Vol. 46 No. 6

Regular Paper

IPSJ Journal

June 2005

Improvement of Consistency among AS Policies in IRR Databases

MAsAsI ETO," YOUKI KADOBAYASHIT and SUGURU YAMAGUCHI!

This paper presents an architecture which investigates the consistency of AS policies in all
of the publicly accessible Internet Routing Registry (IRR) databases in the world. We also
propose an architecture to prevent the increase of inconsistency. Since inconsistency hampers
the connectivity between ASs, the consistency of IRR databases is crucial for the stable oper-
ation of the Internet. Through our investigations, we have found that a significant proportion
of AS policies are either specified incorrectly or outdated. Based on this observation, we
propose and implement a system that detects these inconsistencies and notifies operators so
that they can be corrected. Finally, we evaluate these systems.

1.

The Border Gateway Protocol (BGP) is cru-
cial to the overall reliability of the Internet 1-2)
but faults in BGP have been known to dis-
rupt large regions of the Internet. For ex-
ample, in April 1997, AS7007 accidentally an-
nounced the route information to most of the
Internet and disrupted connectivity for more
than two hours®). In April 2001, AS3561 prop-
agated more than 5,000 improper route an-
nouncements from one of its downstream cus-
tomers, again leading to global connectivity
problems 4~

To alleviate this problem, the Internet Rout-
ing Registry (IRR) is required to be a tool
which increases the efficiency of BGP network
operation. IRR holds policies, written in Rout-
ing Policy Specification Language (RPSL)7),
that are registered by operators of ASs. These
policies contain information such as AS num-
bers, the maintainer of the AS, and routing
policies.

However, operators generally view the IRR
as an obscure and difficult system rather than
a useful tool for network operations. This lack
of understanding prevents the widespread use
of the IRR.

One of the reasons for this skepticism is
ascribed to inconsistencies in IRR databases.
The router configurations generated from IRR
databases cannot be trusted because they may
contain inconsistencies which make communi-
cation between the ASs impossible.

In this research, we have investigated the con-
sistency of AS policies in all the public IRR

Introduction

t Graduate School of Information Science, Nara Insti-
tute of Science and Technology

1456

databases: 55 IRR servers in the world such as
RIPE, RADB and IRRs mirrored by RADB.

A key finding of this investigation is that a
significant proportion of the AS policies are ei-
ther specified incorrectly or outdated. Based
on this result, we propose a system which sup-
ports to reduce most of the observed inconsis-
tency. Our proposal aims at stable and less
labor-intensive Inter-domain routing with the
IRR.

2. IRR

An IRR is a global Internet resource database
that stores routing policies such as AS num-
bers and prefix information. An IRR consists of
several objects (Route object, Aut-num object,
Maintainer object, etc.). Policies registered in
IRR are written in RPSL, which is designed to
describe specific routing information by import
and export sentences in Aut-num object. Op-
erators can generate the vendor-specific router
configurations from the policy data®).

2.1 IRR Operation

Unlike Domain Name Server (DNS), the or-
ganization who operates IRR server is not
regulated. Therefore some Regional Internet
Registries (RIRs), National Internet Registries
(NIRs) and many Internet Service Providers
(ISPs) operate their own IRR servers in the
world. Especially, RADB, RIPE and APIRR
operated by Merit Network Inc, RIPE NCC and
APNIC respectively are known as the represen-
tative IRR services. They are classified roughly
Public IRR and Private IRR. Public IRR makes
registered information available to the public so
that everyone can use the information to check
some ISPs’ routing information. Private IRR
holds nondisclosure information such as routing
information of ASs who form private peerings

Vol. 46 No. 6

between them.

Public IRRs form data mirroring each other
and in current operation, data of most IRRs are
accumulated to the representative IRR servers
described above.

2.2 Registering to IRR

Operators of ASs can register information
about their ASs to one or more IRR(s) at any
time. On the other hand, some Local Inter-
net Registries (LIRs) force their customer ASs
to register information to their own IRRs, and
some LIRs substitute registering information
for the customers.

2.3 Problem of Current IRR Opera-

tion

However, in its current operation, it is diffi-
cult to keep IRR database consistent for the fol-
lowing reason. That is, to register correct rout-
ing information to IRR, operators need to check
the consistency of them between each peer AS.
However, in the recent Internet, an AS holds
quite many peerings between many other ASs,
so that operators have to bear a higher burden
to check all of the consistency.

As a result, the database will contain many
inconsistencies, and when router configurations
are generated from this database, peer connec-
tivity between ASs will be lost. Otherwise, an
unintended link selection may occur.

On the other hand, IRRs do not hold all of
the AS objects on the Internet, because opera-
tors of ASs are not forced to register their infor-
mation in an IRR. This issue makes operators
view an IRR as an incomplete database, caus-
ing a vicious circle which prevents the increased
of utilization of IRRs?).

3. Classification of the Inconsistency

In this section, we discuss the definition of
inconsistencies that could prevent peer connec-
tivity between ASs.

The inconsistencies are roughly classified into
the following two types:

e Inconsistency in Routing Information Im-

port:

There are less description of routing infor-
mation in export sentence or there are too
much description of routing information in
import sentence.

e Inconsistency in Routing Information Ex-

port:

There are less description of routing infor-
mation in import sentence or there are too
much description of routing information in

Improvement of Consistency among AS Policies in IRR Databases 1457

export
AS 2
AS 3

AS 4

@ as 2 l
import Q

AS 2

as 3
Fig.1 Inconsistency in routing information import.

AS 4
AS 5

4 N

Aut-num: AS 1
as-name: EtoNet

import: from AS 2
accept AS 2, AS 3, AS 4, AS 5

Fig. 2 Policy registered by AS 1.

export sentence.

In the following subsections, we first explain
each type of inconsistency, and then describe
classified inconsistencies in more detail.

3.1 Inconsistency in Routing Informa-

tion Import

If one AS wishes to establish connectivity
with other ASs and configures to import their
routing information, and if the peer AS does
not export their routing information to the AS,
the AS cannot get connectivity to those ASs.
We explain this problem as the inconsistency
i routing information import in the following
example.

As shown in Fig. 1, AS 1 and AS 2 operate
under the contract that AS 2 provides transit
for the traffic from AS 1 to AS 3, AS 4 and
AS 5. According to this contract, the operator
of AS 1 registered the policy shown in Fig. 2
which is configured to import the routes for AS
2, AS 3, AS 4 and AS 5 from AS 2. On the
other hand, the policy registered by the oper-
ator of AS 2 is shown in Fig. 3; in this policy,
the route of AS 5 is missing by accident. The
router configurations generated from these poli-
cies by RtConfig!® are shown in Figs.4 and
5. In these configurations, each network ad-
dress presents the route of each AS. Note that
in Fig. 4, AS1 imports routes of AS2, AS3, AS4
and AS5. On the other hand, in Fig. 5, AS2 ex-
ports only AS2, AS3 and AS4. If the operators
commit these configurations to their routers as

1458 IPSJ Journal

4 N

Aut-num: AS 2
as-name: SaiNet

export: to AS 1
announce AS 2, AS 3, AS 4

Fig.3 Policy registered by AS 2.

4 I
import proto bgp as AS 2 {
192.168.2.0 masklen 24 exact;
//route information of AS 2/
192.168.3.0 masklen 24 exact;
//route information of AS 3/
192.168.4.0 masklen 24 exact;
//route information of AS 4/
192.168.5.0 masklen 24 exact;
//route information of AS 5/
all restrict;

}
- v

Fig.4 Configuration on a router in AS 1.

4 I
proto bgp aspath .* origin any {
192.168.2.0 masklen 24 exact;
//route information of AS 2/
192.168.3.0 masklen 24 exact;
//route information of AS 3/
192.168.4.0 masklen 24 exact;
//route information of AS 4/
all restrict;

}
- /

Fig.5 Configuration on a router in AS 2.

they are, the router of AS 1 cannot receive the
route of AS 5 so that AS 1 cannot establish
connectivity with AS 5.

3.2 Inconsistency in Routing Informa-

tion Export

If peer ASs configure to export the expected
routing information, and if the AS does not im-
port their routing information from the peer
ASs, the AS cannot establish connectivity with
those ASs. In the following example, we de-
scribe this problem as the inconsistency in rout-
ing information export.

In Fig. 6, assume that AS 1 and AS 2 regis-
tered the policies shown in Figs.7 and 8. In
this case, the transit provider (AS 2) registered
the proper policy according to the contract.
However, in the policy of AS 1, the sentence re-
quired to import the route of AS 1 is missing by

June 2005

export

AsS 2

3
4
As 5 4'."'.',
@ as 2 ‘

AS 2

as 3
Fig.6 Inconsistency in routing information export.

AS 4
Aut-num: AS 1
as-name: EtoNet
import: from AS 2
accept AS 2, AS 3, AS 4

Fig. 7 Policy registered by AS 1.

Aut-num: AS 2
as-name: SailNet

export: to AS 1
announce AS 2, AS 3, AS 4, AS 5

Fig. 8 Policy registered by AS 2.

4 N

import proto bgp as AS2 {
192.168.2.0 masklen 24 exact;
//route information of AS 2/
192.168.3.0 masklen 24 exact;
//route information of AS 3/
192.168.4.0 masklen 24 exact;
//route information of AS 4/
all restrict;

}
- /

Fig.9 Configuration on a router in AS 1.

accident. The router configurations generated
from these policies are shown in Figs.9 and
10. In this case, although AS2 exports routes
of AS2, AS3, AS4 and AS5, AS1 imports only
AS2, AS3 and AS4. As a result, AS 1 cannot
establish the connectivity with AS 5.

Based on these premises, we have classified
more details of these inconsistencies as shown in
Table 1, in which AS-SET object is an aggre-
gate of Aut-num object. Like an AS specifying
another AS as a peer, an AS can also specify
an AS-SET as a peer.

Vol. 46 No. 6

Improvement of Consistency among AS Policies in IRR Databases 1459

Table 1 Classification of inconsistencies.

Inconsistencies in
routing information
import

peer AS-SET does not exist on IRR database

peer AS does not exist on IRR database

peer AS does not export any routes to the AS

peer AS does not export route which the AS imports

Inconsistencies in
routing information
export

peer AS-SET does not exist on IRR database

peer AS does not exist on IRR database

peer AS does not import any routes from the AS
peer AS does not import route which the AS exports

4 ™
proto bgp aspath .* origin any {
192.168.2.0 masklen 24 exact;
//route information of AS 2/
192.168.3.0 masklen 24 exact;
//route information of AS 3/
192.168.4.0 masklen 24 exact;
//route information of AS 4/
192.168.5.0 masklen 24 exact;
//route information of AS 5/
all restrict;

}
- v

Fig.10 Configuration on a router in AS 2.

import: from AS 2
action pref = 10 ; med = 0 ;
community.append (10250, {3561,10}) ;
accept AS 2, AS 3, AS 4

Fig.11 import sentence with action attribute.

3.3 Other Attributes

Although there are several other attributes
and parameters in an Aut-num object, we focus
on inconsistencies classified in Table 1 for this
research.

In import and export attributes of an Aut-
num object, RPSL defines action attributes
that enable more detailed configurations, such
as MED, Local Preference and community pa-
rameters, which are described in Fig. 11.

In this case, an action attribute sets a con-
straint on imported route prefixes for each pa-
rameter. Of course, it is possible that these pa-
rameters are inconsistent with the specification
of the peer AS’s action attribute.

One of inconsistencies that may disturb con-
nectivity between peering ASs is the incon-
sistency caused by description of Well-Known
Community in COMMUNITY path attribute.
When an AS sets NO_EXPORT COMMUNITY
path attribute to a certain export route, the
route will not be announced to the peer AS.
On the other hand, if the peer AS configured
the policy to import the route, their policies

are inconsistent and the connectivity may be
disturbed.

In this research, to simplify the classification
of inconsistencies, we focus on only the inconsis-
tencies described in Section 3.1 and Section 3.2.
Then we will consider the Well-Known Commu-
nity problem as the future work.

Therefore, we focused on inconsistencies clas-
sified in Table 1 in this research.

4. Methodology

In this research, we aim to establish a mecha-
nism to conduct accurate inspection on a global
scale with high efficiency. To accomplish this
goal, we need the following three systems: a
system for advance inspection of a policy’s con-
sistency before it is registered; a system to ag-
gregate all IRR databases in the world; and a
system to perform a total inspection of consis-
tency in the aggregated IRR databases.

4.1 Advance Inspection of Consis-

tency

We propose and implement a system to in-
vestigate the consistency of AS policies in IRR
databases globally. When an operator intends
to register his/her AS’s policy, it is difficult to
check whether the policy is consistent between
peering ASs. This fact may cause inconsisten-
cies to arise between policies of the operator’s
AS and peering ASs, and we therefore need a
system to inspect the consistency of the policy
before it is registered with the IRR database.

4.2 Aggregation of IRR Databases

We decided to collect and aggregate all poli-
cies of IRR databases in the world, to inspect
consistency in more detail.

When any organization gains an AS number
from the RIR, it needs to register its policy with
the IRR database. However, the IRR server is
managed by any organizations as we mentioned
in Section 2.1. Therefore, the policies of each
AS are distributed to each of the IRRs. To in-
spect the consistency of AS policies, we have
to collect and store them in one place. Because
the databases are open to the public, we decided

1460 IPSJ Journal

to collect all 55 of the accessible IRR databases

including RIPE, RADB and APNIC. In this pa-

per, we call the collected databases the Unified

IRR Database.

4.2.1 Unified IRR Database

In this section, we describe the algorithm of

the Unified IRR Database. Basically, we ex-
tract all of aut-num objects from each IRR
database and store them in the Unified IRR
Database. Aut-num object in the Unified IRR
Database consists of AS number, import sen-
tences and export sentences. At this moment,
we should notice that there are duplicate aut-
num objects registered into multiple IRRs. In
this case, we merge them based on the following
rules.

(1) Restructure the duplicate aut-num ob-
jects as a aut-num object and store im-
port and export sentences in it.

(2) If multiple sentences import different
routes from same peer AS, store both
sentences in separate. Treat multiple ex-
port sentences as same.

(3) If multiple sentences import same routes
from same peer AS and they have differ-
ent actions, check the updated date and
adopt the most up-to-date sentence.

(4) In the above step, if the updated dates of
both sentences are same, determine they
are inconsistent and discard them. Be-
cause we can not decide automatically
which sentence is the valid direction.

We have considered another algorithm that is
to adopt the most up-to-date object and discard
the other instead of merging them. However,
we decided to merge them because the opera-
tor might divide the AS’s information into sev-
eral parts and register them into multiple IRRs
intentionally.

4.3 Total Inspection of Aggregated

IRR Databases

By aggregating IRR databases as described
above, we can perform a total inspection of all
the accessible IRR databases currently in op-
eration. Then, as described in Section 4.1, we
can make clear the need for advance inspection
of the policies.

5. Designing the Inspection System

Before implementing these systems, we have
to discuss the adequacy of our methodology
compared with alternative proposals for aggre-
gation of IRR databases. Then we have to con-
sider the synchronization of the Unified IRR

June 2005

Database and the Public IRRs.

5.1 Using Whois Query

As an alternative proposal, we could use
whois query to perform advance inspection.
TRRd has whois interface to provide us regis-
tered ASs’ information. When we send a query
that specifies a particular AS number to an
IRR server, the IRRd sends back to us a re-
sponse that includes the specified AS’s infor-
mation®. Using this function, we can imple-
ment the following system: when the system
receives a query of policy inspection, it sends
whois queries to IRRs, then it can collect peer
ASs’ policies.

On the other hand, as described in Sec-
tion 4.2, each AS’s policy is deployed in IRRs
that are also repeated throughout the world.
Besides that, there is no appropriate way to
know which IRR the required policy is in, so
that it is difficult to perform advance inspection
if all the IRR databases are not integrated.

For this reason, we decided to construct the
Unified IRR Database instead of using a whois
query.

5.2 Database Synchronization

We decided to update the Unified IRR
Database every thirty minutes for the follow-
ing reason. In current operation of IRR, many
IRRs mirror their information each other every
thirty minutes. On the other hand, there are
some IRRs that mirrors once a day. Therefore,
the Unified IRR Database updates its database
every thirty minutes in accordance with the
shortest cycle of the other IRRs. In this case,
the time lag between the Unified IRR Database
and a certain IRR may be one hour at a max-
imum. Considering that there are IRRs that
mirrors once a day, we determine that this time
lag does not lead to critical problems of inspec-
tion.

6. Proposed System and Implementa-
tion

To investigate and prevent the inconsistencies
defined in Table 1, we propose Policy Check
Server, which consists of three main compo-
nents as follows.

e To inspect consistency between ASs, we
need the complete set of policies for all
the accessible IRR databases in the world.
Therefore, we constructed the Unified IRR
Database, which includes those policies, by
DBGenerator.

e Database Checker inspects how many in-

Vol. 46 No. 6

8 N

[specify peering AS |
extract import, export sentences from input AS object ;
if (the peering AS (or AS-SET) exists on database) {
create "Autnum"” object as a peering AS ;
Jelse {
warn as an inconsistency "Peer AS (AS-SET) doesn’t exist on IRR database" ;
)
[inspection of import sentence |
for (number of import sentence of input AS) {
for (number of export sentence of peer AS) {
if (the export sentence of peer AS specify input AS as a peer) {
if (the sentence doesn’t export required routes) {

warn as an inconsistency "Peer AS doesn’t export route which the AS imports ;

)
Jelse {
warn as an inconsistency "Peer AS doesn’t export any routes to the AS ;
)
}
)
[inspection of export sentence]
for (number of export sentence of input AS) {
for (number of import sentence of peer AS) {
if (the import sentence of peer AS specify input AS as a peer) {
if (the sentence doesn’t import required routes) {
warn as an inconsistency "Peer AS doesn’t import route which the AS exports ;
Yelse {

warn as an inconsistency "Peer AS doesn’t import any routes from the AS" ;

Fig.12 Inspection algorithm.

consistencies exist on the Unified IRR
Database.

e Policy Checker inspects whether a policy
which the operator of an AS is about to
register is consistent with the policies of its
peering ASs.

6.1 DBGenerator

DBGenerator collects policies from IRRs, and

extracts import and export sentences. Most

policies are mirrored from RIPE, RADB and

APNIC. They are available to everyone, with

constraints about redistribution. DBGenerator

then injects the AS objects into the database,
which is constructed by PostgreSQL database.

6.2 Database Checker

Database Checker inspects how many incon-

sistencies exist on the Unified IRR Database.

It inspects all the policies in the Unified IRR

Database according to the algorithm shown in

Fig. 12.

The algorithm consists of three phases.

(1) Database Checker specifies the peer AS
by import or export sentences, and holds
the peer AS as an AS object. If the peer
AS does not exist on the Unified IRR
Database, Database Checker records this

Improvement of Consistency among AS Policies in IRR Databases 1461

fact as an inconsistency.

(2) Database Checker compares import sen-
tences of the input AS and export sen-
tences of the peering AS. If the peer-
ing AS does not have an export sentence
which specifies the input AS as a peer
like this:

e export: to input AS announce AS 3

Database Checker records this fact as
an inconsistency. Otherwise, Database
Checker determines whether the peering
AS exports the route prefix which the
AS intends to import from. If it does
not, Database Checker records the fact
as an inconsistency. In the next phase,
Database Checker compares the export
sentences of the input AS and the import
sentences of the peering AS.

(3) Database Checker outputs the collected
inconsistencies to a log file.

As we explained in Section 2, IRRs do not
hold all of the AS objects in the Internet. Re-
garding this issue, the following situation can
be assumed.

Since an AS imports 50 route prefixes from its
peer AS, if the peer AS is not registered with
any IRR, it is assumed that Policy Checker is-
sues 50 warnings for every route prefix. How-
ever, the inconsistencies are based on a single
factor: the peer AS is not registered with any
IRR. To eliminate these redundant warnings,
we bind up these inconsistencies in one incon-
sistency, which is “peer AS does not exist on
IRR database”. Policy Checker is designed to
detect this inconsistency using the algorithm
shown above (Fig.12).

6.3 Policy Checker

Policy Checker gives an operator the oppor-
tunity to inspect the policy which he/she in-
tends to register with an IRR database. Policy
Checker keeps all of the latest entries of an IRR
database as the Unified IRR database, which is
made by DBGenerator, so that it is suitable for
Policy Checker to be managed inside an IRR
server.

The flow of the process is as follows.

(1) The policy input by the operator is trans-
mitted to Policy Checker.

(2) Policy Checker creates an AS object from
the input policy and transmits it to
Database Checker.

(3) Database Checker then inspects the con-
sistency between input policy and the

1462 IPSJ Journal

TOMCAT Apache

Web

Policy . Browser
Checker od_j

Y
N

Bttty Rl g Postare
Checker SOL
N~

Policy Check Server|

- ——

Fig.13 Basic components of Policy Checker.

Table 2 List of objects and attributes.

Objects / Attributes | Number
aut-num object 11,702
as-set object 4,543
import sentence 98,726
export sentence 96,094

peer AS’s policy, as described in Sec-
tion 6.2.

(4) Database Checker returns the collected
inconsistencies to Policy Checker.

(5) Policy Checker generates an HTML doc-
ument from the result of the inspection,
and displays it on the operator’s web
browser.

The process of inspection starts on a web-
based interface which is deployed as a Java
Servlet on TOMCAT (Web application server).
If any inconsistencies are detected, Policy
Checker displays warnings on the operator’s
web browser. The operator of the AS may then
correct the corresponding entries and register
the consistent policy. The basic composition is
shown in Fig. 13.

7. Analysis of Inspection Results

We built up the Unified IRR Database from
55 public IRRs such as RIPE, Level3, RADB,
Cable and Wireless, APNIC, Verio and so on.
Most of these databases are mirrored by RADB,
so that we obtained them from RADB IRR
server. The list of the collected objects and at-
tributes in the Unified IRR Database is shown
in Table 2.

As aresult of our investigation, we have found
that 64.8% of the 11,697 registered ASs in IRRs
have at least one inconsistency, as shown in
Table 1 for IRR databases. These results are
shown in more detail in Fig. 14, which indi-
cates that there is variation in the number of
inconsistencies according to the AS number. In

June 2005

700

600

500

400

300

Number of Inconsistencies

200

100

]
0 5000 10000 15000 20000 25000 30000
AS Number

Fig.14 Number of inconsistencies in each AS.

Averages of Inconsistencies per 1000 ASs
25

" Peer AS and AS-SET doesn't exist

Peer AS doesnt import or export any routes -
"% Peer AS doesn't importlexport foute which the AS exports/imports
; total

Average of Inconsistencies

L N
0 5000 10000 15000 20000 25000 30000
AS number

Fig.15 Averages of inconsistencies per 1,000 ASs.

other words, inconsistency decreases as the AS
number becomes larger.

We assume that ASs who have smaller AS
numbers have many inconsistencies because of
following reason. AS numbers are assigned in
an order from smaller one to larger one by RIRs,
therefore, smaller AS numbers are assigned ear-
lier time than larger AS numbers. The dif-
ference of the assigned time between smaller
and larger AS numbers may affect the num-
bers of the inconsistencies. In other words, it
is thought that an AS which has a smaller AS
number tends to have many peers, so that the
AS has many import or export sentences and
many inconsistencies.

In Fig. 14, we divided the AS numbers into
every 1,000 numbers and calculated the aver-
age of the number of inconsistencies in each
slot. As the result, Fig. 15 shows the averages
of inconsistencies per 1,000 ASs. By this figure,
it became clear that old ASs (ASs which have
smaller AS numbers) have much inconsistencies
than newer ASs.

Figure 15 also shows the share of each type of
the inconsistencies classified in Table 1. One of

Vol. 46 No. 6

Improvement of Consistency among AS Policies in IRR Databases 1463

Table 3 Details of inconsistencies.

Classification Number of Rate

inconsistencies | (in 194,820)

1 | Peer AS-SET does not exist on IRR database 482 0.2%
2 | Peer AS does not exist on IRR database 7,971 4.0%
3 | Peer AS does not export any routes to the AS 36,333 18.6%
4 | Peer AS does not import any routes from the AS 34,710 17.8%
5 | Peer AS does not export route which the AS imports 11,436 5.8%
6 | Peer AS does not import route which the AS exports 17,753 9.1%
Total 108,685 55.8%

the notable features of this figure is that incon-
sistency of Peer AS doesn’t import/export route
which the AS exports/imports increases as the
AS number becomes smaller. This fact means
that although many old ASs specify peer ASs in
their routing policy, they do not import or ex-
port necessary routes. We suppose that old ASs
may have many peer ASs, so that it is difficult
to describe the correct routing information.

Details of the inconsistencies in all import
and export sentences are shown in Table 3,
which displays inconsistencies between peering
ASs. In Table 3, the “Rate” column shows the
rate of each inconsistency in all 194,820 of the
import and export sentences. The two cate-
gories Peer AS does mot export any routes to
the AS and Peer AS does not import any routes
to the AS constitute 20% of all the import and
export sentences.

In other words, although a particular peer
AS exists in the IRR database, the peer AS
does not specify the AS as a peer. RPSL is
designed to describe the routing configuration,
particularly for import and export sentences.
Although operators can increase their efficiency
of operation on the BGP network by generating
router configurations from IRR database auto-
matically, we found out that this functionality
is hardly used at all.

We also suppose old ASs have many inconsis-
tencies because of the following reason. That
is, there is a possibility that old ASs do not
maintain objects in IRR databases any more.
To prove this assumption, we need to examine
updated dates of old aut-num objects that have
especially many inconsistencies in the future.

8. Evaluation

8.1 Database Checker

Database Checker spent 2,107.967 seconds to
inspect the whole database. Since the number
of registered Aut-num objects is 11,697 entries,
it takes an average of 0.18 seconds to inspect
each Aut-num object. However, this figure is

just an average for each inspection, and actu-
ally the time for each inspection increases lin-
early with the number of import and export
sentences. It is thought that the number of poli-
cies in IRR databases will increase, so that it is
necessary to reduce the time for the inspection.

Because Database Checker sends several
queries to PostgreSQL database for every im-
port and export sentence while it inspects the
policy, it is clear that the majority of the time
required for the inspection process is spent for
disk I/O. In future work, therefore, we will im-
prove the performance of Database Checker by
optimizing the algorithm to reduce the number
of physical disk I/Os.

8.2 Policy Checker

Policy Checker can inspect consistency pre-
cisely, because it uses the same methods as
Database Checker. With this fact and the Con-
sistency Chain (see Section 10.1.1), it is possi-
ble to prevent increases of inconsistency in IRR
databases.

9. Related Work

The Routing Registry Consistency Check
(RRCC) project? reports inconsistency be-
tween IRR databases and the real Internet.
Tools which detect inconsistencies are available
on the Web.

By inconsistency, they mean route prefixes
which are not advertised on the real Internet
but are registered on the IRR database, and
route prefixes which are not registered on the
IRR database but are advertised on the real
Internet.

On the other hand, our research detects
inconsistency among the registered policies.
Since both of these areas of research aim to
improve the integrity of IRR databases by cor-
recting their inconsistencies, these two studies
complement each other.

10. Conclusion and Future Work

A mechanism for preventing increases of in-

1464 IPSJ Journal

consistency in IRR database records has been

presented, which we call Policy Check Server.

Policy Check Server consists of two compo-

nents, Policy Checker and Database Checker.

We defined inconsistency as comprising two
categories, inconsistency in routing information
import and export. Both can potentially dis-
rupt the connectivity between peering ASs.

Based on this classification, we proposed Pol-
icy Check Server. Policy Checker gives an oper-
ator the opportunity to inspect the policy which
he/she intends to register on an IRR database,
and Database Checker is a system to investigate
the consistency of AS policies in all accessible
IRR databases in the world.

As a result of the investigation by Database
Checker, we have found that 64.8% of ASs have
inconsistencies. We advocate that the operator
of a particular AS should take the consistency
between other ASs’ policies into consideration
before registering it on IRR.

10.1 Future Work

In the near future, we intend to apply Policy
Check Server to JPIRR, an IRR server main-
tained by JPNIC, and provide a service to in-
spect consistency.

Moreover, we will consider the detail classi-
fication of inconsistencies such as Well-Known
Community problem as we mentioned in Sec-
tion 3.3.

We also need to consider the aggregation al-
gorithm of the Unified IRR Database. In this
paper, we discarded duplicated sentences on
multiple IRR databases. We discuss other al-
gorithms that takes in both of duplicated sen-
tences.

10.1.1 Consistency Chain

By correcting inconsistencies between peer-
ing ASs, we believe that it is possible to ex-
change route information between ASs that are
not directly peering. Eventually, it will be also
possible to improve the consistency of all IRR
databases.

For example, consider the situation shown in
Fig.16. In this situation, the requirement is
to give AS 1 connectivity to AS 2 and AS 3.
To complete this requirement, each AS has to
declare that it will import or export expected
routes.

(1) At theinitial state (Fig. 16(a)), AS 2 does
not export the route of AS 3 to AS 1.
Furthermore, AS 3 does not export the
route of AS 3 itself to AS 2. At this state,
the route of AS 3 is never transmitted

June 2005
AS 1 AS 2 AS 3
(a) import export
AS 2 AS 2
AS 3

as 1 as 2 @

(b) import X export
AS 2 -— AS 2
AS 3 AS 2

AS 1 AS 2 AS 3

(C) import O export X

AS 2 — AS 2

AS 3 AS 3 A8 3

AS 1 AS 2 AS 3
(d) import O export O export

AS 2 AS 2

AS 3 AS 3 AS 3

Fig.16 Consistency chain.

to AS 1, so that AS 1 cannot establish
connectivity to AS 3.

(2) At this state, if operators use Policy
Checker, it tells them that AS 2 does
not export the expected route to AS 3,
so that the operator of AS 2 would be
able to correct the corresponding entry
(Fig. 16(b)).

(3) However, at the next state (Fig. 16 (c)),
Policy Checker tells the operator of AS 3
that AS 3 does not export any routes to
AS 2. On this warning, the operator of
AS 3 would be able to subjoin an entry
properly.

(4) As a result, the policies of each AS are
corrected and AS 1 is able to receive the
route of AS 3 (Fig. 16 (d)).

Finally, connectivity between AS 1 and AS
3 is established. This connectivity is estab-
lished only when operators use Policy Checker
and correct the corresponding entries. Thus,
by using Policy Checker, it is possible to check
consistency between ASs that are not directly
peering.

In the near future, we intend to investigate
this functionality of Consistency Chain in all
accessible IRR databases.

Acknowledgments The authors would
like to thank members of JPNIC IRR Planning
Team for many constructive discussions. The

Vol. 46 No. 6

authors also wish to thank Professor Tan R.L.
Smith for many advices for editing this paper.

References

1) Rekhter, Y. and Li, T.: A border gateway pro-
tocol 4 (bgp-4) (Mar. 1995).
http://www.ietf.org/rfc/rfcl1771.txt

2) Huitema, C.: Routing in the Internet,
SHOEISHA (2000) (in Japanese).

3) Misel, S.A.: Wow, AS7007!, NANOG mail
archives (Apr. 2001).
http://www.merit.edu/mail.archives/nanog/
1997-04/msg00340.html

4) Farrar, J.: C&W Routing Instability, NANOG
mail archives (Apr. 2001).
http://www.merit.edu/mail.archives/nanog/
2001-04/msg00209.html

5) Mahajan, R., Wetherall, D. and Anderson,
T.: Understanding bgp misconfiguration, SIG-
COMM’02 (Aug. 2002).

6) Griffin, T.G. and Wilfong, G.: On the cor-
rectness of ibgp configuration, SIGCOMM’02
(Aug. 2002).

7) Alaettinoglu, C., Villamizar, C., Gerich,
E., Kessens, D., Meyer, D., Bates, T.,
Karrenberg, D. and Terpastra, M.: Routing
policy specification language (rpsl) (June 1999).
http://www.ietf.org/rfc/rfc2622.txt

8) Hori, Y., Ikenaga, Z., Kadobayashi, Y.
and Goto, S.: Interconnection of Networks,
Iwanami Shoten (2001) (in Japanese).

9) Gunduz, E., Kerr, S., Robachevsky, A. and
Damas, J.L.S.: Routing registry consistency
check, Technical report, RIPE NCC (Dec.
2001).

10) Routing Arbiter Project. RAToolSet.
http://www.isi.edu/ra/RAToolSet/
(Received January 5, 2004)
(Accepted March 1, 2005)
(Online version of this article can be found in
the TPSJ Digital Courier, Vol.1, pp.216-225.)

Improvement of Consistency among AS Policies in IRR Databases 1465

Masasi Eto received his
LL.B degree from Keio Univer-
sity, Tokyo, Japan, in 1999, re-
ceived the MS degree from Nara
Institute of Science and Technol-
’//-& ogy (NAIST), Nara, Japan, in

2003. He is currently a Ph.D.
student in NAIST. His research interests in-
clude auto-configuration of the Internet work-
ing and secure web applications.

Youki Kadobayashi received
his Ph.D. degree in Computer
Science from Osaka University
in 1997. He is currently an As-
sociate Professor in the Gradu-

h ate School of Information Sci-
“a ence, Nara Institute of Science

and Technology, Japan. His research interests
include content internetworking, overlay net-
works, quality of services in the application-
layer, middleware security, and secure operat-
ing systems.

Suguru Yamaguchi received
the Master of Engineering de-
gree in Computer Science from
Osaka University, Osaka, Japan,
in 1988, received the Doctor of
Engineering degree in Computer

o E Science from Osaka University,
Osaka Japan, in 1991. He is a professor of Nara
Institute of Science and Technology. He has
been also a member of WIDE Project, since its
creation in 1988, where he has been conducting
research on network security system and other
advanced networkings for wide area distributed
computing environment.

