
Tree structure design for Connect6 opening

Jung-Kuei Yang†1, Shi-Jim Yen†2, Cheng-Wei Chou†2, Jing Nie†3, Xiao Bai†3

Abstract: Since Connect6 was introduced by Wu in 2005, many high-level computer program of Connect6 have also been
developed. As the search space complexity in Connect6 is very high, computer must spend a large amount of time in searching
most promising move. Recently, Monte Carlo Tree Search (MCTS) has become a well-known game search method, and has been
successfully applied to many games. This study introduces how to design the tree structure in Connect6 opening. The opening is
basis on the Board’s position, and it is used to retrieve the relative information. In the study, Connect6 opening is a tree structure
constructed by a lot of end games, but only the nodes from the final win position of the end game to the root node are saved in
opening. The study is the first step of our research towards to build Connect6 opening. But the building is not constructed by the
domain knowledge from Connect6 experts; it constructs openings by automated process of Connect6 opening systems. In other
words, this research plan is to build Connect6 openings which are auto-generated ones by the program itself. It will combine with
our previous experience in Bitboard knowledge base design, bitwise computing, and MCTS in Connect6, and apply it to the
building of Connect6 Opening.

Keywords: Connect6, opening, tree structure

1. Introduction

 This part will introduce the background and the purpose of
the study. In this research, we want to develop a Connect6
opening which is effective for Connect6 program.

1.1 Connect6
 Since Connect6 was introduced by Wu [2][3] in 2005, many
high-level computer program of Connect6 have also been
developed [6][8]. As the search space complexity in Connect6 is
very high, computer must spend a large amount of time in
searching most promising move.
 Connect6 has two important features: numerous candidate
moves and sudden-death property. Numerous candidate moves
lead to complex search and the sudden-death characteristic
increases the search complexity. The possibility of sudden-death
should be considered in every game positioni. The player who
neglects this feature may lose the game.

1.2 The opening of Connect6
 Opening plays an important role in most intelligent game
design [4]. For Connect6, it can prevent the sudden-death in the
beginning of a Connect6 game. Therefore, it is also one of the
key factors in a computer game contest of Connect6.
 This study is the first step of our research in constructing a
Connect6 opening. The purpose of this study is to design the
structure of saving in Connect6 opening. The study is helpful to
Connect6 program, and it expects to retrieve the position saved

 †1 Dept. of Applied Foreign Languages, Lan Yang Institute of Technology, I
Lan, Taiwan

 †2 Dept. Of Computer Science and Information Engineering, National Dong
Hwa University, Taiwan

 †3 Software Engineering Department, Xiamen Institute of Software
Technology, Xiamen, China
i The position is the state of Board, and it means the arrangement of all of the
stones on a Board.

in Connect6 opening efficiently. The opening design will
combine with our previous experience in Bitboard knowledge
base design and bitwise computing in Connect6 [5][9][10][11].

1.3 Searching in Connect6
 Searching is both a method of solving problems and a means
for programs to display their intelligence. When facing complex
problems, computers must explore a vast number of states,
which requires enormous computational time. Two means of
tackling difficult problems exist in such situations. The first
approach involves applying heuristic knowledge of relevant
field to decrease the search states. This approach saves
considerable time on problem solving. Currently, heuristic
knowledge plays a significant role in branch elimination, but
only effective evaluation can correctly evaluate different game
states.

Selection Expansion Playout Backpropagation

Repeated X times

and

or

andand and

or

andand and

or

andand and

or

andand

Playout

Evaluation

Fig. 1. Outline of the MCTS algorithm edited from [1]

 The second approach involves selecting an efficient search
algorithm. An effective search method can correctly guide
search orientation and increase search efficiency. This can avoid
unnecessary time wasting and focus the search on the optimal
state space, significantly improving search performance.
Recently, Monte Carlo Tree Search (MCTS) [1][7][9] has

The 19th Game Programming Workshop 2014

- 112 -

become a well-known game search method, and has been
successfully applied to many games. Fig. 1 shows the outline of
the MCTS algorithm.

2. The Tree Structure Design
 The purpose of this study is to build the tree structure of
Connect6 opening. In this part, we introduce the basis concept
in designing the tree structure of Connect6 opening. First, we
introduce the positions in Connect6 opening. Then we define the
terminology used in the study. Next, we introduce the searching
in Connect6 opening. Finally, we introduce the tree structure.

2.1 The positions in opening

 There are two ways to model states of a Connect6 Board:
positions and Connection [5][10][11]. A position is the
arrangement of Black and White stones on Board. Fig. 2 shows
an example of positions on a Connect6 Board. A cell-array is an
array of consecutive cells, and it is a general way to record the
position of Board.
 In Connect6 Board, there are 361 cells on a 19x19 board. For
saving all states of 361 cells on Board, we need 3361 state spaces
because there are three states for every cell: Empty, Black, and
White. Fig. 2 shows one of the 3361 state spaces, and it is a
pretty big number. Therefore, it is hard to represent a state of
Connect6 Board by a variable.

1

14

1010

14

11

5 3

137

15

13

12

12

23

9

9

11

7

5

4

15

8

2

6 8

4

6

0

1

2

3

4

5

6

7

8

9

10

Fig. 2. An example of position on a Connect6 Board

 The tree structure of a Connect6 opening must rely on
positions as the index, and it can quickly retrieve the
information by the position. Therefore, the data structure design
of a position in Connect6 opening is a key point.
 In this study, the data structure of position is divided into two
parts: black string and white string. Therefore, combining black
string and white string naturally form a Board’s position. The
main reason of the design is whenever a player plays move, only
one string (black or white) changed. Take Table 1 as an example,
when White plays M4

ii, black string is stable (same as M3). Only
two stones add to white string. Therefore, when White plays
move, the only thing we have to do is changing the white string,
not the black string.
 The location for all of the stones in Board is independent of
the sequence to form it. In other words, a position is

ii M4 represents the fourth move of a Connect6 game, and it plays by White.

independent of the sequence how to form it. Therefore, before
forming white string, the stones must be ordered. Take Table 1
as an example. When White plays M4, there are four stones of
White in the Board. First, four stones must ordered based on the
index of cellsiii. Then we can form the white string; otherwise,
even if the same position, the string is different. Besides, a
position in middlegame of Connect6 may come from several
branches of the tree structure of Connect6 opening.

TABLE 1. THE NUMBER OF STONES IN DIFFERENT MOVES

MOVE PLAYER STONES BLACK STRING WHITE STRING

M1 BLACK 1 1(B1) 0

M2 WHITE 3 1(B1) 2(W1,W2)

M3 BLACK 5 3(B1,B2,B3) 2(W1,W2)

M4 WHITE 7 3(B1,B2,B3) 4(W1,W2,W3,W4)

M5 BLACK 9 5(B1,B2,B3,B4,B5) 4(W1,W2,W3,W4)

M6 WHITE 11 5(B1,B2,B3,B4,B5) 6(W1~W4,W5,W6)

M7 BLACK 13 7(B1,~B5,B6,B7) 6(W1~W4,W5,W6)

M8 WHITE 15 7(B1,~B5,B6,B7) 8(W1~W6,W7,W8)

M9 BLACK 17 9(B1,~B7,B8,B9) 8(W1~W6,W7,W8)

M10 WHITE 19 9(B1,~B7,B8,B9) 10(W1~W8,W9,W10)

2.2 Searching in Connect6 opening

 Connect6 opening is used for game search; therefore, the
study will combine the opening with our previous experience in
the searching of Connect6, and apply it to the building of
Connect6 Opening. In our previous research, we have developed
many search algorithms based on the two important features of
Connect6: numerous candidate moves and sudden-death
property, called 2-stage MCTS [7][9]. Fig. 3 shows the search
architecture of 2-stage MCTS in Connect6.

Fig. 3. Search architecture of 2-stage MCTS in Connect6

 In 2-stage MCTS, the candidate moves is generated in two
stages. The first stage focuses on Threat Space Search (TSS),
which is designed to solve the sudden-death problem. For the

iii For the index of cells on Board, please refer to [9].

The 19th Game Programming Workshop 2014

- 113 -

double-threat TSS in Connect6, 2-stage MCTS proposes an
algorithm called Iterative Threat Space Search (ITSS) which
combines general TSS with Conservative Threat Space Search
(CTSS). The second stage uses MCTS to estimate the
game-theoretic value of the initial position. This stage aims at
finding the most promising move. The experiment proved that
those search algorithms can play a good performance.

2.3 End position and win position

 In Connect6 opening, position is the basis for retrieving the
relative information. The end position is the position that a
player (Black or White) gets six or more consecutive stones. Fig.
4(a) is an end position because Black gets six consecutive stones
in M19 (marked by a red line in the figure). The win position is
the position that a player (Black or White) is not yet gets six or
more consecutive stones of its own, but can be found via the
search algorithm to find the process to reach an end position.
The search algorithm means 2-stage MCTS as discussed in “2.2

Searching in Connect6 opening”.
 According to this definition, there are many win positions
when performing backtracks from an end position. Therefore,
the win position means the final win position in this study. Take
Fig. 4(a) as an example. M19 is end position, and the other
moves of Black: M17, M15, M13, M11, M9, M7, and M5 are win
positions. But M5 is the win position in this study as shown in
Fig. 4(b).

(a) end position (b) win position

Fig. 4. (a) is an example of end position which Black gets six
consecutive stones in M19, and (b) is the win position got from (a).

 In the study, the design of Connect6 opening is based on an
end position, backtracking to the win position, and finally
backtracking to the first move. And the process forms a branch
of the tree structure in Connect6 opening. Fig. 5(a) shows the
branch based on the position of Fig. 4(a). The detail of tree
structure will be further described in the next section.
 From the above definition, win position is based on a search
algorithm; therefore, it is related to the ability of a search
algorithm. Fig. 4(b) is a win position, and it is backtracking
from the end position of Fig. 4(a). In this study, we save the win
position and all its backtracking positions until to the initial
position. And all the positions save the number of wins in Black
and White separately.

2.4 Black wins and white wins

 When construct a branch based on an end position, all the
nodes in the path from the leaf node (win position) to the root
must record the win for the win position, it can be Black or
White. When continue to construct the other branches based on
other win positions, it will produce overlapping nodes near the
root of the tree structure. For the overlapping nodes, it will not
be just one win position under the nodes. Even there are
different win positions under the node from different side (Black
or White wins). Therefore, the number of Black (or White) wins
must be recorded under those overlapping nodes.
 Fig. 5 shows the tree structure forming by two end positions
((a) is the one for Black and (b) is the other for White). In Fig.
5(a), M19 is the end position of Black. In the study, end position
is not record in Connect6 opening. The first position recorded in
opening is the win position backtracking to the final win
position from the leaf node. In Fig. 5(a), the Black move M9 is
the final win-position and it is the leaf node of the tree structure
in Connect6 opening. In the study, the leaf node means the win
player has been identified. The win position (M9) in Fig. 5(a)
means Black wins; therefore, the positions from M1 to M9 are
recorded in Connect6 opening.

(a) black wins (b) white wins

Fig. 5. An example of the tree structure in Connect6

 Fig. 5 shows a small part of the tree structure in Connect6
opening. (a) is the end position of Black wins, and (b) is the end
position of White wins. In Fig. 5(a), the final win position is M9,
and M8 to M5 are omitted. In Fig. 5(b), the final win position is

The 19th Game Programming Workshop 2014

- 114 -

M14, and M13 to M5 are omitted. In the tree structure, although
there are only two branches under M3, every node can develop
other branches except for the end position (M9 in (a) and M14 in
(b)). This approach is combined Connect6 opening with the
search algorithm, and it is more efficient in reducing the storage
space.

3. The strategy of selecting a candidate move
 In this part, we introduce the strategy of selecting a
candidate move from Connect6 opening. First, we introduce the
positions in Connect6 opening. Then we define the terminology
used in the study. Finally, we introduce the tree structure.
 For the game search, there are two purposes about saving the
tree structure of positions in Connect6 opening. First, if there
are search solutions in some position, this information must be
fully controlled when it is in searching. It is important because
of the feature of sudden death. Second, if there is not search
solution in a position, the most promising moves must be
recorded in Connect6 opening.

3.1 The algorithm of selecting a candidate move

Fig. 6. The flow chart of selecting a candidate move from Connect6
opening

 According to the two important features, the algorithm of
selecting a candidate move from Connect6 opening is shown in
below.

(1) If the position of candidate move is a win position, it
must be the next move. Otherwise, the candidate move
is set to prohibited move.

(2) If there is not any wins in the position of Defender’s
move and the number of win more than 5 in the position

of Attacker’s move, it must be the next move. Otherwise,
the position is set to candidate move.

(3) If there is not any wins in the position of Attacker’s
move, the position is set to prohibited move.

(4) If the number of wins of Attacker is bigger than
Defender, the position is set to candidate move.

 According to the discussion of algorithm in selecting a
candidate move, the first step uses the candidate move from
Connect6 opening as the next move because it is the win
position. The second step considers two reasons. First, there is
not any number of Defender’ wins under the position, and the
threat to Attacker is lower based on the situation. The third step
is the inverse of the second step, and it is bad to Attacker. The
fourth step describes the equal situation; the move does not
prefer to which side. It chooses the most promising move after
performing MCTS search. The process of the algorithm is
shown in Fig. 6.

4. Conclusion
 Finally, we conclude our study in the design of tree structure
for Connect6 opening.

4.1 More efficient storage space

 According to the aforementioned tree structure in Connect6
opening, the win position is the leaf node, and once reached the
position, the outcome has been determined. In other words, all
the positions under the win position will not need to save in
opening because the outcome has been identified. In addition to
reduce the size of tree structure, it can reduce the storage space
and the complexity to retrieve the information in opening.

4.2 More accurate prediction value

 The Black wins of a position is the position which it is not a
win position and it records the number of Black’s win-positions
under the node in the tree. From the above definition, Black
wins (or White wins) is related to the number of win positions in
opening, but the prediction of theoretical wins value. Therefore,
Black (or white) wins is the predicted outcome value. When the
opening tree is complete, the wins value is correct.

4.3 Future research

 The next step of this study is to build a Connect6 opening.
But the building is not constructed by the domain knowledge
from Connect6 experts; it constructs openings by automated
process of Connect6 opening systems. In other words, the
purpose is to build Connect6 openings which are auto-generated
ones by the program itself. This project will research innovative
technologies, and it will combine our previous results into
Connect6 openings. The study is helpful to Connect6 program.

 Acknowledgments The authors thank anonymous
reviewers for their valuable comments, and thank the National
Science Council of the Republic of China (Taiwan) for financial
support of this research under contract numbers MOST
103-2221-E-267-001-.

The 19th Game Programming Workshop 2014

- 115 -

Reference
[1] B. Bouzy and G.M.J-B. Chaslot, “Monte-Carlo Go Reinforcement

Learning Experiments,” In IEEE 2006 Symposium on
Computational Intelligence in Games, Reno, USA, pp. 187-194,
2006.

[2] I-C. Wu, D.-Y. Huang and H.-C. Chang, “Connect6,” ICGA Journal,
Vol. 28, No. 4, pp. 234-241, 2005.

[3] I-C. Wu and D.-Y. Huang, A New Family of k-in-a-row Games. the
11th Advances in Computer Games Conference (CG 2005),
Proceedings of the 11th Computers and Games, in: H. Jaap van den
Herik, Shun-Chin Hsu, Tsan-sheng Hsu and H.H.L.M. Donkers
(Eds.), Lecture Notes in Computer Science (LNCS 4250), 2007, pp.
180–194.

[4] M. Buro, Toward Opening Book Learning , NECI Technical Note
#2, 1997.

[5] S.-J. Yen and J.-K. Yang, The Bitboard Design and Bitwise
Computing in Connect6. Proceedings of the 14th Game
Programming Workshop, 2009, pp. 95–98.

[6] S.-J. Yen, T.-C. Su and I-C. Wu, The TCGA 2011 Computer-Games
Tournament. ICGA Journal, 34 2 (2011), pp. 108–110.

[7] S.-J. Yen and J.-K. Yang, Two-Stage Monte Carlo Tree Search for
Connect6. IEEE Transactions on Computational Intelligence and
AI in Games, 3 2 (2011), pp. 100–118.

[8] S.-J. Yen, T.-C. Su and I-C. Wu, The TCGA 2011 Computer-Games
Tournament. ICGA Journal, 34 2 (2011), pp. 108–110.

[9] Jung-Kuei Yang, “MCTS design for Connect6,” Ph.D. Thesis,
National Dong Hwa University, Taiwan, 2011.

[10] Shi-Jim Yen, Jung-Kuei Yang, Kuo-Yuan Kao, and Tai-Ning Yang,
"Bitboard Knowledge Base System and Elegant Search
Architectures for Connect6," Knowledge-Based Systems,
0950-7051, vol. 34, 2012, pp. 43-54.

[11] Jung-Kuei Yang, "Bitboard Connection Code Design for
Connect6," the 2013 Conference on Technologies and Applications
of Artificial Intelligence (TAAI 2013), Taipei, Taiwan, December
2013.

The 19th Game Programming Workshop 2014

- 116 -

