NP-Completeness of the Hamiltonian
Cycle Problem for Bipartite Graphs
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We consider the problem of determining whether a bipartite graph G has a hamiltonian cycle. We show that
this problem is NP-complete for two classes of bipartite graphs: 2-connected cubic bipartite planar graphs; and
3-connected cubic bipartite graphs. Hence the hamiltonian cycle problem for these classes of graphs, or any
larger class containing all such graphs, is probably computationally intractable.

1. Introduction

The hamiltonian cycle problem, formulated by Irish
mathematician William Rowan Hamilton, asks whether
there is a cycle in a graph passing through each vertex
exactly once. Such a cycle is a hamiltonian cycle of a
graph. Many attempts have been made to characterize
the graphs which contain hamiltonian cycles. While
providing characterizations in various special cases,
none of these results has led to an efficient algorithm for
identifying such graphs in general. In fact Garey, Johnson
and Tarjan [3] and Krishnamoorthy [4] have shown that
this prpblem is “NP-complete” even if restricted to a
class of planar graphs, i.e. planar cubic 3-connected
graphs, or to a class of bipartite graphs. Now attention
has shifted to special cases with more restricted structure.
In this paper we restrict our attention to bipartite graphs,
and show that the problem remains NP-complete for
two more restricted classes of such graphs: 2-connected
cubic bipartite planar graphs; and 3-connected cubic bi-
partite graphs. Our proof is based on the transformation-
technique employed by Garey, Johnson and Tarjan [3].
Note that even the existence of nonhamiltonian graphs
is not yet known for the class of 3-connected cubic
bipartite planar graphs; while Barnette conjectures that
there is no such nonhamiltonian graph (See [2, p. 248)).

2. The Case of 2-Connected Cubic Bipartite Planar
Graphs

In this section we show that the hamiltonian cycle
problem is NP-complete for the class of 2-connected
cubic bipartite planar graphs. For our purposes, the only
nontrivial requirement is that we show how a known
NP-complete problem can be “transformed” in poly-
nomial time into this restricted hamiltonian cycle
problem [1]. This “known” NP-complete problem will
be “the satisfiability problem”.

Let F be any well formed formula containing atomic
variables and the connectives A (and), v (or) and
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— (not). Fis “satisfiable” if there exists some assignment
of the values “true” and “false” to the variables which
makes F true under the standard interpretation of the
connectives. We shall show how to construct, in poly-
nomial time, a 2-connected cubic bipartite planar graph
G so that F is satisfiable if and only if G contains a
hamiltonian cycle. It suffices to consider only formulas
F in conjunctive normal form with three literals per
clause. That is, we may assume that F has the form
(P11 vV Piz V P13) A (P21 vV P22 YV Paa) A 0 A
(Pm1 ¥ PmzV Pm3)» Where each (p;,vpivpis) is called
a ““clause” and each p;;, called a “literal”, is either an
atomic variable or the negation of an atomic variable.
We assume that F contains n atomic variables, denoted
X15 X3," "%y Xpe

Although we employ fully the construction-technique
of [3], we must modify some of their component-graphs,
including  “‘required-edge  graph”, ‘“‘exclusive-or”,
“2-input or” and “3-input or” so that a constructed
graph results in a 2-connected cubic bipartite planar
graph G.

We use the graph G, depicted in Fig. 1(a) as a
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Fig. 1 Required-edge graph G,. (a) Graph, and (b) Abbrevia-

tion.
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“required-edge graph™ of our case. Note that G, can be
a vertex-induced subgraph of a 2-connected cubic
bipartite planar graph G. Any hamiltonian cycle in such
a graph G must use the edge marked 4. Thus G, acts
like a single degree-3 vertex which has one “specified”
edge that is required to be used in any hamiltonian cycle
of G. We use the symbol of Fig. 1(b) as an abbreviation
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Fig. 2 Exclusive-or graph. (a) Graph, and (b) Abbreviation.
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Fig. 3 2-input or graph. (a) Graph, (b) Abbreviation, and (c)
Possible local states.
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of G,. Each vertex of G, is marked “S” or “T”" in a way
that no edge joins two vertices of the same mark so that
one can easily recognize G, to be bipartite. From now
on such marking will be used for bipartite graphs.

For an “exclusive-or graph” we use the graph depicted
in Fig. 2(a) which is the same as in [3] except for G,
being used as “‘required-edge graphs”. In a graph which
contains this subgraph as a vertex-induced subgraph,
this subgraph acts like two separate edges, one joining
v to v’ and the other joining u to «’, with the constraint
that exactly one of these edges must occur in any
hamiltonian cycle. This will be represented by the
abbreviation shown in Fig. 2(b). Since the structure of
our exclusive-or is the same as in [3], it has the property
that two “exclusive-or lines” joining different pairs of
edges may cross each other without destroying the
planarity of the graph G which will corresponds to the
formula F.

In addition to the exclusive-or, we will also use the
“2-input or graph” of Fig. 3(a) which is different from
that of [3]. Any hamiltonian cycle in a graph G which
contains this graph as a vertex-induced subgraph must
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Fig. 4 3-input or graph. (a) Graph, (b) Possible local states,
and (c) Abbreviation.
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appear locally in one of the states in Fig. 3(c). Thus this
subgraph acts like two separate edges, one joining v to
v’ and the other joining u to «’, with the constraint that
at least one of these edges must occur in any hamiltonian
cycle of G. This will be represented by the abbreviation
shown in Fig. 3(b).

Finally we use the graphs in Figs. 1, 2 and 3 to con-
struct the “3-input or”” shown in Fig. 4 which is slightly
different from that of [3]. This subgraph acts like three
separate edges, one joining v to v’, one joining u to u’
and one joining w to w’, with the constraint that at least
one of these three edges must occur in any hamiltonian
cycle of G. We can verify this fact by showing that any
hamiltonian cycle in a graph G which contains this graph
as a vertex-induced subgraph must occur locally as one
of the states shown in Fig. 4(b) or the symmetric one.

With these components we can construct a graph G
which corresponds to a formula F. Since the construc-
tion of G is the same as in [3] except for our components
being used, we show only an example of G corresponding
to a formula F=(xvyvz)A(xVvivw)A(XvZVvW) in
Fig. S.

Although the constructed graph G is not planar,
“crossings of exclusive-or lines” can be made planar so
that a planar graph G results in (See [3, Fig. 4]). One
can verify that the graph G is 2-connected cubic and
planar. The bipartite property of G can be recognized
from the vertex marking with “S” and “T” of G and

Fig. 5 Complete construction for F=(xVyVz)A(xVFVw)A
GVZVW).
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its components. By the same reason as in [3], the con-
struction of G requires polynomial time, and G has a
hamiltonian cycle if an only if F is satisfiable. This
completes the proof.

3. The Case of 3-connected Cubic Bipartite Graphs

In this section we show that the three-satisfiability
problem is also transformed into the hamiltonian cycle
problem restricted to 3-connected cubic bipartite graphs.
We shall construct a 3-connected cubic bipartite graph
in polynomial size, so that the graph is hamiltonian if
and only if F is satisfiable. The construction is the same
as that of preceding section except for the graph G, in
Fig. 6(a) being used instead of G, as a required-edge
graph. Horton has used G, in order to construct a 3-
connected cubic bipartite graph which is not hamiltonian
(See {2, p. 240])). Any hamiltonian cycle Z in a graph
which contains G, as a vertex-induced subgraph must
appear locally in Fig. 6(b) or (c), that is, Z must contain
the edge marked A4. This fact can be verified via a
straightforward but tedious argument (See [2, Exercise
4. 2.14]). Hence it follows that G, can act a required-
edge graph.
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