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Abstract

The demand for faster image processing is increasing in
such a way that it makes parallel processing necessary.

There is a great variety of computer graphic algorithms
which can be utilized in parallel processor environments.
In this work, we use volume visualization algorithms, and
implement them on the VC-1, a loosely-coupled array of
general-purpose processors with a conflict-free multiport
frame buffer, being developed at the Kunii laboratory
of the Computer Science Department, The University of
Tokyo.

Distribution of the tasks and the locality of the informa-
tions among the processors will be the main issue of this
study, while at the same time we evaluate the performance
of this new architecture.

1 Introduction

Many scientific fields produce 3-dimensional array of data
composed of many two-dimensional ones when analyzing
volumetric objects, as in the Computed Tomography. It
is required some training as it is difficult to visualize the
three-dimensional structure by just looking at the sev-
eral two-dimensional pieces (slices) of information. Taking
medical application as an example, rendering the surfaces
in a computer aids physicians to have a better idea of what
is inside the body of patients, and thus can facilitate more
accurate diagnosis.

There are several algorithms which have been used for
the visualization of three dimensional data. Our objective
is to take some of these algorithms and implement them
on a multiprocessor environment, observing and taking as
much advantage as possible of the characteristics of the
machine architecture being used.

The algorithms used here are the Marching Cubes , vol-
ume rendering and slice planes method, to recreate and
visualize the surfaces of interest from 3D medical data. In
the near future, we plan to study other related algorithms.

The multiprocessor environment is the VC-1, a loosely-
coupled array of general-purpose processors with a
conflict-free multiport frame buffer.

2 The VC-1

VC-1 [6] is a loosely-coupled multiprocessor with a novel
frame buffer subsystem called Conflict-Free Multiport

Frame Buffer (CFMFB) which enables every processor to
write any region of the screen without access conflicts.
Fig. 1 illustrates the overall organization of the VC-1.
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Figure 1: VC-1

Each processor element contains tlie Intel i860 at
40MHz with 8-Mbyte of local memory. The processors
are interconnected in 2D-torus topology by point-to-point
communication links with bandwidth of 2 Mbytes/sec

each.

The CFMFB consists of local frame buffers (LFB’s), a
pipelined image merger (PIM), and a global frame buffer
(GFB). The LFB exists for each processor and holds the
sub-image (including Z-values) created by the correspond- -
ing processor. By using a method similar to the virtual
memory technique, the LFB virtually holds the pixel infor-
mation of the entire screen. The PIM periodically super-
imposes the sub-images stored in the LFB’s and transfers
the merged picture-to the GFB. There is no communica-
tion overhead, as the transference is done automatically
by the hardware. The Z-values are taken into account
when the images are merged. The GFB holds the pixel
information (including Z-values) of the entire screen.

The GFB is also provided with an accumulation buffer
[3] for anti-aliasing.

3 Algorithms Description

3.1 Marching Cubes

The Marching cubes method [4] tries to estimate how the
surface of interest intersects a cube formed by 8 neigh-
bor points, where a group of 4 points is taken from one
slice plane and other group of 4 points is taken from the
neighbor slice, analyzing the density of the cube vertices.
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There are 256 ways a surface can intersect a cube. How-
ever, considering its symmetry these 256 cases reduces to
14 cases, which can be easily pre-calculated and used in a
look up table during the execution of the algorithm. Note
that the cube can be intersected by more than one surface
at a time. Once the intersection points are determined,
one or more triangle planes can be drawn with each hav-
ing its corresponding surface normal, which will be used
later for shading the image.

3.2 Volume Rendering

Volume rendering [2] is a term to represent the process of
showing a volumetric image without using an intermediate
model, i.e., the volumetric image is obtained directly from
the volume data. There are several algorithms for volume
rendering, most of them derived from ray casting. The
following is suitable for the hardware we use, due to PIM.

Let’s consider a volumetric data, where the points of
this data are represented by the pair density C (or color)
value and the degree of translucency, o, where & = 0
means a complete transparent and @ = 1 means a com-
plete opaque material.

For a given viewline that crosses several elements, the
observer would have the following view:

V = Cy + ao(Cy + a1(Ca + az(C3 + a3(Ca+...)))

A higher index indicates the element is in a deeper po-
sition in the scene. This operation can be executed in
hardware in the VC-1, through the PIM and the accumu-
lation buffer.

3.3 Slice Planes

Once the volume is processed and defined, it is often de-
sirable to remove sections or certain regions of the volume
for visualization of its internal parts. The Slice planes
method is one of the methods of volume visualization.
The removed volume can be simple geometric shapes, de-
fined by planes or halfplanes, or regions computed from
other volumes.

4 Paralellization of Algorithms

In order to reconstruct surfaces of interest from the 3-
dimensional data, we can divide the work in two phases:
the processing of the slices (2-dimensional data pieces)
and the processing of the images to be shown.

There are two ways to distribute the work among the
processors: data parallel or function parallel. In the VC-1
the processors are homogeneous, so there is no reason to
assign a specific task to any of them. We intend to work
mainly over the data parallel approach, considering that
all the processors will execute the same program codes.

The way data is distributed over the processors is im-
portant because it will define the load balancing of the
system.

There are several ways data can be distributed among
the processors: line distribution, block distribution, inter-
leaved distribution, etc. In a generated image, normally

tuere is not a uniform distribution of the objects on the
screen. There are parts which require a few or no com-
putation to obtain the image, while there are others that
require heavy computation to be done. The best load
distribution could be done subdividing finely the volume-
(interleaving)[l, 5]. However, this would increase com-
munication among the processor and duplicate informa-
tions unnecessarily, because volume data locating at block
boundary is duplicated to more than one processor.

There are no restrictions for the division of the image
among the processors in the VC-1, as they have an LFB
that can hold pieces of the image located anywhere in the
whole screen. As the LFB holds up to 1/4 of the total
screen frame precaution is necessary to avoid overflow,
but this situation is easily solved, with swap of the LFB
and download of the LFB to the GFB. '

5 Summary

The VC-1 is being developed in our laboratory and it is
not yet ready to be used. We can just speculate about its
expected performance. Here we just described in general
lines how we intend to proceed to parallelize algorithms
on the VC-1. The architecture of the VC-1 does not im-
pose any predetermined distribution of the tasks or the
data among the processors, making the distribution very
flexible.
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