The 19th Game Programming Workshop 2014

Optimal Strategies against a Random Opponent in Battleship

Maxime Audinot*!, Francois Bonnet™, and Simon Viennot*?

Département Informatique et Télécommunications, ENS Rennes, France
2School of Information Science, JAIST, Japan

Abstract: Battleship is a two-player game, where each player tries to guess the positions of the opponent’s
ships. In this paper, we consider a simplified sub-problem, by assuming that the opponent places the ships
randomly. Our goal is to compute the optimal deterministic strategy that sinks the ships with the smallest
average number of shots. First, we describe algorithms to compute this exact minimal average number of
shots. Our implementation on small grids allows us to show that greedy strategies are not always optimal.
The usual grid used in the real game is too big for computing the exact optimal strategy, so in the last part
of the paper, we show how to compute lower and upper bounds of the optimal average number of shots.

1 Introduction

Game of Battleship Battleship is a famous two-
player game played worldwide, where each player tries
to guess the positions of the opponent’s ships. The
game can be played with a pencil and paper. More
sophisticated versions with plastic boards have been
commercialized mainly in Europe and America, but
also in Japan, under the name “re-da- sakusen game”.
The rules are simple. Each player is given two
square grids. One of the grid is used to place a set of
ships and should be hidden from the opponent, and
the other one is used to record the successful or missed
shots targeted at the opponent. The ships are placed
by the players on their grid at the beginning of the
game, like for example on Figure 1, and cannot be
moved thereafter. The usual grid size is 10 x 10, with
a set of 5 ships of lengths 2, 3, 3, 4, and 5.
Alternately, the players shoot at their opponent’s
grid, trying to find on which cells the ships are placed.
The opponent announces after each shot if it was a
“hit” or a “miss”, i.e. if it was successful or not.
When all the cells of a ship have been shot, the ship
is said to be “sunk”, a fact that is announced or not
depending on the version of the game. The winner is
the first player to sink all the ships of his opponent.
In this paper, we consider the main variant of Bat-
tleship where no information is announced apart from

*maxime.audinot@ens-rennes.fr
Tf-bonnet@jaist.ac.jp
fsviennot@jaist.ac.jp

12345678910

A
B
(O} (G
D M
E M
: U
G
H U
I
J (@)

Figure 1: Possible start position chosen by one player

“hit” and “miss”. Moreover, adjacent ships, even in
diagonals, are forbidden.

Related work Despite the international popular-
ity of Battleship, to the best of our knowledge, there
exists only a limited amount of research. The game
has possibly suffered from its childish image, which is
unfortunate because it contains many interesting and
difficult sub-problems. In 1988, Rodin published a
strategy for sinking the opponent’s ships, and tested
it with human players [4]. In 2003 and 2008, Sakuta
and lida investigated randomized strategies both for
the placement of the ships and for the sinking at-
tacks [5], [6]. They also used the occurence matrix, a
concept that we detail in section 2.3. In a research re-
port of 2009, Bridon et al. applied genetic algorithms
to adapt to the ship placement of the opponent [2].
Battleship can be described as a Partially Observable

-67 -

The 19th Game Programming Workshop 2014

Markov Decision Process (POMDP), and as such, it
was used in 2010 by Silver and Veness [8] as a testbed
for a new class of Monte-Carlo algorithms applied to
POMDPs that have attracted much attention.

Game against a random opponent A game of
Battleship can be decomposed into two sub-games
played in parallel with no interaction. In each sub-
game, the opponent places the ships, and the main
player tries to sink them as quickly as possible. In
this paper, we consider only this sub-game of Bat-
tleship, and as in [8], we also suppose that the ships
are placed randomly and uniformly on the grid by the
opponent.

Contrary to previous works where the strategies are
mainly evaluated by simulations, we are interested in
the theoretical optimal deterministic strategy, that
allows to sink the opponent’s ships as quickly as pos-
sible. Our goal is to compute the theoretical exact
value of the average number of shots required by an
optimal strategy. This direction of study is the equiv-
alent for Battleship of numerous previous works on
the game of Mastermind, for example the famous re-
sult of Koyama and Lai [3].

Organization of the paper First, we describe in
section 2 an algorithm to compute the number of ship
configurations and the frequency matrix. In section 3,
we define the concept of deterministic strategy and we
detail how to compute the optimal strategy that sinks
the ships in the smallest average number of shots. We
show that the optimal strategy is sometimes strictly
better than any greedy strategy. Finally, in section 4,
we compute lower and upper bounds of the optimal
strategy for the usual 10 x 10 game.

2 Configurations and Counting

2.1 Configuration

We start our study of Battleship by counting the num-
ber of different configurations of ships. A configura-
tion of ships is simply defined as any distribution of
the ships on the grid, like on Figure 1. However, two
different distributions of ships on the grid can occupy
exactly the same set of cells, and in that case care is
needed to define what we consider as different config-
urations.

In this paper, adjacency of ships is forbidden, so
the only way for two distributions of ships to occupy
the same set of cells is when the positions of the two
ships of size 3 are exchanged. There is no reason
to distinguish the two ships of size 3, so even if we

exchange the position of the ship D8-E8-F8 with the
ship J4-J5-J6 on Figure 1, we consider that it is the
same configuration.

2.2 Configurations count

Algorithm 1 shows how to count the number of pos-
sible ship configurations on a given grid. We suppose
that the ships are indexed from 1 to the number of
ships, and the algorithm places each ship on the grid
recursively. The parameters in the recursive calls are
the index of the next ship that should be placed on
the grid, and the current state of the grid with already
placed ships. The first recursive call is done with an
initial index of 1 (place the first ship), and an empty
grid. Algorithm 1 and our C++ implementation are
directly inspired by a program from Scherphuis [7].

Output: number of ship configurations

Function CountConfig()
return Count (1, empty grid);

Input: index ¢ of the next ship to place
Input: pos, the current board position

Function Count (i, pos)
nbCon figs <— 0;
foreach position on the grid of the ship i do
if position of ship i is valid then
if all ships are placed then
‘ nbConfigs <— nbConfigs + 1;
else
newPos +— pos+ ship i;
r <— Count (¢ + 1, newPos);
nbConfigs «— nbConfigs + r;
end

end

end

if i = 1 and two ships of size 3 are used then
‘ return nbConfigs/2; // final result

else

return nbConfigs;

end

Algorithm 1: Count the ship configurations

The test of position of ship i is valid consists in
checking that the new ship ¢ that we place on the
grid is not intersecting with or adjacent to any al-
ready placed ships. For the sake of implementation
simplicity, the two ships of size 3 are distinguished in
the main part of the algorithm. They have different
indexes, so each configuration will be counted twice.

- 68 -

The 19th Game Programming Workshop 2014

229713268 (290312632 | 358949313 | 382685666 | 395191893

395191893 | 382685666 | 358949313 | 290312632 | 229713268

290312632 (276237938 | 307909560 | 304268668 | 302249855

302249855 | 304268668 | 307909560 | 276237938 | 290312632

358949313 (307909560 | 339346322 | 334820797 | 333795527

333795527 | 334820797 | 339346322 | 307909560 | 358949313

382685666 | 304268668 | 334820797 | 329017778 | 329162179

329162179|329017778 | 334820797 | 304268668 | 382685666

395191893 | 302249855 | 333795527 | 329162179 | 331435930

331435930(329162179 | 333795527 | 302249855 | 395191893

395191893 (302249855 | 333795527 | 329162179 | 331435930

331435930(329162179 | 333795527 | 302249855 | 395191893

382685666 | 304268668 | 334820797 | 329017778 | 329162179

329162179|329017778 | 334820797 | 304268668 | 382685666

358949313 (307909560 | 339346322 | 334820797 | 333795527

333795527 (334820797 | 339346322 | 307909560 | 358949313

290312632 (276237938 | 307909560 | 304268668 | 302249855

302249855 | 304268668 | 307909560 | 276237938 | 290312632

229713268 (290312632 | 358949313 | 382685666 | 395191893

395191893 | 382685666 | 358949313 | 290312632 | 229713268

Figure 2: Occurrence matrix of the 10 x 10 grid

We simply divide by 2 the final result (when the func-
tion returns from the first call). The result of Algo-
rithm 1 on the usual 10 x 10 grid is 1,925,751,392 dif-
ferent configurations of ships, a value already known,
for example in [1].

Algorithm 1 is easily generalized to count the num-
ber of possible configurations that are compatible
with a set of hit and miss shots. Compatibility with
previous miss shots is included in the test of validity
for a ship position, and compatibility with previous
hit shots is checked just after all ships are placed.

2.3 Frequency matrix

A useful information for analyzing the game is the
frequency matrix, which gives the frequency of occu-
pation of each cell of the grid, assuming that the op-
ponent chooses a configuration of ships randomly and
uniformly. It is straightforward to adapt Algorithm
1 to compute the occurrence matrix, which gives for
each cell of the grid, the number of configurations
where a ship occupies the given cell. The frequency
matrix is then obtained by dividing the occurrence
matrix by the total number of configurations.

11.9
15.1
18.6
19.9
20.5
20.5
19.9
18.6
15.1
11.9

15.1
14.3
16.0
15.8
15.7
15.7
15.8
16.0
14.3
15.1

18.6
16.0
17.6
174
17.3
17.3
17.4
17.6
16.0
18.6

19.9
15.8
17.4
17.1
17.1
17.1
17.1
17.4
15.8
19.9

20.5
15.7
17.3
17.1
17.2
17.2
17.1
17.3
15.7
20.5

20.5
15.7
17.3
17.1
17.2
17.2
17.1
17.3
15.7
20.5

19.9
15.8
17.4
17.1
17.1
17.1
17.1
17.4
15.8
19.9

18.6
16.0
17.6
17.4
17.3
17.3
17.4
17.6
16.0
18.6

15.1
14.3
16.0
15.8
15.7
15.7
15.8
16.0
14.3
15.1

11.9
15.1
18.6
19.9
20.5
20.5
19.9
18.6
15.1
11.9

Figure 3: 10 x 10 frequency matrix in percentages

Figure 2 gives the occurrence matrix for the usual

game on the 10 x 10 grid, and Figure 3 gives the
corresponding frequency matrix, in percentages. For
example, it means that a corner of the grid is occupied
by a ship in 11.9% of the configurations (229,713,268,
precisely).

In [5], Sakuta and lida computed the occurence ma-
trix when adjacency is authorized, and showed that
cells close to the center are occupied more frequently.
Compared to this previous result, the result of Figure
2 and 3 when adjacency is forbidden is unexpected.
The highest occupation frequency is not found in the
center, but in the middle of the edges, with 20.5%.
Even more surprisingly, the frequency decreases to
15.7% when going one line in direction to the center,
before increasing again to 17.3%.

3 Exact optimal strategies

3.1 Deterministic strategies

In this paper, we consider only deterministic strate-
gies to sink the opponent’s ships. If we play many
times against the same opponent, a deterministic
strategy should be avoided because it would be eas-
ily countered by the opponent. However, in order to
simplify the analysis, we consider here that the op-
ponent cannot learn our strategy and cannot adapt
the placement of his ships, so we will not discuss the
problem of randomized strategies, and we restrict the
analysis to deterministic strategies.

A deterministic strategy consists in choosing a first
cell to shoot at, then choosing a second cell depending
on the result of the first shot, hit or miss, and so on.
A deterministic strategy is completely described as all
the choices of cells done after each hit or miss. The
natural way to represent such deterministic process is
a decision tree, where each node represents the choice
of the cell for the next shot, and each edge represents
the result of the shot, i.e. a hit or a miss.

-69 -

The 19th Game Programming Workshop 2014

By convention, we represent a hit by an edge to
the left, and a miss by an edge to the right. On
the figures, we have also drawn small circle marks on
edges to the left and small cross marks on edges to
the right to make it clear that they correspond to hits
and misses.

123

A
B

Figure 4: 2 x 3 grid (with a ship of size 2 to find)

For example, let consider the grid of Figure 4. We
suppose that the opponent has placed one single ship
of size 2 on this grid, and we want to sink it. Then,
Figure 5 shows the decision tree of a possible deter-
ministic strategy to sink that ship. The first shot is
done at A2. If it is a hit, the second shot is done at
Al. If it is a miss, the second shot is done at B2, and
SO on.

After two hits, for example at A2 then at Al, the
ship of size 2 is sunk. We indicate this situation by
a checkmark. There is no need to shoot anymore,
so this a leaf of the strategy tree. Each leaf of the
tree corresponds to one possible position of the ship
of size 2 on the grid. From left to right on Figure 5,
the leaves correspond to the ship placed on Al-A2,
A2-B2, A2-A3, B1-B2, B2-B3, A1-B1, A3-B3.

9 s
O @
o

Figure 5: Decision tree of a deterministic strategy

The decision tree of Figure 5 has an height of 5, and
an average height of (24344434444+5)/7 =25/7.

For our study, it is convenient to also define the
notion of total height of the tree, as the sum of the
heights of all branches from the root node to a leaf.
For the tree of Figure 5, the total height is 2 + 3 +
4+3+4+4+5=25.

3.2 Optimal strategy computation

In this paper, our goal is to find the deterministic
strategy with the smallest average number of shots
to sink the ships, which is equivalent to minizing the
average height of the associated decision tree. We
denote this minimal average height by ¢(n,m, L) for
a grid of size n X m and a list L of ship lengths, or
simply ¢(n, m) when L is the usual list of five ships.

Since the number of leaves of the strategy tree is
fixed (equal to the number of configurations), min-
imizing the average height of the tree is equivalent
to minimizing the total height defined in the previ-
ous section. We describe below how it is possible to
minimize the total height of the tree with a recursive
procedure. The advantage of minimizing the total
height is that it can be done by manipulating only
integer numbers.

From a grid G where some hit and miss shots have
already been made, we start by considering all the
possible choices of cells ¢ for the next shot. Then,
for each choice of cell ¢, we compute the total height
H(G, ¢) of the optimal tree where c is the root node,
and finally we keep as the final answer the cell ¢ that
gives the smallest total height. The recursion step
appears in the computation of H(G, ¢), which can be
broken in three steps :

e compute the total height Hy; (G, ¢) of the opti-
mal left sub-tree after a hit shot on ¢

e compute the total height H,,;ss(G,c) of the op-
timal right sub-tree after a miss shot on ¢

e deduce the total height H(G,c) =
Hyit(G, ¢) + Hpiss (G, ¢) + countCon fig(G)

The formula in the last step comes from the fact
that when we unite the left sub-tree and the right
sub-tree to obtain the final tree, the length of each
branch of the left sub-tree and each branch of the
right sub-tree is increased by 1. The total effect is
similar to adding the number of leaves of the tree,
hence the number of ship configurations.

Ships Size 4% 4 4x5

2 146/24 ~ 6.1 218/31 ~ 7.0

2,3 878/104 ~ 8.4 | 2326/242 ~ 9.6

3,3 196/24 ~ 8.2 595/67 ~ 8.9

2,34 - 994/88 ~ 11.3
Table 1: Average number of shots of the optimal
strategy

Algorithm 2 gives the complete description of this

-70 -

The 19th Game Programming Workshop 2014

recursive procedure. Unfortunately, this algorithm is
extremely slow, because it roughly considers all the
possible orderings of cells for the shots. To accelerate
the algorithm, we use transposition tables, and avoid
shooting on meaningless cells where no ship can ap-
pear, but even with these improvements, only small
grids can be computed in a reasonable time. Table 1
shows the exact ¢ values that we could compute for
some grid sizes and set of ships .

3.3 Greedy Strategy

A natural heuristic to sink the ships as quickly as
possible is simply to shoot at the cell with the highest
probability of finding a ship. We call greedy strategy
any strategy that consists in shooting successively on
cells with the highest probability of finding a ship.
Such a cell can be found by computing the frequency
matrix described in 2.3, and choosing the cell with
the highest frequency value.

1234

A
B
C

Figure 6: Counterexample to the greedy strategy

It must be noted that usually there are multiple
cells with the same highest frequency value, so that
there is no unique greedy strategy. Anyway, it is nat-
ural to expect that at least one of the greedy strate-
gies is optimal. If it was true, it would allow us to
reduce greatly the number of candidate cells in Algo-
rithm 2, and compute the optimal strategy for much
bigger grids. It is true in many situations, but un-
fortunately - and surprisingly - not always. By using
Algorithm 2, we were able to find counterexamples
where the optimal strategy is strictly better than any
greedy strategy.

Figure 6 shows such a counterexample. This is a
3 x 4 grid with already two missed shots, and the
goal is to find a single ship of length 2. Figure 7
shows the tree of the best greedy strategy (which can
be obtained by hand on this small grid), and Figure
8 the tree of the optimal strategy, computed with Al-
gorithm 2.

The greedy strategy shoots first at B3, for an aver-
age height of 54/12, whereas it is in fact strictly better
and optimal to shoot at B2, for an average height of
53/12. The difference is tiny, which confirms that a
greedy strategy is an excellent heuristic, but the neg-

/o/ ™~ X
e
o X /O/ ™~ X

{adns
© © ©

Figure 8: An optimal strategy for the counterexample

ative result is that greedy strategies cannot help us
to compute the optimal strategy.

4 Bounds for the 10 x 10 grid

The exact algorithm is too slow to compute ¢(10, 10)
on the usual grid of size 10 x 10 with 5 ships. Instead,
we try to compute lower and upper bounds.

4.1 Lower bound

A lower bound for the optimal strategy can be derived
by analyzing the structure of the associated decision
tree. First, we know that the decision tree is a binary
tree. Since the result of a shot can only be a hit or a
miss, each node is at most of degree 2. Secondly, we
can count the number of leaves of the decision tree.
Each possible leaf of the tree corresponds to one single

-71 -

The 19th Game Programming Workshop 2014

Input: hitShots, list of positions of hit shots
Input: missShots, list of positions of miss shots

Output: Sum of heights of all branches from the root to a leaf

Function ComputeOptimal (hitShots, missShots)

if nbConfigs = 0 then
‘ return 0;
end

currentMinHeight <— Max;
foreach empty cell ¢ of the grid do
after HitShots <— Merge (hitShots, c);

afterMissShots <— Merge(missShots, c¢);

‘ current MinHeight <— currentHeight;
end

end
return currentMinH eight;

nbConfigs <— CountConfig(hitShots, missShots);

after HitHeight «— ComputeOptimal (after HitShots, missShots);

afterMissHeight <— ComputeOptimal (hitShots, after MissShots);

currentHeight «— nbCon figs + after HitHeight + after MissH eight;
if currentHeight < currentMinHeight then

Algorithm 2: Compute the optimal average number of shots

set of cells where a ship was hit.

When adjacency of the ships is forbidden by the
rules and when the two ships of size 3 are not distin-
guished, a set of hit cells corresponds exactly to one
configuration of ships. For example, in the case of
the usual 10 x 10 grid, it implies that all determinis-
tic strategies, including the optimal one, are described
by a decision tree with 1,925,751,392 leaves. If adja-
cency is authorized, it is more difficult to count the
number of leaves because different configurations of
ships can lead to the same leaf in the decision tree.

It is well-known that for a given number of leaves,
the binary tree of smallest height is obtained for a
complete binary tree, not necessarily full. In our case,
we are not interested by the tree of smallest height,
but by the tree of smallest average height. Fortu-
nately, this does not make any important difference,
and it is straightforward to prove that the binary tree
of smallest average height is again a complete binary
tree.

Figure 9 shows an example of complete binary tree
for the case of 11 leaves. The average height of this
tree is (4 * 6 + 3 % 5)/11 = 3 + 6/11, which is the
smallest possible average height of any binary tree
with 11 leaves.

In the case of the battleship game on the usual
10x 10 grid, we have £(10x10) = 1,925,751,392 leaves.

Since the number of nodes of a complete and full tree
of height 30 and 31 is repectively 230 = 1,073, 741, 824
and 23! = 2,147,483, 648, we know that the height of
any binary tree containing ¢(10 x 10) leaves is 31,
with all leaves of height at least 30. This gives us
a first lower bound of ¢(10,10) > 30. In the next
paragraph, we improve this lower bound by counting
precisely the number of leaves of height 30 and height
31 in the complete binary tree.

In general, if we want to construct a complete bi-
nary tree with £ leaves and 2F < ¢ < 281 there are
¢ — 2% leaves that need to be added to the complete
and full tree of height k. For each leaf that is added,
we need to expand one leaf of height & into two leaves
of height k 4 1. Thus, it will result in 2 x (¢ — 2¥)
leaves of height k-1 and 2% — (£ —2%) leaves of height
k. The average height h of this complete binary tree
is given by equation 1, which simplifies in equation 2.

2k+1 _y

x k

20 — 2k+1
— S xk ()

h = 7

X (k+1)+

B _ ok+1
h:k+%T2 2)

We check the correctness of equation 2 on Figure 9.
We have £ = 11, k = 3, so equation 2 gives an average

-72 -

The 19th Game Programming Workshop 2014

height of 3 + (2 * 11 — 16)/11 = 3 + 6/11, which is
indeed the result that we obtained by hand above.

In the case of the battleship game on a 10 x 10
grid, we have ¢ = 1,925,751,392, k = 30, so equation
2 gives h =~ 30.8 and we can conclude that ¢(10,10) >
30.8.

Table 2 compares the lower bound of equation 2
to the exact ¢ value, for the small boards where the
exact value is computable. If we compare the case of
two ships of size 3 on boards of size 4 x 4 and 4 X
5, we see that the lower bound is relatively better on
the board of size 4 x 5, i.e. the board with a lot of
empty cells. One reason is that if the ships occupy a
large proportion of the board, there are many cases
for which we shoot the ships while knowing perfectly
their position on the board. In such cases, the nodes
in the decision tree are of degree 1 instead of 2, which
leads to an average height notably higher than a com-
plete binary tree.

Ships | Size | lower bound | exact ¢
2 4 x4 ~ 4.6 ~ 6.1
4 x5 ~ 4.9 ~ 7.0
2,3 4 x4 ~ 6.7 ~ 8.4
4 x5 ~ 7.9 ~ 9.6
3,3 4 x 4 ~ 4.6 ~ 8.2
4 x5 ~ 6.0 ~ 8.9
234 | 4x5 ~ 6.5 ~11.3

Table 2: Comparison of lower bounds with known
exact ¢ values

4.2 Upper bound

Finally, we compute an upper bound of the optimal
average number of shots needed on the usual 10 x 10
grid. Since the average number of shots achieved by
any given strategy is an upper bound of the average

N
AN

e

Figure 9: A complete binary tree with 11 leaves

number of shots needed by the optimal strategy, the
straightforward way to obtain an upper bound con-
sists in choosing any strategy, computing the num-
ber of shots needed by this strategy on each of the
1,925,751,392 possible configurations of ships, and
taking the average. The number of 1,925,751,392 con-
figurations is not so high, and our implementation
takes only around 15 minutes to compute the upper
bound associated to a given strategy, on a 3 Ghz com-
puter.

The main problem in this approach is to define and
represent a strategy. It is not convenient here to de-
fine a strategy as in section 3.1 with a complete de-
terministic tree, because of the high number of nodes.
Instead, we define a strategy as an algorithm, which
acts as short representation of the associated deter-
ministic tree.

A first and naive strategy consists in shooting the
cells one after the other, from left to right, and from
the top line to the bottom line, until all ships are
sunk. Such a strategy is obviously not very efficient,
and no human player would play like that, but it is
easy to implement. It gives us a first upper bound of
91.7 shots.

49 9 1) 43

47 35 39 31 44
12 13 19 15 32

38 29 25 16 6
4 22 23 26 40

42 28 24 20 2
8 18 27 30 36

34 17 21 14 10
46 33 41 37 48

45 7 3 11 50

Figure 10: Order of the shots for the upper bound

We describe now a much better strategy that will
give us a smaller upper bound. Since the smallest
ship is of size 2, we can ensure that all ships will
be found by shooting to only half of the cells of the
grid. An efficient order of the cells consist in using
the frequency matrix of Figure 3, which gives roughly
the order of cells of Figure 10.

The complete strategy consists in shooting to the
cells in the order of Figure 10, and whenever a ship is
found, destroying it completely by shooting along the
vertical and horizontal lines starting from the hit cell.
The shots on each of the four vertical and horizontal
directions are done until a miss is obtained. The only
case where we stop earlier the clearing of the four di-

-73 -

The 19th Game Programming Workshop 2014

rections is for the last ship. In that case, the strategy
stops as soon as the total number of hits needed to
sink all the ships (17 hits) is obtained. We computed
that this strategy takes on average 58.7 shots.

An improvement is possible by clearing first the
horizontal directions, and then clearing the vertical
directions only if no hit was achieved on the hori-
zontal directions. We obtained an average of slightly
less than 55.6 shots, which is our current best upper
bound: ¢(10,10) < 55.6.

Figure 11 shows the distribution of the number of
configurations that require a given number of shots
to sink the ships. The distribution on the right corre-
sponds to the naive strategy and the one on the left to
the more elaborate strategy of our current best upper
bound. This strategy of the best upper bound has a
standard deviation of 7.6 shots and a worst case of 73
shots.

250 T T T T T T T
Current best upper bound strategy =

Naive strategy

Number of configurations (in millions)

20 30 40 50 60 70 80 90

Number of shots required to win

Figure 11: Distribution of the number of configura-
tions in function of the number of required shots

5 Conclusion and Future Work

In this paper, we have described algorithms to com-
pute the optimal deterministic strategy against a ran-
dom player in the game of Battleship. We obtained
the exact optimal average number of shots needed on
some small grids. The most difficult exact result that
we obtained is an average number of shots of 994/88
for the 4 x 5 grid with three ships of size 2, 3 and 4.

Then, we have computed a lower bound of
¢(10, 10), the optimal average number of shots for the
usual game on a grid of size 10 x 10, with a theoretical
analysis of the deterministic strategy trees. Finally,
we have also obtained an upper bound for the usual
game, by defining a strategy and computing its corre-
sponding number of shots on all of the 1,925,751,392

possible configurations of the ships. It allows us to
conclude that 30.8 < ¢(10,10) < 55.6.

Computing the exact value of ¢(10,10) does not
seem feasible in a near future, but it is an interesting
challenge to try and reduce further the gap between
the lower and upper bounds. Especially, the upper
bound could be improved relatively easily by consid-
ering more detailed and complicate strategies.

References

[1] Battleship game combinatorics. http:
//www.haskell.org/haskellwiki/Battleship_
game_combinatorics, 2012.

[2] J. Bridon, Z. Corell, C. Dubler, and Z. Gotsch.
An artificially intelligent battleship player utiliz-
ing adaptive firing and placement strategies. Tech-
nical report, The Pennsylvania State University,
2009.

[3] K. Koyama and T. Lai. An optimal mastermind
strategy. Journal of Recreational Mathematics,
25:251-256, 1993.

[4] E. Y. Rodin, J. Cowley, K. Huck, S. Payne, and
D. Politte. Developing a strategy for “battleship”.
Mathematical and Computer Modelling, 10:145—
153, January 1988.

[5] M. Sakuta and H. Iida. Evaluation of attacking
and placing strategies in the battleship game with-
out considering opponent models. In Proceedings
of 1st International Forum on Information and
Computer Technology, pages 80-85, 2003.

[6] M. Sakuta and H. lida. Decision making based
on the generation of possible positions in an
imperfect-information game - a case study using
the battleship game. Journal of Game Amuse-
ment Society, 2:28-35, 2008. (in Japanese with
an English abstract).

[7] J. Scherphuis. C# source code for count-
ing battleship configurations. http:
//forums.xkcd.com/viewtopic.php?f=17&
t=101584&view=previous#p3186886, 2012.

[8] D. Silver and J. Veness. Monte-carlo planning
in large pomdps. In Proceedings of the 24th An-
nual Conference on Neural Information Process-
ing Systems, pages 2164-2172, 2010.

_74 -

