Invited Paper

Overview of 32-bit V-Series Microprocessor

Yasuniko Komoto*, Tatsuya Saito* and Kazumasa Ming*

The advances in semiconductor manufacturing technology make it possible to integrate a floating-point unit
and a memory management unit noto one microprocessor chip. They also permit the designers of a
microprocessor to implement techniques used in the design of mainframe computers, especially with regard to
pipeline structures. The architecture of the V60, V70, and V80 was made possible by there advances. The V60
and V70 are NEC’s first 32-bit microprocessors, and include almost all the functions required by applied
systems in a chip. The instruction set provides a high-level-language-oriented structure, operating system sup-
port functions, and support functions for highly reliable systems. The V80 also employs the same architecture,
and achieves higher performance by means of cache memories and branch prediction mechanisms. The V80
achieved a performance from two to four times higher than that of the V70.

1. Background

Advances in semiconductor manufacturing
technology have brought an astounding performance
improvement in instruction execution speed, resulting
in the expansion of applications to areas such as office
automation, CAD, CAM, and process controls.
Minicomputers and mainframe computers have been
used as main control processor in these systems. The
needs of these applications include not only high perfor-
mance, but also high reliability. There needs are also ap-
plicable to microprocessors.

To meet these needs, NEC in 1986 started to develop
on original 32-bit microprocessor family, the V-Series.
Currently (as of 1990), the family includes the V60
(1986; a 16-bit data-bus version), the V70 (1987; a 32-bit
bus version), and the V80 (1989), all of which are de-
scribed in this paper.

2. Features of the 32-bit V-Series Family

Fine-pitch semiconductor fabrication technology
makes it possible to integrate various functions on a
single chip, especially the Memory Management Unit
(MMU) and Floating-Point Unit (FPU), which are
necessary to built a small system. In addition, the
technology shortens the switching speed of a transistor,
resulting in a higher clock frequency. NEC has pro-
duced thée first 32-bit microprocessor, called V70, which
aims to integrate all of the functions required by an ap-
plication system onto one chip so that system software
designers can develop programs without considering the
system canfiguration. The V80, a successor of the V60

*Advanced Products Department, Microcomputer Division, NEC
Corporation.

Journal of Information Processing, Vol. 13, No. 2, 1990

and V70, has been designed to carry out their fundamen-
tal functions at a higher speed. Figure 1 and 2 show
microphotographs of the V70 and V80, respectively.
The V60, V70, and V80 have used some of the
methods implemented in mainframe computers to in-
crease processor throughput. Examples include
—Pipeline Processing,
—Cache Memory, and
—Branch Prediction Mechanisms.
Table 1 shows the specifications of the V60, V70, and
V80.

3. The V-Series Architecture!' -

The V60, V70 and V80 share the same instruction set

Fig. 1 Microphotograph of the V70.

Overview of 32-bit V-Series Microprocessor

Fig. 2 Microphotograph of the V80.

111

architecture. The architecture was designed to cover
almost all the functions required by application
systems. However, there are differences between the ar-
chitecture of the V60/V70 and the V80, because new
features have been added to the latter. In this section,
the V60/V70 architecture is described first, and the
differences of this architecture from that of the V80 are
described later.

3.1 The V60/V70 Architecture

3.1.1 Register Set

The V60 and V70 provide thirty-two 32-bit general-
purpose registers. This large number enables an optimiz-
ing compiler to make global register allocation easily,
thus decreasing the amount of memory traffic and help-
ing to increase the speed of accessing main memory,
which is relatively slow. Figure 3 shows the V60/V70
register set. It contains both the Program Register Set
and the Privileged Register Set. The Privileged Register
Set can be referred to only by the operating system.

4 clocks/cycle

Table 1 Comparison of the V60, V70 and V80.
Item V60 V70 V80
General-purpose registers 32-bit* 32
- Instructions 119-type 123-type
Instruction format 2-operand symmetry
4G-byte Virtual Space
Virtual memory 4G-byte Real Space
Management Paging (4K-byte/Page)
4-level Protection
. . 16-entry 64-entry 2-way
;:2??{%;3;‘00“““ full associative set associative
firmware replace hardware replace
Floating-point 32/64-bit data type
operation based on IEEE-754
Pineline 6-unit, 6-stage, 11-unit, 7-stage,
- slrl:clure execute max 4 execute max 6
= instructions instructions
Cache memor o Instruction/Data
y (each size 1K-byte)
Branch Prediction no yes
High reliability M
function Parity Check no yes
V20/V30 emulation
mode yes no
2 clocks/cycle,
Bus cycle 3 clocks/cycle 2 clocks/cycle Advanced mode,

and Burst mode

Num. of transistors
Process

Chip size

Package

Clock freq.
Performance (MAX)

375,000 385,000 980,000

1.5 um CMOS 1.2 um CMOS 0.8 yum COMS
13.92* 13.80 mm 12.23* 12.32 mm 14.49* 15.47 mm
64-pin PGA 132-pin PGA 280-pin PGA

16 MHz 16/20 MHz 25/33 MHz

3.5 MIPS (16 MHz) 5.3 MIPS (16 MHz) 12.5 MIPS (25 MHz)

6.6 MIPS (20 NHz)

16.5 MIPS (33 MHz)

112

3.1.2 Virtual Memory System

The V60 and V70 generate, manage, and maintain a
virtual address space with a demand-paging strategy
(the page size is 4K-byte) by means of an on-chip
MMU. The size of virtual address space is 4G-byte, and
each task can use a 4G-byte address space provided by a
multiple virtual space structure.

(1) Structure of the virtual address space
Figure 2 shows the virtual space structure of the V60
and V70. The 4G-byte address space is divided into
three levels:

*Section (an address space consists of four 1G-byte
Sections),

*Area (a Section consists of 1,024 1M-byte Areas),
and

+Page (an Area consists of 256 4K-byte Pages).

(2) Address translation

The V60 and V70 provide the address translation
mechanism necessary to construct a virtual address
space, translating a virtual address to a real address. It
also provides a translation look aside buffer (TLB) on-
chip to support the virtual memory. Address transla-
tion takes a long time if it accesses a pair of on-chip
registers the (Area Table Base and Length Registers)
and two types of address translation table (Area Table
and Page Table) in main memory. The TLB is compos-
ed of 16-entry, full-associative, contents-addressable
memory. Entry replacement of the TLB is based on a
pseudo-Least-Recently-Used (LRU) algorithm. Figure 5
shows this address translation process.

(3) Protection mechanisms

A program runs in one of the four execution levels de-
fined by the Execution Level field in the Program Status
Word (PSW). This specifies whether the executing pro-
gram has privileged or non-privileged status. The higher
the level, the lower the priority. Privileged instructions
can be executed at level 0.

One Virtual Address Space

Y. Komoto, T. Sarto and K. MINE

The V60 and V70 provide two levels of protection
mechanisms, relating to the Area and the Page. Protec-
tion for an Area is specified by the corresponding entry
in the Area Table (Area Table Entry). It defines the
lowest execution level at which an area can be referenc-
ed. In addition, the level can be independently set for
each access type (read, write, or execution). Protection

Program Registers

Privileged Registers

(4]

(&1

I2

3

4

[d-1

[d.1

(&4

I8

10 L__Syatam Control Ward |

11

12

13 I

r14

115 L_Processor ID Ragister]

16

117 L_PsW for Emulation Mods |

18

119

120 | Area_Table Base Regilater 0|

£21 | AreaTable LengthBegisterd |

122 -1

123 -1

124 =2

125 =2

126 -3

127 .3

28
|—r20 (Argumant Pointer) |
ik paman] [Rasess s seas 2]
| |—Addreas Trap Realster 0 |

| -Address Mask Register 0 |
mncone] hdsian i e
ress as) legister

Fig. 3 Register Set of the V60/V70.

4G (4GB)
One Section One Area One Page
(1GB) (1MB) (4KB)
section-3 area-1023 page-255 offset-4095
3G area-1022 page-254 offset-4094
section-2
2G area-| page-m offset-n
section-1
1G
area-1 page-1 offset-1
soction-0 area-0 page-0 offset-0
0

Fig. 4 Virtual Space of the V60, V70 and V80.

Overview of 32-bit V-Series Microprocessor

113

Real Address

Virtual Address U
31 20 12 0 Ad&?;;s
Io | 3 l f
| Offset in Page Frame
Page Table
Page ID Roge
PIE o -
‘Area Table
Area ID
AIE O
Area Table
Section|p Base Register
[ATBR1 |
Fram
[ATBR? | VB0 Oty (4K Byte)
TBR3 /\/
E E Page Table Base Buffe
Virtual Address (12 Bits) Page Table | (Area Mach)
(Base Addus.s
Transiation Lookaside Buffer (TLB)|
crrrrgroeorrrrey TrT IR EARAARARAREEE
S
H (Page Match)
| T <
Contam-addressablelMemory .
: : Lower
Virtual Addres (20 Bits) _ Real Addres (12/20 Bits) | Address
On-chip «@=| = Offchip

Fig. 5 Address Translation Process.

for a Page is specified by the corresponding entry in the
Page Table (Page Table Entry). It indicates the at-
tribute of the page with respect to the read, write, and
execution access types. Memory access by an instruc-
tion is allowed if and only if permitted by the Area and
Pege protections.

3.1.3 Instructions and Addressing Modes

The V60/V70 instruction set contains 119 instruc-
tions. Table 2 lists the instructions.

The basic instruction format allows two operands,
source and destination. The instruction format permits
memory-to-memory operations, since an operand can
be specified as register, immediate, or memory.
Therefore, a fewer steps of object code can be
generated from a high-level language statement. Figure
6 shows an example of object code generated by a C
language statement. In contrast, conventional
microprocessors require at least two steps to realize the
statement in Fig. 6(a), because an additional instruction
is necessary to calculate the effective address of the
source operand.

3.1.4 Operating System Support Functions
The V60 and V70 provide instructions to support
operating systems; for example, privileged instructions

(a) Statements of the C Language

proc(x,y)
nt x,%y;

(
}

(b) Object Codes

align 4
(global _proc

addw Ox18{0x4[ap]],[ap]

Fig. 6 Example of Object Codes.

_proc:

for virtual memory support and for context switching.

(1) Virtual Memory Support

Virtual memory support instructions get/update the
address translation table (area table or page table), clear
an entry (or all entries) of the TLB, translate a virtual
address to a real address, and so on.

(2) Context Switch Support

The architecture of the V60 and V70 defines a task
context as one of the following on-chip registers. These
registers are stored in the memory as a task control

114

Y. Komorto, T. SaITo and K. MINE

Table 2 Main Instructions of the V60, V70 and V80.

Transfer move, move with sign-ext.,
move with zero-ext., truncate,
push, pop, exchange

Integer negate, add, increment,
Arithmetic decrement, subtract, multiply,
divide, remainder

Compare compare, test

Logical Ops not, and, or, exclusive or

Shift arithmetic shift, logical shift,
rotate, rotate with carry

Address move effective address

Single-Bit test, set, clear, negate

Bit-Field extract, insert, compare

Bit-String move, move with negate,
or, or with negate,
and, and with negate,

Character- ~ move, move with filler,
String move until stopper,

compare, compare with filler,
compare until stopper,

search, skip
Decimal add, subtract, peck, unpack
Floating- move, absolute value, negate,
Point add, subtract multiply, divide,

power, compare, conversion

Procedure call, return, push multiple,
pop multiple, prepare frame,
dispose frame

Branch branch, conditional branch,
loop, jump, call, return

PSW Ops read, update, set by flag

MMU clear TLB, get ATE, get PTE,
update ATE, update PTE,

4 I ad-
xor, xor with negate, get rea
search 0, search 1 dTeSS . o
Task load task context,
store task context
Address Bus
Memo
Data Bus Systerrny
U Status
J l L4l U L4l

CPUO(Master) CPU1(Checker) CPU2(Checker)

FRM Freeze FRM Mismatch Freeze FRM Mismatch Freeze

4 t { S t
L L

Mode 0 Mode 1 Error 1 Mode 2 Error 2

Majority Decision & Master CPU Selection Circuit

Halt

Fig. 7 Triple-Mode Redundancy Configuration.

block (TCB).
i) Virtual address space environment
*Area Table Registers (ATBRO~ ATBR3,
ATLRO~ATLR3)
ii) Execution environment
*General-purpose registers (RO~ R30)
sStack pointers for each execution level
(LOSP ~L3SP)
iii) Task information
*A task register (TR)
*A task control word (TKCW)
The instruction set of the V60 and V70 includes con-
text-switch instructions:
*STTASK: store the current task context, and
<LDTASK: load a new task context.

3.1.5 Highly Reliable System Support!¥

The V60 and V70 support a redundancy configura-
tion, which is necessary in Fault Tolerant Systems. This
function, referred to as the Functional Redundancy
Monitoring (FRM), consists of the following four
mechanisms.

(1) Master and Checker Mode

The V60 and V70 have two operation modes, master
and checker. The master-mode CPU (Master) executes
instructions, while the checker-mode CPU (Checker) is
connected pin-to-pin to the Master as a redundant con-
figuration. Figure 7 shows an example of the triple
mode redundancy configuration.

(2) Fault Detection

The Checker does not drive any terminals, but ex-
ecutes instructions that are synchronously fetched by

Overview of 32-bit V-Series Microprocessor

the Master. It compares the signals driven by the Master
with the signals generated by the Checker. The Checker
checks these terminals during every bus cycle and detec-
tion of an inconsistency activates the mismatch signal.
Address-bus, data-bus, and status signal are checked.
The data bus is checked only during the write bus cycle.
As long as Master and Checker operate in the same
way, the system is regarded as normal. If a mismatch is
detected, the fault has occurred in only one of the
CPUs.

(3) CPU freeze and isolation

When a mismatch is detected, the outer circuits must
stop the CPUs, find the CPU in which the fault occur-
red, and reconfigure the system. The bus freeze terminal
is provided in the V60 and V70 to stop the CPU. If it is
activated, the V60 (or the V70) stops the new bus cycle
after the current bus cycle terminates.

(4) System reconfiguration

After the fault detection and system freeze, the outer
circuits judge which CPU is faulty and reconfigure the
system. A highly reliable system containing more than
three CPUs can determine which of the CPUs is faulty
by majority-decision logic. For example, the majority-
decision for the system shown in Fig. 7 is made under
the rules shown in Table 3. Thus, after system
reconfiguration, which the CPU freeze is released. At
this time, by retrying the bus cycle in which the fault oc-
curred, the system may run correctly. Bus cycle retry is
nrade possible by inputting a bus-error retry request at
the end of the faulty bus cycle that caused the
mismatch. In the V60 and V70, only about 0.24% of
the chip are was used to implement these mechanisms.

3.2 The V80 Architecture

The V80 is expected to achieve a performance of
more than 10 MIPS to service areas that require a much
higher performance is possible with the V60 and V70.
Besides this, the highly reliable system support function
of the V60 and V70 is strengthened and some new
multi-processor system support functions are added to
expand its application area.

3.2.1 Software Compatibility

The V80 includes the full V60/V70 instruction set.
Therefore, the software developed for the V60 and V70
systems, such as the real-time operating system (RX616),
real-time UNIX (RX-UX832), and the C compiler
package, can be executed at a higher speeds without any
modifications.

The V80 extends the V60/ V70 architecture. Thereis a
new Privileged Register and four new instructions. The
new Privileged Register is provided to control new
feature such as caches and branch prediction. The new
instructions are extensions of the conventional ‘‘Test
and Set”’ or ‘“Compare and Exchange’’ instructions,
which are provided by the V60 and V70 to synchronize
processors in a multi-processor system.

115

Table 3 Majority Decision in the Triple-Mode Configuration.

CPU-1 CPU-2 Fault Operation
match match none Continue execution
match mismatch CPU-2 Cut off CPU-2, then continue

mismatch match CPU-1 Cut off CPU-1, then continue
mismatch mismatch CPU-0 Cut off CPU-0, then set CPU-1
as master mode and continue

3.2.2 Two Clock Execution of Basic Instructions

In designing a pipeline structure, the smoothness of
pipeline operations is the key to obtaining maximum
performance from the pipe. Otherwise, pipeline distor-
tion degrades performance of the microprocessors. We
employed a ‘‘two-clock’’ pipeline in the V80 to achieve
a performance of over 10 MIPS at 25-MHz clock fre-
quency. In this case, therefore, the maximum perfor-
mance is 12.5 MIPS. Thus, it is necessary for almost all
instructions, such as transfer, integer arithmetic, and
logical instructions, to be executed in two clock cycles.
There fore, they are executed directly by wired logic cir-
cuits without microcode.

3.2.3 Branch Prediction Mechanism

Branch instructions appear at the rete of 15% to 30%
in the instruction sequence. In the pipeline structure of
current 32-bit microprocessors, the pipeline operation
is suspended by branches and is later resumed at the
target address of the branch. The V80 employs a branch
prediction mechanism to reduce the disruption of the
pipeline mechanism caused by branches.

Branch prediction uses the idea that a branch instruc-
tion is likely to be taken (that is, that a branch instruc-
tion will change the execution flow) if the same instruc-
tion has been taken before. When a branch instruction
is executed and taken its location address and target ad-
dress are registered in the Branch Prediction Table. If
the same branch instruction will be prefetched again the
V80 further prefetches the instructions at the target ad-
dress of the branch, instead of the sequence for branch-
not-taken. Figure 8 shows the mechanisms of branch
prediction.

Branch prediction is done at the prefetch stage of the
pipeline rather than at the instruction decode stage. The
V80 takes the following steps before the branch condi-
tion is fixed:

1. Prefetches the predicted instruction sequence,

2. Decodes the instruction(s), and

3. Prefetches the operands required by the instruc-
tions(s).

If the prediction is successful, a branch instruction is ex-
ecuted in two clock cycles. However, if the prediction is
not successful, it takes seven clock cycles.

Branch prediction is applied to branches in which the
target address is calculated statically (that is, in which
the register indirect branch is excluded). Only the bran-
ches taken are registered in the BPT. The prediction is

116

Y. Komorto, T. Saito and K. MINE

Target Address Location Address
Predicted Address (Real Address) (Real Address)
1 ¥
Instruction Flow PFP
Instruction Prefetch FCHE g : °
L]
Prefetch Address
‘ L] []
Predecode POU
‘ g'atod [P
anch Instruction
Decode | \nueaG
Effective addr. Gen.
1 7 Match
Real Address
Address Translate MMU Branch Prediction
Table (64-entry)
v
1 Branch Prediction
Operand Fatch D-CHE BPU/PCU Regisw od Branch Target
‘ y l Address
Branch Prediction
Execute EXU Succeeds/Fails

Branch Condition is Fixed

PFP : Prefetch Pointer
CMP : Comparator

Fig. 8 Structure of Branch Prediction.

made according to the contents of the BPT. The predic-
tion mechanism assumes branches to be taken only if
they are in the BPT. Otherwise, it assumes all branches
to be not-taken.

Table 4 shows the clock cycles for branch executions
of the V70 and V80. By employing the branch predic-
tion mechanism, the V80 can gain a 5% increase in per-
formance. Various branch prediction models were
evaluated in the design of the V80. For example, if a
branch prediction were made at the instruction decode
stage, the branch would not be executed in two clock
cycles. This does not fulfil our requirements.

3.2.4 High Performance

(1) From two to four times
The experience with the V60 and V70 shows that the in-
ternal processing speed of the V80 should be about
three times higher at the same frequency in order to
achieve 10 MIPS performance. This ratio must be
achieved in the following items, which are often used in
application programs:

«Context switching,

«Procedure call/return sequence,

*Compare-conditional branch sequence,

Table 4 Clocks for branch execution.

V8o V70

comment

branch Prediction prediction branch not-branch

succeed fail
JMP 2 — 11 — unconditional
Bcond 2 7 11 4 conditional
DBcond 2 7 12 8 loop
TB 2 7 12 8 test and branch

*TLB entry replacement,

«Floating-point operations,

«Character string manipulation, and

*Response time to interrupt,
At the beginning of the V80 development project, the
target execution clock cycles of most instructions and
the above critical ones were determined. As has already
been described, the execution times of the basic and
branch instructions are two clock cycles. Table 5 shows
a comparison of the performance of the V70 and the
V80 in representative instructions. As it shows, the V80
achieves the target performance.

(2) High-speed address translation

A translation from a virtual address to a real address

Overview of 32-bit V-Series Microprocessor

117

Table 5 Clock Comparison of the V70 and V80.

V70 V8o ratio

Instruction or
Category Condition
Transfer MOV. W MEM, REG 4 2 .50
MOV. W REG, MEM 4 2 .50
Primitive ADD. W REG, REG 2 2 1.0
Operation ADD. W MEM, REG 4 2 .50
Multiply MUL. W 23 9 .39
Divide DIV. W 43 39 91
Shift SHA. W 17 3 .18
Branch Taken 11 2 .18
Not-Taken 4 4 1.0
Procedure Call CALL+RET 44 21 .48
Multiple Push/Pop PUSHM (N words) 14+6*N 14+2*N 38-1.0
POPM (N words) 20+ 7*N 15+2*N 32-.75
Bit Field EXTBFZ 30 10 .33
INSBFL 28 10 .36
32-bit Floating ADDF. S 120 36 33
(typical) MULF. § 116 44 .38
DIVF. S 137 75 .55
64-bit Floating ADDF. L 178 75 42
(typical) MULF. L 270 110 41
DIVF. L 590 553 94
Return from INT RETIS 8 22 .26
Context Switch LDTASK 347 157 45
(Max Context) STTASK 200 121 .61
Asynchronous Trap 195 64 33
TLB replace the Same Area 58 11 .19
not the Same Area 58 6 .10
INT response until handler exec. 165 27 .16
MOVCU. B (N bytes) 20+5*N .25-.35

Character String

19+1.25*N

is usually made by referring to the TLB. If a virtual ad-
dress is not registered in the TLB, it is translated by ac-
cessing on-chip registers and address translation tables
in the memory (Area Table and Page Table) and the
result of the translation, a pair of addresses (a virtual ad-
dress and a real address), is registered in the TLB. This
is called the ‘“TLB-refresh.’’ Because the TLB refresh is
implemented by microcode in the V60 and V70, it
disturbs the execution of other instructions that are also
implemented in microcode, thus disrupting the pipeline
processing. However, the TLB refresh of the V80 is car-
ried out by hardware unrelated to the execution of in-
structions, and thus does not affect the execution of in-
structions in the pipeline.

Accesses to the translation tables in the memory take
two steps, an Area Table access and a Page Table ac-
cess. The V80 stores the result of the first step, the con-
tents of the Area Table (that is, the base address for the
Page Table access), to prevent unnecessary access to an
Area Table. The TLB refresh will be performed at a
higher speed, even though a given virtual address is not
registered in the TLB. In ordinary programs, accesses
to the memory have locality, so the caching of the base
address of a Page Table should be efficient. Figure 5
also shows the address translation process of the V80.
The TLB refresh takes 11 clock cycles normally and six
clock cycles for a virtual address in the same Area as the
prior address translation. The V80 achieves seven to
eight times higher performance in the TLB refresh.

(3) High-speed character string manipulation

To increase the performance of application programs
it is necessary to transfer structured block data. The
V60/V70/V80 architecture provides a character string
data type (a row of byte or half-word data), as well as
character string instructions to manipulate (transfer,
compare, and search) the block data. They were im-
plemented in microcode in the V60 and V70, but the
maximum performance, which is usually limited by the
bus transfer speed, was not attained. In the V80,
character string manipulation is mainly performed by
the Data Control Unit (DCU). The DCU takes charge
of transferring string data, detecting termination of the
string transfer, and reporting the number of characters.
Thus, the string transfer can achieve the maximum bus
transfer ability (66.6 M-byte per second for a 33-MHz
clock) of the V80. The performance of the V80’s
character string manipulation is more than five times
more effective than that of the V60 and V70.

(3) High-speed floating-point operations

The V60/V70/V80 instruction set provides floating-
point operations, and operation is implemented in the
microcode. To simplify the microcode algorithms, hard-
ware circuitry for the following functions was added to
the V80:

*Detecting special floating-point numbers
(e.g., Zero, Infinity, or Not a Number),

*Decomposing floating-point number into parts
(e.g., sign, exponent, and mantissa)

118

«Composing a sign, an exponent and a mantissa into
a floating-point format,

*Detecting overflow or underflow in the floating-
point operation. The V80 also has a 32-bit multiplier,
which executes 32-bit integer multiplication in four
clock cycles, and so floating-point multiplication can be
executed in the same time as floating-point addition or
subtraction. The performance of the V80 floating-point
operation is about three times as effective as that of the
V60 and V70.

3.2.5 On-chip Caches

The V80 employs on-chip caches to give sufficient
data and instruction bandwidth. To avoid collisions be-
tween data access and instruction access, the cache is
divided into two parts for data and instructions, respec-
tively. This configuration allows simultaneous access by
prefetch and operand access.

(1) Cache Control Word

The basic operations of the on-chip caches are done
by specific terminals, but certain kinds of operations
can be set by software. To control the on-chip caches,
the V80 provides a new privileged register named Cache
Control Word (CHCW). The CHCW allows the follow-
ing operations:

1. Theinstruction cache and data cache can be purg-
ed independently.

2. The code size for a cache fill at one cache miss
can be selected as 4, 8, or 16 bytes. It is effective to select
larger sizes when a continuous area of instruction codes
or data is accessed. When a non-continuous area is ac-
cessed a smaller size is better because no extra bus cycle
is executed.

3. Because written data tend to be read again, it is
efficient to write operand data into the data cache as
well as into the main memory. Write allocation is a
policy of making a new entry in the data cache even if
there is no entry corresponding to the write data.

(2) Cache Inhibited Area

When programs are executed on condition of ac-
tivating cache memories, it is sometimes necessary to
provide address areas whose data is never cached. Such
areas may be used as a frame buffer of a shared region
in a multi-tasking system. To implement this facility,
the V80 provides a new bit for indicating cache inhibi-
tion in the Page Table Entry (PTE). By setting this bit
to ““1”’, we can make a Page (unit of demand-paging) a
cache inhibited area. If the processor accesses the cache
inhibited area, the cache bypass terminal becomes ac-
tive, informing an external circuit, such as a cache
memory controller, of the cache inhibition access.

(3) Bus Monitoring

It is important to maintain coherence between the on-
chip data cache and the external main memory in the en-
vironment of multi-processors. The V80 has a bus
monitoring mechanism that watches for when one of
the bus-masters changes the contents of the shared main
memory in a multi-processor system. This mechanism is

Y. KoMmoto, T. SAITO and K. MINE

System Bus
8 System Address Bus
1 [] I_1
A<31-2> MA<31-4>
\adicns A Bus Master-1
1000
V8o
V80 Board
Main Memory
System Bus
8 System Address Bus

—

Address . '
1600 A»B Bus Master-1

V80
V80 Board

Main Memory
Fig. 9 Bus Monitoring of the V80.
.

sometimes called bus snooping. The V80 employs an ex-
clusive bus for bus monitoring, the monitoring address
bus, to give the on-caches the address at which the con-
tents must be purged. Figure 9 shows an example of this
bus monitoring mechanism. When a write address from
another bus-master is on the monitoring address bus
and a monitoring strobe terminal is activated, the corre-
sponding block of the on-chip cache is purged. Conse-
quently, the monitoring address bus will be connected
to the address bus and the monitoring strobes to be
write enable signal on the system bus. Though the V80
has only one monitoring address bus, it provides two
monitoring strobe terminals for the instruction and
data cache to purge these caches respectively. Since the
V80 employs the monitoring address bus separately
from the address bus, the multi-processor system con-
figuration is simplified.

3.2.6 Coprocessor Bus
To extend the instruction set of the microprocessor,

Overview of 32-bit V-Series Microprocessor

coprocessors are often used. The processor usually com-
municates with coprocessors by means of a predeter-
mined coprocessor protocol. However, bus cycles for
the coprocessor protocol will obstruct prefetch bus
cycles or operand data accesses of the processor’s
original instructions. Because of this, the full perfor-
mance of the coprocessor is not always achieved, and
disruption of pipeline processing is also caused.

The V80 employs an exclusive bus for coprocessor
protocols, called a coprocessor bus, to prevent pipeline
disruption. By employing the coprocessor bus, the V80
can achieve 4,000 KWIPS in the Whetstone benchmark
when it is associated with the floating-point coprocessor
(uPD72691)%. This performance in floating-point
operations is twice as high as that of the V70 and
uPD72691 pair.

3.2.7 Additional Support for a Highly Reliable
System

In addition to the FRM function supported by the
V60 and V70, the V80 employs a parity generating and
checking mechanism used with the address bus and the
data bus.

To improve the reliability of a system, there is a
method of detecting faults between a processor and
main memory by attaching parity bits to the memory.
High-speed parity generating and checking circuits
without insertion of any wait state in bus cycles are
necessary to improve the processor performance. It is
difficult to construct an external parity system for a pro-
cessor that runs with high-speed bus cycles, as the V80
does. Therefore the V80 provides a parity generating
and checking mechanism. This may be the first im-
plementation of such a mechanism in a microprocessor.

The V80 has parity bits for both address and data
buses, with one parity bit per eight address or data bits.
Odd parity is generated for each bus cycle from the ad-
dress bus. From the data bus, odd parity is also
generated, but only for write bus cycles.

Parity checking is performed for each read bus cycle.
If the parity enable terminals are activated, the V80
calculates the parity of read data, and compares the
calculated parity with the parity input though a parity
bit terminal. When the V80 detects a mismatch between
the generated parities and externally provided parities,
an exception (parity error) occurs as a fatal error.

Figure 10 shows a system using the parity generating
and checking mechanism of the V80.

4. Internal Structure of the V80

This section will describe the internal units and
pipeline architecture of the V80 adopted to achieve a
10-MIPS performance.

4.1 Internal Units of the V80

Figure 11 shows a block diagram of the V80. The V80
is composed of eleven individual units: the Access Con-

119

System Bus 30
" Address Bus
; 7 3-2 Address Parity
— o Data Bus
y 1 hr Data Parity
Parity Enable
Bus Error
¢ $
R4 K]
N NI EA
1 |3 ale| & &
<< als| & £
A A YYy V.
- L]
V8o Main Memory

Fig. 10 Example of a Parity System.

trol Unit (ACU), the Data Control Unit (DCU), the In-
struction Cache (I-CHE), the Data Cache (D-CHE), the
Predecode Unit (PDU), the Branch Prediction Unit
(BPU), the Instruction Decode Unit (IDU), the Pipeline
Control Unit (PCU), the Effective Address Generator
(EAG), the Memory Management Unit (MMU), and
the Execution Unit (EXU). Each unit is one part of the
seven stages of the pipeline structure. With this seven-
stage pipeline structure, six instructions can be executed
simultaneously.

(1) Access Control Unit (ACU)
The ACU controls almost all accesses to the internal
cache memories, external main memory, and I/O
device. The access requests come from the EAG (the
value of the indirect address) via the MMU, the EXU
(operand data) via the EAG, the MMU (TLB refresh),
and the on-chip caches (cache fills). The ACU accesses
them successively according to the predetermined priori-
ty. The ACU also detects memory hazards.

(2) Data Control Unit (DCU)
The DCU maintains and controls a read buffer that can
hold a maximum of four read operands, and a write
buffer that can hold a maximum of two write operands.
The DCU prefetches operand data prior to an instruc-
tion execution in the EXU that processes the data, pro-
viding the data to the EXU without any time delay
when the execution begins. The DCU also takes the part
of transferring string data when the EXU executes a
character string manipulation instruction.

(3) Instruction Cache (I-CHE)
The I-CHE is an on-chip cache that is used for instruc-
tion accesses and that acts on physical addresses. It con-
sists of a tag memory and a 1K-byte data memory. The
organization of the I-CHE is two-way set associative,
and each line is 16 bytes wide.

(4) Data Cache (D-CHE)
The D-CHE is an on-chip cache that is used for data ac-
cesses and that acts on physical addresses. It consists of

120

Y. Komoto, T. Saito and K. MINE

Address
ACU Bus

UROM | |

DU

Coprocessor f
Address Bus

PDU

rocessor
gglpa Bus

A 4

BPU l

Address
Bus

*lll.!lnln--n*lu

Data Bus

T—b

1Y

1.

HHH

Fig. 11

a tag memory and a 1K-byte data memory. The
organization of the D-CHE is two-way set associative,
and each line is 16 bytes wide. The write strategy of the
D-CHE is write-through. If write allocation is
registered, cache allocations are made on write misses.

(5) Predecode Unit (PDU)
The PDU transfers instruction codes prefetched by the
branch prediction unit (BPU) to the 16-byte instruction
queue. The PDU divides the instruction codes into an
operation code, addressing modes, and data
(displacements, immediates, and direct addresses encod-
ed in the addressing field).

(6) Branch Prediction Unit (BPU)
The BPU controls prefetching instructions and branch
prediction. When a branch instruction is executed and
branches, the BPU registers the pair of the location ad-
dress and the target address of the branch instruction in
the 64-entry branch prediction table. If the same branch
instruction is prefetched again, the BPU prefetches the
instructions not of the following location but of the
target address. This is branch prediction, which was de-
scribed in Section 3.2.3.

(7) Instruction Decode Unit (IDU)
The IDU decodes instructions transferred from the
PDU. The results of decoding are transferred mainly to
the EAG and the EXU. The information used in calcula-
tion effective addresses is transferred to the EAG. The
information for execution of instructions is transferred
to the EXU via an instruction decode queue can hold

Instruction Flow
Data Flow
Real Address
Virtual Address Flow
Monitoring Address
Coprocessor Bus

Flow

Block Diagram of the V80.

three items of information.

(8) Pipeline Control Unit (PCU)
The PCU detects pipeline hazards such as register
hazards and flag hazards and controls them to achieve a
smooth pipeline process flow.

(9) Effective Address Generator (EAG)
The EAG receives the information generated in the IDU
to calculate an effective address, which is a virtual ad-
dress of an operand. The calculated effective address is
ordinarily transferred to the MMU to be translated to
the real address.

(10) Memory Management Unit (MMU)
The MMU translates the virtual address to the real ad-
dress and detects any protection violation. The MMU
has a 64-entry, two-way set associative TLB.

(11) Execution Unit (EXU)
The EXU executes instructions and handles interrupts
and exceptions. It performs data processing on the basis
of the information from the IDU. Execution of an in-
struction begins when the instruction decode has been
finished by the IDU. If operand data required for ex-
ecuting the instruction are not prefetched by the DCU
at the beginning, the EXU waits until they have been
prepared.
The EXU is controlled by 44-bit-wide, so-called vert-
ical-type microinstructions. To implement the instruc-
tion set of the V80, about 8K words of microcode are
used.

Overview of 32-bit V-Series Microprocessor

4.2 Pipeline Operation of the V80

The V80 aims to execute each instruction and the
critical processing areas at high speed (typically 10
MIPS at 25-MHz frequency). Another of its aims is to
pipeline instructions effectively. Even though instruc-
tions can be executed very fast, it is useless if the instruc-
tion code supply to the pipeline is poor or it it takes
many clock cycles for an instruction decode. Therefore,
the V80 pipeline structure is designed to execute each
pipeline stage in two clock cycles, in addition to basic in-
structions. It has been determined that the number of
pipeline stages is seven while that of the V60 and V70 is
six. To decode variable-length instructions (this is also a
characteristic of the V-series architecture) in two clock
cycles, the instruction decode stage is divided into two
stages, a predecode stage and a decode stage. To pro-
vide the microprocessor instruction codes and data con-
tinuously, the V80 employs two types of on-chip cache.
The pipeline structure of the V80 consists of the follow-
ing seven stages. These stages operate asynchronously.
Instruction prefetch
Instruction predecode
Instruction decode
Effective address generate
Address translate
Read operand prefetch
Data process (instruction execute).

With this pipeline structure, a maximum of six instruc-
tions will be executed at a time, on condition that an in-
struction is given to each stage of the pipeline every two
clock cycles. Figure 12 shows the result of a gate-level
simulation of the pipeline operation, in which an in-
struction sequence including a branch instruction is
predicted successfully by the branch prediction
mechanism. The six instructions in the figure are pro-
cessed simultaneously, and all instructions, including
the branch instruction, are executed in two clock cycles.

NonhAhLDd -

5. System Level Performance Increase

Fundamentally, the V80 accesses an external memory
in two clock cycles. Since the operation frequency is
more than 25 MHz, several factors, such as a DRAM
delay time, may prevent construction of a system in
which the V80 can access the memory with no wait state
inserted into the bus cycles. Because of the decrease in
system costs a DRAM will be used rather than an expen-
sive SRAM. In this case, the V80 can decrease the loss
in performance resulting from the insertion of wait
states. Figure 13 shows the relationship between perfor-
mance and the number of wait states. This figure shows
normalized values when there are no wait states. The
Dhrystone benchmark version 1.1 is used. Because of
the on-chip caches, the loss in performance of the V80
is smaller than that of the V70, even if the number of
wait states varies more. In both the V70 and the V80,
the performance decreases less than 10 percent for each

121

(A) Illllllllllllllllulf::o?':
Instruction Prefetch
Predecode 2 -
Decode
Effective Address Generate
Address Translate
Operand Prefetch
Execute

(8
Instruction Sequence

notw 3[r1](r23), r10 [savaon]
movz.hw 0x3800([r3], r25 ©zz=a

neg.b [ﬂ]. ris —
not.h r2], r16 [N
movz.bh 0x10[r3], r26 [
Jmp label1 —

label1: mov.w [r1], r10 Lo
add.w 4[r2], r11

Fig. 12 Pipeline Structure of the V80.

1.00
0.90 b\"
0.80
0.70
0.60 P~
0.50
0.40
0.30
0.20
0.10
0.00

N

'\“\ - v70

©- v80

wait

Fig. 13 Wait State Affection.

wait state insertion.

The V80 provides a bus mode, called advanced
address mode that issues an address and bus status in ad-
vance, at least one clock earlier than an ordinary bus
cycle. In this bus mode the DRAM can gain one clock
for the access time. Therefore the access time is reduced
to 80 ns, even though the V80 is operating at 25-MHz
frequency.

6. Built-in Test Functions

The V80 has a complicated internal structure, so elec-
trical testing or sorting of LSI chips is difficult. It
employs a lot of memories such as a TLB, a branch
prediction table, on-chip caches, and a microcode
ROM. If some parts of these memories are faulty, there

122

is no way to find the fault correctly. Therefore, built-in
test functions were considered at the beginning of the
V80 development. This section describes these func-
tions.

6.1 Self-Diagnosis

The V80 can self-diagnose the internal resources of
its EXU, such as ALUs, registers, and control circuits.
This self-diagnosis is invoked when the outer terminals
are in predetermined states, and is carried out by
microcode.

6.2 Microcode ROM Dumping

The V80 includes 44-bit 8K-word microcode ROM
(MROM) and has a function that dumps its contents.
The MROM dumping is invoked when the outer ter-
minals are in predetermined states, and the contents of
the whole MROM are output on the coprocessor bus
every clock cycle.

6.3 TLB, Branch Prediction Table, and Cache Dump-
ing

The V80 can dump the contents of the TLB, the
branch prediction table, and the on-chip caches onto
memory. The contents are composed of tag memory,
data memory, and LRU bits. The dumped contents can
also be restored to the respective V80 registers. These
dumping and restoring operations are performed by a
V80 program.

7. Summary

An overview of the V-Series 32-bit microprocessors,
especially the V80, has been given.

Y. KomoTto, T. SaiTo and K. MINE

The advances in semiconductor technology permit
microprocessor designers to implement techniques that
have been used in mainframe computers, especially
pipeline structures, cache memories, and branch predic-
tion mechanisms. The V80 takes advantage of these
techniques and aims to achieve a performance of 10
MIPS and better. The main strategy is to perform each
pipeline stage in two clock cycles. As a result, the V80
improves performance of the V70 by two to four times.

Acknowledgement

The authors would like to thank the members of the
V60/V70/V80 project. The limited space does not
allow the authors to acknowledge all of them, but they
would like to expresstheir special thanks to Dr. K. Kani,
M. Kimura, and I. Fijitaka for providing the opportun-
ity to write this paper, and for their helpful suggestions
and support.

References

1. Yano Y. et al. A 32-bit Microprocessor with On-Chip Virtual
Memory Management, ISSCC Digest of Technical Papers (Feb. 1986),
36-37.

2. KANEko H. et al. A 32-bit CMOS Microprocessor with Six-Stage
Pipeline Structure, Proc. 1986 FICC, IEEE (Nov. 1986), 1000-1007.
3. YaNo Y. et al. V60/V70 Microprocessor and Its System Support
Functions, COMPCON ‘88 Digest of papers (Mar. 1988), 36-42.

4. KiMURA S. et al. Implementation of the V60/V70 and Its FRM
Function, IEEE Micro. (Apr. 1988), 22-36.

S. Nakavama T. et al. An 80b, 6.7 MFLOPS Floating-Point
Processor with Vector/Matrix Instructions, ISSCC Digest of
Technical Papers (Feb. 1989) 52-53.

6. NakavaMa T. et al. A 6.7 MFLOPS Floating-Point Coprocessor
with Vector/Matrix Instructions, IEEE Journal of Solid State
Circuits, (Oct. 1989), 52-53.

(Received August 31, 1989)

