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1 Introduction

The calculation of intersection curves between surfaces is
one of the major current challenges in computer aided de-
sign. A class of design system called a solid or geometric
modeler, which uses a unified data structure, is increas-
ingly acquiring the capability to represent objects with
sculptured or free-form surfaces. Subsequently, the inter-
section problem becomes difficult when such surfaces are
involved. The requirements are that such surface intersec-
tion calculations be robust, accurate and fast. This paper
will concentrate on the intersection of a general paramet-
ric curve with a special quadratic surface type, that of
the natural quadrics, i.e. sphere, cylinder and cone. The
method that we propose consists of two stages. The first is
to get rough intersecting points which are used as starting
points for the second step. These points are then refined
by our geometric intersection method, known hereafter as
the Geometric Newton-Raphson algorithm. The starting
points are calculated using a sub-division technique.

2 Current techniques used

The following techniques are used in calculating inter-
sections in CAD:

Algebraic approach Solve algebraic equations based on
the curve and surface.

Iterative/numerical techniques Find the intersections
by using an iterative method like recursive subdivi-
sion.

Geometric methods Calculate the intersections based
on the geometric relationship between the curve and
the surface.

The main idea in the Algebraic approach in computing

the intersection of a curve and a surface is to solve by an-

alytic techniques the real roots of a rational polynomial
representing the curve and the surface (as in the Elim-
ination method proposed by Sederberg). This approach
is effective as analysts have developed efficient algorithms
to solve the equation if the degree is low [1], but usually
there is a quick growth in the degree of the resultant poly-
nomial when free-form surfaces are involved. Efficient al-
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gorithms have been developed to solve intersections with
Steiner patches [2], but the patches themselves lack good
representation.

Iterative techniques are based on the divide and con-
quer concept, and they are useful when Bézier or B-spline
curve formats are used. These techniques are accurate
[4], but there are problems with touch point cases and ex-
tensive computations. It is also easy to miss intersection
points [5]. An extension of the elimination method men-
tioned above has been proposed by Chandru and Kochar,
which uses analytic techniques in conjunction with nu-
merical techniques known as a semi-analytic approach,
but that idea is not yet developed [6].

The Geometric approach has major advantages over
the above methods. This method consists of giving a sur-
face a special type code plus type dependent variables [3].
Numerical errors are minimized and small changes in data
induce equally small changes in the location of points.
The problems with this method are increased amounts
of code for special case handling and different algorithms
for different surface types. The method that we propose
solves the problem of requiring different code for different
surfaces by using a tangent plane of the surface concerned,
so that the method can be used universally.

3 The Geometric Newton-Raphson
Algorithm

Our Geometric Newton-Raphson algorithm is based on
an enhanced form of the general geometric approach. We
first calculate rough intersecting points between the curve
and the surface, and then we try to converge those points
into accurate intersection points using the geometric in-
formation of the curve and surface. All starting points
between the intersecting curve and the quadric surface
are calculated using a recursive subdivision method as
follows:

1. A rough bounding box defined by the control points
of the intersecting curve is checked for intersection
with the surface. If no intersection, then exit.

2. If an extended line defined from the end points of the
curve intersects the quadric surface, that intersection

point(s) becomes a new starting point, and exit.

3. If it does not intersect, the curve is split into two
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pieces at a parameter value ¢t = 0.5, and each piece
is defined in terms of a new smaller polygon whose
points lie closer to the surface. The splitting of the
curve is achieved by using the de Casteljau algorithm.
For each of the split curves, go to step 1.

Once all the initial starting points are calculated, call
the Geometric Newton-Raphson method to converge the
points. The algorithm is as follows:

1. Get a starting point parameter t, from the above

method.

2. Calculate the point on the intersection curve C(to)
and the derivative vector of the curve C'(fo) at the
specified parameter t,. (See fig. 1).

3. Project C(t,) onto the quadric surface, and get the
projected point on the surface Q. Q is the nearest
point on the surface from the point C(%o).

4. If the distance between C(ty) and Q is below a speci-
fied tolerance , C(#g) is an accurate intersection point,
and exit.

5. Get the intersection point between the tangent plane
which passes Q and the tangent line which passes
C(tp). Call this point T

6. T=C(to) = At-C'(t,) therefore by multiplying (T —
C(to)+C'(to)) to both sides, we get a scaler equation.
By solving we get At.

7. Set the new t, to to + Af, and go to step 2.
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fig 1. The Geometric Newton Raphson algox;ithm converging.

This algorithm works efficiently as little time is spent in
calculating the initial starting points, and the Geometric
Newton-Raphson method converges quickly to an accu-
rate intersection point. The algorithm is robust because
enough initial points are generated to obtain all intersec-
tion points. Also the equation got in step 6 is very stable
as it is a function of one variable. Touch point cases are
taken care of by using a bounding box for the intersect-
ing curve segment and also for the quadric surface. The
disadvantage of this is that more starting points than nec-
essary are generated but its advantage is that no points
will be missed, and also the number of iterations is low.

A special form of this algorithm which is used in planar

surface intersections can be seen in [7]
Figures 2 and 3 show examples of an intersection curve
and a cone. The intersection points are marked.

fig 2. Intersection of a rational Bézier curve and a cone.

fig 3. Intersection of a rational Bézier curve and a cone.

The weight at some control points has been changed.

4 Conclusion

A geometric method to find the intersections between
a curve and the natural quadrics is presented. We show
how all intersection points can be accurately found with
reasonable computing effort. The main advantages of this
method include its reliability and speed in finding accu-
rate intersecting points. This method is implemented as
part of the set operations in the solid modeler DESIGN-
BASE, developed at the Ricoh Software Research Center.

References

[1] Sederberg T.W., “Implicit and parametric curves and surfaces
for computer aided geometric design”, Ph.D. thesis, Purdue
Univ., 1983.

[2] Sederberg T.W., “Steiner Surface Patches”, IEEE Computer
Graphics and Applications, Vol. 5, No. 5, May 1985, pp. 23-36.

[3] Miller, J. R. “Geometric Approaches to Nonplanar Quadric Sur-
face Intersection Curves” ACM Transaction on Graphics, Vol. 6,
No. 4, October 1987, pages 274-307.

[4] Barnhill R.E. and Farin G. and Jordan M. and Piper B.R., “Sur-
face/surface intersection”, Computer-Aided Geometric Design,
Vol. 4, No. 1, 1987, pp. 3-16.

{5] Trimmer H. G., “Analytic background for computation of surface
intersections”, Douglas Aircraft Technical Memo ,April 1977.

[6] Chandru V. and Kochar B. S., “Analytic Techniques for Geo-
metric Intersection Problems”, Geometric Modeling:Algorithms
and New Trends, 1987.

[7] Fujisawa N. and Takamura T., "{EE OWRK D B i ik & LE D
THEEFE FRUEF2E 390 ELEKRS, 1989.

[8] Chiyokura H., “Solid Modeling with DESIGNBASE”, Addison-
Wesley, 1988.



