潜在的意味索引付けとルールを統合した顔注釈システムについて

川井 優司† 伊藤 秀昭† 奥木 大和†
中京大学†

1. はじめに

印象的或是一般的検索方法の開発が求められている。印象的？は画像から受ける印象を表現する単語である。例えば、画像データベースにおいて、感性に基づく画像検索を実現するためには印象的検索を含む検索が必要である[4]。また、この機能を実現するためには、事前に画像に印象が与付されている必要がある。

我々の研究では、顔画像に対してキーワードを付与する顔注釈付けシステムの開発を行ってきた[2][3]。このシステムでは潜在的意味索引付けの役で、顔の潜在的意味空間を構成する[3]。潜在的意味空間を用いて顔に付与するキーワードを得る。しかし、この方法は得られるキーワードの数が少なく、精度、再現性が高いわけではない。連想的規則と懸念木の使用の方法と統合することによって得られるキーワードの数を増加させ、精度、再現性を向上できるとした。本論文では潜在的意味索引付けとルールを統合した顔注釈システムと、その実験結果について述べる。

2. 顔記述

個々の顔記述は、顔像、顔像の視覚的特徴、キーワードの3つから成る。視覚的特徴は、顔像の顔部の大きさや長さに相当する24個の顔部の距離を測定した数値で表わされている。キーワードは顔部の印象的な大きさや長さを表す印象語である。例えば、大きい目、小さい口、長い髪など子供、約2400の顔像に対し顔部の距離を計測して、顔像を付与し、顔像として14種のキーワードを得ている。

視覚的特徴とキーワードを用いて個々の顔を表現する顔記述ベクトル[3]を構成する。顔記述ベクトルの集まりは顔記述行となる。

3. 潜在的意味空間

顔記述行に潜在的意味索引付けを用いて潜在的意味空間を構成する。本研究では3つの異なる潜在的意味空間を構成している。それぞれ視覚的特徴と顔から成る視覚空間、顔と視覚的およびキーワードから成る統合空間、顔とキーワードから成る記号空間である。潜在的意味空間を用いて顔にキーワードを付与するには、付与対象となる顔を用いて空間に対して重心検索[2]と呼ぶ問い合わせ処理をする。最初に、重視検索では視覚空間で問い合わせの顔を用いて空間に対して記号空間は問い合わせ処理を行うキーワードを得る。最後に、得られたキーワードを用いて記号空間で問い合わせ処理を行う。記号空間を用いて問い合わせ処理を行うことで、顔に対してキーワード間の共起関係を反映するキーワードの付与を行うことができる。以下に統合空間、記号空間の重複検索で得られたキーワードの例を示す。

統合空間で得られたキーワードの例

大きい顔、大きい耳、大きい鼻
記号空間で得られたキーワードの例

大きい顔、大きい耳、大きい鼻、大きい口
記号空間で問い合わせ処理により、統合空間で得られたキーワードと関連するキーワード“大きい口”が得られた。

4. 連想規則

顔記述を用いて連想規則[5]を構成した。支持度はAB、確信度はCDを表わし、Aは1または2または同時に付与されているキーワードの組の数、Bは訓練集合の顔の数、Cは条件部および結論部のキーワードが付与されている顔の数の和、Dは条件部のキーワードが付与されている顔の数である。

以下に構成されたルールの例を示す。

訓練規則で得られたルールの例

大きい鼻、大きい口 → 大きい顔
確信度45.7% 支持度18.5%

5. 決定木

顔記述の視覚的特徴を用いて決定木を構築するために、視覚的特徴の数値を離散化した。離散化では分割点を定めて、高位を高、低位をsmall,それ以外をmiddleと呼べるよう数値を記号化する。離散化した視覚的特徴を用いて決定木を構築する。なお、決定木の構築には情報利得[5]および誤り率を利用する。誤り率はA/Rと表され、Aは木のノードに含まれるキーワードを付与されていない顔の数、Rは木のノードに含まれる顔の総数である。

事前に誤り率をしきい値として指定して、木のすべてのノードの誤り率がしきい値以下になるまで木の成長を進める。

決定木の葉がキーワードを付与するクラスに相当する場合、木の根からその葉までの視覚的特徴の組み合わせをルールとして得る。以下に構成されたルールの例を示す。

キーワード“長い鼻”の決定木から構成されたルールの例

（鼻の幅の長さ,large）∧（口の横の長さ,large）∧（鼻の横の長さ,small）∧（下顎の厚さ,middle）

ルールの視覚的特徴の組み合わせを完全に満たす顔には、キーワードを付与する。

6. 潜在的意味索引付けとルールの統合

[3]では第3節で述べた潜在的意味空間のみを用いて顔

A Face Annotation System based on Integration of Latent Semantic Spaces and Rules.
† Yuji Kawai, Hideaki Isao, Hironayu Koshimizu: Graduate School of Computer and Cognitive Sciences, Chukyo University
にキーワードを付与していた。この方法では、得られるキーワードの数が少なく再現率が低い。
これに解決するためには第 4 節および第 5 節で述べた連想規則および決定木から得られるルールを従来の方法に
統合することで精度、再現率が向上できると考える。連想規則を潜在的意味空間から得られたキーワードに適用し
てキーワードを展開する。大量のキーワードを人間が確認
することは労力を要するので、展開されたキーワードの
出力順位を決定木のルールを用いて変更する。訓練集合
の離記述に付与されているキーワードの平均個数が 8.77
個であるので、得られたキーワードの内、上位 9 個を得
られるキーワードとする。図 1 にこの顕注注射方法の
流れを示す。

図 1. システムの処理の流れ

潜在的意味空間では問い合わせペクトルとキーワード
ペクトルの余弦類似度を、決定木とは決定木の正当率
を問い合わせに対するキーワードの類似度とする。正当
率は「1 — 得られているルールの確率の最大値」とし
た。連想規則は、連想規則の条件部に含まれるキーワー
ドの類似度の内、最大の類似度に適用する連想規則の確
信度を算出して類似度とする。
キーワードの妥当性を考慮するために、決定木を用い
て出力順位を変更する。つまり問い合わせの顕に対して
決定木から得られるルールを適用してキーワードを得る。
次に、連想規則によって展開されたキーワードと決定木
のルールから得られたキーワードとを比較する。もし同
一のキーワードが双方に含まれていた場合、キーワード
の類似度を比較して高いほうをキーワードの類似度とし
て、上位に出力する。

7. 実験
問い合わせ実験には 30 件の顕画像を用いた。なお、実
験に用いた顕画像には評価のために、事前にキーワード
を付与している。
実験に用いた方法は I から V の 5 つの方法である。

I. 潜在的意味空間のみの利用

II. 潜在的意味空間で得られたキーワードを連想規則
のルールを用いて展開する方法

III. 決定木のみの利用

IV. 決定木のルールから得られたキーワードを連想規則
のルールを用いて展開する方法

V. 潜在的意味空間、連想規則、決定木を用いた方法
（上位 9 個のキーワード）

I は [3] で用いている方法である。V は第 6 節で提案した
方法である。II は潜在的意味空間で得られたキーワード
に連想規則を適用してキーワードを展開した方法である。
III は決定木のルールを用いてキーワードを得る方法である。
IV は決定木のルールから得られたキーワードに連想規則
を適用してキーワードを展開した方法である。

I から V のそれぞれの方法で得られるキーワードの精
度、再現率を調べた。精度は A/B、再現率は A/C と表わさ
れ、ここで A は事前に顕に対したキーワードと一致
する問い合わせで得られたキーワードの数、B は問い合わせ
で得られたキーワードの数、C は事前に顕に対したキーワード
の数である。

潜在的意味空間の状況を定めるために特異値の累積寄
与率を用いた。特異値の累積寄与率が 88% を越えた状況
を用いる。問い合わせペクトルと空間の要素である顕イ
ーメージとキーワードのペクトルとの類似度を計算するた
めに正しい値は視覚空間では 10°、統合空間では 80°、
記号空間では 70° である。連想規則に用いる支持度、確
信度の小さい値はそれぞれ 10°、40°である。決定木に用
いる誤りの多い値は 20°である。実験結果を図 2 に、
平均精度、平均再現率を表 1 に示す。

図 2. 精度、再現率

表 1. 平均精度、平均再現率

<table>
<thead>
<tr>
<th>方法</th>
<th>平均精度</th>
<th>平均再現率</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 1</td>
<td>0.92</td>
<td>0.03</td>
</tr>
<tr>
<td>II 1</td>
<td>0.93</td>
<td>0.02</td>
</tr>
<tr>
<td>III 1</td>
<td>0.90</td>
<td>0.03</td>
</tr>
<tr>
<td>IV 1</td>
<td>0.93</td>
<td>0.02</td>
</tr>
<tr>
<td>V 1</td>
<td>0.93</td>
<td>0.03</td>
</tr>
</tbody>
</table>

II の方法および V の方法が精度、再現率が高い。この
ことから、潜在的意味空間で得られたキーワードに連想
規則を適用してキーワードを展開する方法は顕注射に有
効であると思われる。

8. まとめ
本論文では潜在的意味空間とルールを統合した顕
注射システムと、その実験結果について述べた。今後の
課題は V の方法における類似度の変更方法を改良して、
さらに精度、再現率を向上することである。

謝辞
本システムで用いた顕画像データは (財) ソフトビュージャ
パン研究開発グループ地域組合型共同研究推進室から使用
許諾を受けたものです。

参考文献