電話や携帯ゲー
ム機にまで無線LANが搭載されるようになり、また同
じに、無線LANのアクセスポイント（以下、AP）爆発的
に増加し、より多くの場所においてワイヤレスインター
ネットに接続できる時代になっている。それらによっ
て、携帯電話を持つ人が当たり前に様々な無線LANサービス
を受けながら行動することとして、携帯電話を使うこと自体
も携帯電話サービスとして利用されることが増えてきてい
る。特に、携帯電話利用者は、さまざまな際に位置情報
を利用することが一般的である。ここでは、携帯電話利用
者の利用位置情報（遅延時間）を用いる位置測定の方法を
提案する。これにより、新しい位置情報システムの開発が
期待される。

2 現状の問題点

しかし、ここではユーザの行動を考慮した、精度
の問題がある。無線LANのAP数が少ない地域では、
1つあるいは2つといった少ないAPからの電波を用いて
端末の位置を推定するためにはならないようにして
精度が落ちてしまう。また、誤差1m程度の精度の高い
位置測定を行うのに数のAPが存在する場合としても、
データベースにおけるそれらの電波情報が関連していたら
正確に位置測定を行うことができない。具体的には、ユーザー
が地域内の自分の位置を示す自分の位置に近づいてい
た位置として設定してデータベースに登録してしまった
場合や、APが消滅・移動した場合などである。この点に
関し、PlaceEngine[1]ではいくつかの対策を取っている。
しかし、実際には、APが密な都市部においても精度
が10mよりも悪くなることがしばしばある。PlaceEngine
は多くの地区検索サイトで採用されており、10万を超える
AP情報がデータベースに登録されているにも関わらずで
ある。本稿では、その原因の1つである、電波のマルチパス・
見出し外伝搬の影響を考慮にいれた計測を、位置測定
の原理まで俯瞰して進めていきたい。なお、本稿では、
端末周辺にAPが密集していて、感知可能なAPが4個以
上ある場合を想定している。

参考までにPlaceEngineにおける、AP移設に対する
方策を述べる。まず、ユーザが電波情報を探取して、そ
の時に現在地を正しいアプロードする際の、電波情報
がアプロードされる前のあるAPの推定位置を
pos(AP_j)とし、アプロードされた後のAPの推定位置を
pos(AP_j')とする。このとき、次の式で詳しく述べるが、
電波強度は距離の(2 +1)乗の比に反比例することよ
り、APのID（MACアドレス）と電信信号強度値から距
離の制約条件を付けることができる。そして、もし、その

A method for detecting the movement of APs on user
collaborative WiFi location systems
† Shintaro Fujiki
Department of Electrical and Information Systems, Graduate
School of Engineering, The University of Tokyo
†† Hitoshi Aida
Department of Electrical and Information Systems, Graduate
School of Engineering, The University of Tokyo

Copyright © 2010 Information Processing Society of Japan.
All Rights Reserved.
距離の制約条件を満たさなかった場合は、その電流情報には信頼性がありませんとし、

\[\text{pos}(AP_i) = t \times \text{pos}(AP_i) + (1 - t) \times \text{pos}(AP_i)' \]

(0 < t < 1) というようにして位置情報更新する。ここでの pos(\(AP_i\)) は制約条件を満たさない場合の位置情報であり、\(t\) は制約条件を満たすための重みを示す。\(t\)が0に隠れないほど制約条件を満たす優先度で、\(t\)が0に近いほどこれを信頼するものである。

3 提案手法

その後、従来のユーザ参加型設定方法への加え位置指定システムで用いられている手法を加えて、次の2つの独自の精度改善手法を提案したい。

3.1 データベース登録の方法

APからの距離 \(r\) と電流強度 \(S\) の関係は、真空中では \(S\) は \(r\) の2乗に反比例する。しかし、実際の環境においてはマルチパスやフェーリングの影響があるために、\(S\) は \(r\) の \((2 + \alpha)\) 乘 \([\alpha > 0]\) に反比例する。\(\alpha\) は多遅れの影響を示すもので、\(\alpha\)を0に近い値に設定することで、信頼性を向上させることが可能である。\(\alpha\)の値が大きいほど、より正確な位置情報が得られる。

4 まとめ

従来の手法では、千葉県柏市にAPを設置した場合、APの位置を検出することができるなかったが、第3.2節の方法を用いることで可能になった。また、第3.1節において述べた \(\alpha\) の値を考慮することで、研究室内のAPの影響を考慮した場所に応じたAPと、比較的周囲の開けた屋外においても、多遅れの影響を考慮したAプロックの設定が可能である。

参考文献
