.

MREE S >R T L)

\1
\

YEp144E 8 A

Artifact Centered DiscouseX {89 D
o340 VI bz TOEREH AR

Toshiyuki Takeda
Center for Information and Media Studies
Kwansei Gakuin University
Uegahara 1-1-155
Nishinomiya, Hyogo, 6628501, JAPAN
takeda@kwansei.ac.jp

Daniel Suthers
Laboratory for Interactive Leaming Technologies
Department of Information and Computer Sciences
University of Hawai'i at Manoa
1680 East West Road, POST 309
Honolulu, HI 96822, USA
1-808-956-3890
suthers@hawaii.edu

Abstract

Pinki¥Artifact Centered Discourse® 2t MMZE3E&, XHXNebX—TRYD 7—F4 77

7 FO—BERTLE

ATHD, ZDVAT hidiwW

1. Introduction

In a temporally and spatially distributed environment
such as the Intemet, tools such as Email, Netnews and
the WWW were created to facilitate the sharing of
knowledge. However, these tools are sometimes less
effective than direct communication such as face-to-
face meetings because they don’t facilitate context
sharing. When participators talk about a document or
web page (which we will call an artifact), email and
other web-based tools are not always sufficient for
such context sharing. Users only see the quoted part
of the artifact directly in the usual quoting convention
and it is too large to read when the whole document is
attached to the message. Some implications of this
deficiency of the tools for knowledge sharing are
illustrated by the following examples.

With the expansion of the Intemnet,
opportunities for security breaches by computer
viruses have also expanded. Since system
administrators cannot keep up with the new viruses
that are always being developed, it is often the users
who must collaborate to exchange knowledge on the
vulnerabilities of networking devices and services. As
Code Red and the Nimda Worm spread globally in
2001, the understanding of how to prevent such

«om&a&?%tﬁ;&‘z&w FELLROEBREXBRTHLDOVRAT
—r3—{T A
HBEINTEY, HWHLRWT 7V FCHATI LN TES,

BeENZ Y ==V L FOXT U 7k
BXTIE, DA F—%y FOX
2) YRATAD2—F—F)FE

(S
Ly
A
b

5 RO EHEIZIT D Artifact Centered Discourse?® BE{E
AvE—Tz=z—A (3) R7—F4777 b2FFE—HMZONTHRLS,

viruses was not sufficiently disseminated from system
administrators to users. Although companies like
Microsoft and CERT, as well as media like ZDNet,
published a plethora of security information; many
users did not take action. Myriad security advisories
confused many users because the system environments
they covered differed from those of the users. Here,
the issue of context sharing comes into play, as many
users cannot identify the context of the messages they
read, or identify the portions of the messages that are
relevant for their own context.

The seriousness of the situation is captured
well by Microsoft's FAQ as follows: “Security patches
are released to address specific security vulnerabilities.
Many times, these vulnerabilities may not be
applicable to your specific installation. You should
carefully read each security bulletin to determine if the
patch is applicable to your situation.” However, even
when users follow vendor instructions, problems may
still arise. There is a pressing need for better tools with
which users and system administrators can receive
relevant information and obtain help in its application.

1 Designing and Implementing an Online Software Supporting Artifact Centered Discourse

Toshiyuki Takeda, Daniel Suthers

Kwansei Gakuin University, University of Hawaii at Manoa

Artifact-Centered Discourse

One solution to these problems is the creation of
online tools to increase users’ understanding of
artifacts such as security advisories or open source
code. These tools should enable users to share their
knowledge about these artifacts. We call the type of
discussion and argumentation that should be supported
in the applications just described Artifact Centered
Discourse [Suthers]. These discussions are also called
Anchored Discourse [Guzdial] or Contextualized
Discussion [TECFA]).

Users need online tools that support
discussions about artifacts (such as source code or
security bulletins) by making it easy to refer to and
annotate parts of the artifacts. This is not as simple as
it sounds, since each user operates in a different
system environment and has different knowledge.
Some requirements of these tools can be considered as
follows.

1. Discuss the contents of the artifacts. It is
important to clarify and share assumptions,
background knowledge and limits of applicability,
which are not noted in the artifacts. Discussion in
a shared context requires support of two
functions:

» Enable users who are reading and responding
to a threaded discussion about an artifact to
access and refer to the relevant passages of
that artifact. Since artifacts such as security
advisories are quite large, this function
should highlight the portion of the document
that is being discussed.

¢ Enable users who are reading an artifact to
access comments on a specific annotated
region of an artifact. This allows users to
share knowledge with someone who has the
same interests,

2. Summarize and share as a new artifact the created
knowledge that became clear to participants in a
discussion.

3. Enable users of a variety of hardware and
software platforms to access the community
workspaces (including artifacts and discussions).

This paper describes the software system
Pink, which was created to support Artifact Centered
Discourse. Pink supports the understanding and
creation of artifacts that reflect intellectual discussions
among participants. Since Pink is client server
software, it requires only a WWW browser for use.

2. Related Work

Previous research has shown that annotating text
online enables participators to find relevant
information more easily. Its central difference is that
the documents provide a context for discussions.

The Annotation Engine [AnnotationEngine] is a kind
of proxy server made by a set of Perl scripts and
inspired by Crit Mediator. It is designed to help
users read web pages with the use of annotations.

ComMentor [Roscheisen] is a research prototype
for annotating web pages with a special
customized browser.

" CoNote [Davis] is a server side system that cnables

students to discuss homework assignments and
web handouts. CoNote is a kind of proxy server
that stores page contents. It provides a web-based
front-end for annotations that can be anchored at
pre-designated spots. CoNote annotations can
only be placed in locations that the author of the
document has designated as appropriate.
Research has found that shared annotations of
documents provide a richer communication forum
than electronic media such as newsgroups,
bulletin boards and email lists.

Cadiz [Cadiz] was a Microsoft Office 2000-based
annotation system used by members of a
development team (450 people created 9,000
shared annotations on about 1,250 documents
over 10 months). Context based discussions are
viewed as an improvement over previous work
practices. Their case study is based on on-site
experience.

CritLink Mediator [Yee] is an open source server side
proxy software. A user enters a word or phrase to
set an annotation point.

The Journal of Interactive Media in Education [JIME]
is a polished and very successful system for
collaborative and open peer review of journal
articles. It associates discussion threads with
articles and sections of articles in a frame-based
web environment.

Kukakuka [SuthersXu] is under development in the
same laboratory as Pink (the Laboratory for
Interactive Learning Technologies at the
University of Hawai'i at Manoa) and has many of
the same objectives. A collection of Java servlets
associates web pages with NNTP discussion
groups and threads, presenting these together in a
web client using frames. Kukakuka is being used
to support discussions in a course on Human-
Computer Interaction.

WikiWiki [WikiWikiWeb] is a collaborative software
application, enabling web documents to be
authored collectively using a simple markup
scheme and without the content being reviewed
prior to its acceptance. WikiWiki is not software
for annotation, but users can make annotations to
any document that is created in the system.
Annotations are shown as embedded in the
WikiWiki document.

Pink differs from the above software in several ways.
Various kinds of documents can be used as artifacts in

Pink. Many of the systems described above support
only annotations to web pages, whereas Pink supports
not only web page annotation but also embedded
annotation to documents, such as WikiWiki
documents, created within the system. The current
version of Pink does not contain a function for setting
an annotation on part of a web page. This issue is
described in the “Future Work” section. Pink also
enables collaborative writing with WikiWiki
functionality. Furthermore, users can make annotations
to a real world document, such as a book or a journal
article, by discussing excerpts posted by users.

3. A Sample User Scenario

This section presents a scenario of Pink in action. First
we provide some necessary background knowledge
conceming Pink’s objects and user roles. Then we
show how a manager would create a new workspace
and how users would read and contribute messages in
the context of artifacts.

User Objects

The user manipulates four types of objects. They are
Workspace, Artifact, Reference, and Note. An artifact
is the document under discussion. An annotation point
can be attached to an artifact, and a reference connects
an annotated point in the artifact with a comment chain
composed by notes. Notes are threaded by following a
comment chain. A workspace is created and opened
for a certain goal, such as understanding the Nimda
Internet Worm. Workspaces have artifacts, references,
and notes as their constituents.

Three objects exist out of the workspace yet
are dependent on this workspace. An event signal and
relevant information is sent from the workspace to
dependent objects if an object in the workspace is
changed. The repository is essentially to Pink, as it
provides a persistent storage for the workspace and its
constituents. The Logger and Mailer are service
objects for administration and management.

User Roles

The possible user roles in the present version of Pink
are Administrator, Manager, and User. Administrator
has the role of maintaining the entire Pink system,
including user management. Manager and User are
end user roles. A User can set an annotation to the
artifact, make a new threaded discussion and append
an argument to the threaded discussion. Since
authentication and authorization functionality is not
implemented in the present version, every user has
Manager and User roles. As with a WikiWiki, all users
have the same authority.

User Interface

One screen of the user interface is shown in Figure 1.
On the left is an artifact, and on the red-highlighted
“Concept Virus” is an annotated point (#1). Headers
from the threaded discussion are displayed in the top
right. The first header links to the front page of the
group, and the remaining three the top-level headers
(2, 3, 4) correspond to different documents (security
bulletins) under discussion. The user is presently
viewing document #4, CA-2001-26, and its threaded
discussion. The thread corresponding to annotation
point {1] is visible in this threaded discussion. The
user is reading a message in the lower right frame. The
following three subsections provide example user
scenarios.

Managing a Workspace

This section describes how a manager creates and
populates a workspace.

First, an administrator of Pink creates and
opens a new workspace according to a manager’s
request. The workspace is created on the repository,
and basic files and directories are generated. Access to
the workspace of the manager and user is granted.

Then the manager opens the workspace for
the first time, and a page called FrontPage is
displayed. This document consists of two elements.
One describes the workspace and its contents. Another
is an empty list of artifacts in the workspace. When
artifacts are added to the workspace, they will be listed
with author name and other information such as
creation date.

Next, the manager appends an artifact. The
manager clicks a button on the FrontPage*and moves
to an administrator page. The following types of
artifact can be used in the current version of Pink.

o Plain text: A plain text

e WikiWiki : An editable plain text with special
tags to show the structure of this text

e Web page: A pointer to a certain web page.

e Book: Reference information about a book.

¢ Article: Reference information about a
joumal article.

The method for adding an artifact depends on its type
and location. The manager either looks up a document
that already exists in the repository; uploads a
document from a client; writes a new document
directly in Pink with the WikiWiki function; or points
to an existing web page. The manager can also create a
citation to a paper-based or other extemnal artifact such
as a book or journal article.

The next two sections show how users read and write
in the workspace.

Figure 1. Objects of Pink System

Reading and Annotating Artifacts Although an annotation point cannot be created
When a user enters the workspace, the FrontPageis for other artifacts such as books, journal articles, or
shown, listing both the artifacts and the threads in the ©€Xternal web pages, a similar effect can be achieved as
workspace. Thus, a user can begin either by selecting follows. Pink provides a place to enter the relevant

and reading a document artifact or by selectingand textual excerpt to be discussed. The excerpt is then
reading topic threads of interest. References are stored in a plain text or WikiWiki artifact associated
displayed as links in both directions. When the useris With the citation to the external document. This

reading a document and encounters an annotation, the ~ 2ssociated artifact can then be annotated in the manner
user can simply click on the annotation’s reference already described as a proxy for the actual document.
number in the artifact to display and read the related Once a reference has been created, it shows up

discussion. Conversely, a user who is reading a as a new thread in the discussion thread view (e.g.,
dxsqus_swr} can click on the numbered references (e.g., “CA-20011-26 Nimda Worm”, Figure 3). The user then
“[1]" in Figure 3) to view the referenced artifact. (The 54ds a Note to the Reference by clicking on “[Write

referenced artifact may be the document itself, or a link Comment),” which loads a simple form for entering the
or citation to the artifact in the case of web pages or Njote.

external documents, respectively.)

. Reading and Writing a Comment

A user creates a reference to a portion of a . - .
plain text or WikiWiki artifact as follows. The user T_he subject of the created Note is d'sﬁl“yed in the
shifts to a page for inserting a special tag when the user g|scuss10n ! hre:?d vne\\:: fqr example, “What does
clicks a button (“Annotate,” Figure 2) in the artifact- conce;l) t vmt': lr:,xean, F_xgure 3. Subsequently, users
browsing page. The user then inserts tags to indicate the $2" P} to the Notes as in a normal threaded
extent of the reference, and clicks submit. A reference isdlscusswn.
then created in the repository and threaded discussion
menu page.

Figure 2. Sample Screen Shot

The Reference by which the markup was
carried out is shown as an anchor in the document
with the number of the reference. If the location is
pointed at with a mouse, it will be highlighted. If a
user clicks this part, the corresponding part in the
threaded discussion menu is shown and a user can read
notes attached to the annotation point. Thus, the user
obtains relevant information without wading through
irrelevant threads.

Conversely, if a user clicks the number of a
reference on a discussion thread page, the part of the
artifact that includes the annotation point is shown.
Thus, the user can see the context of the annotation.

4. Software Design

Software Requirements

The current version of Pink is designed and
implemented as a CGI script collaborating with a
WWW server and is written in the Ruby programming
language. Ruby is a pure object oriented script
language that runs in an interpreter. No other special
library on the web server is required for running Pink.

A W3C standard based web browser can be
used as a Pink client. No special plug-in software is
required to use Pink. Pink uses CSS and JavaScript for
usability. However it is not required for the client
browser.

A frame is used for the user interface of a
Pink client. Although there are some usability issues
associated with frames, frames enable artifacts and
notes to be scrolled independently of each other while
also being viewed simultaneously. This independence
is important for sharing contexts in the Artifact
Centered Discourse approach. However, browsers
without frames, such as Lynx, can still access Pink,
since it is possible to display and operate each frame
(artifact, threaded discussion menu and note) as a
separate page.

Architecture

Pink has 3-tier architecture consisting of Presentation,
Model and Repository. Each part is exchangeable and
extensible. Each object in Pink has a unique
identification number, creation date, modified date and
access date used for object management. Each object
also has slots, such as “author” or “subject” for every
object class. A certain object slot, such as “inreplyto,”
points to other objects.

Figure 3. Discussion Thread View

Presentation

Considered abstractly, Presentation layer receives a
directive from a user and sends a message to an object
in the model, showing the response to a user. In terms
of the current implementation of Pink as a web
application, the presentation layer receives a parameter
from CGI and changes it to a message that an object
understands. The response from the object is formatted
as HTML and returned to the user. The presentation
layer can be replaced with a GUI client in the future
without need to modify the other layers.

The Presentation layer has two important
objects, WebComponent and WebTemplate. A
WebComponent is an adapter object to connect a
model and a client. A WebComponent wraps an object
in the Model layer and sends it messages translated
from CGI parameters received from clients. Before a
WebComponet is evaluated, a WebTemplate is bound
to it. The WebComponent generates the HTML to
retum to a client by evaluating messages contained in
the WebTemplate. A WebTemplate is written in
standard htm! format and can include another
WebComponent. List 1 shows a sample WebTemplate
for Note. Each element in #{} (such as “author” or
“subject”) is a message that can be understood by a
Note object and evaluated with a Note object bound to
a WebComponent. For example, List 2 shows the
result of evaluating the WebTemplate of List | with
author “Incident Team™ and “Concept Virus.”

<html><head><title>Note
view</title></head>

<body>

Author: #{author} Subject:
#{subject}

</body></html>

List 1. A sample of WebTemplate

<html><head><title>Note
view</title></head>

<body>

Author: Incident Team Subject:
Concept Virus

</body></html>

List 2. A sample of WebTemplate

In List 3, attribute class “WebComponent” is
used. It is used in tag “span” or “div,” and tells the
system to create a WebComponent. A system binds
this WebComponent and another WebTemplate
specified by CGI parameter or system script. When a
WebComponent in 2 WebTemplate is evaluated, the
inner body part is shown. For example, List 4 shows a
result when a dummy WebComponent associated a
WebTemplate in List 3 and a WebComonent bound to
a note with author “Incident Team” and “Concept
Virus” is evaluated.

<html><head><title>Note
view</title></head>

<body>

<p>Reply to <span
class="“WebComponent”
id="“note”>

</p>

</body></html>

List 3. A WebTemplate including the other
WebComponent

<html><head><title>Note
view</title></head>

<body>

<p>Reply to

Author: Incident Team Subject:
Concept Virus

</p>

</body></html>

List 4. A result of evaluation for WebTemplate
including the other WebComponent

Repository

The Repository is a persistent database in which to
store objects. It is designed to use simple interfaces
like aspace-based repository, TupleSpace. [Gelemter].
In Pink, system processes perform simple operations
to write new objects into a Repository, take objects
from a Repository, or read (make a copy of) objects in
a Repository.

Because the system has simple interfaces and
the objects have a simple structure, it is easy to
implement a Repository in many ways. In the current
version, the Repository is implemented in two ways:
Ruby's simple persistent object storage Pstore, and a
plain text file. We plan a future repository
implementation using a relational database and NNTP
or IMAP for scalability and stability.

Model

The Model is a key component of the Pink system.
Pink has flexibility and extensibility because every
artifact is represented as an object in the Model layer
implementing the abstract interface. A Model consists
of a Workspace and Artifact, Note and Reference
objects derived from the Workspace. There are also
objects related to users and access control.

Workspace

The Workspace is a place to share and
exchange knowledge by setting an annotation on an
artifact and writing a note to a threaded discussion. A
user can add or create an artifact, annotate it, and write
a comment about the annotated part of an artifact.

Artifact

The Artifact object is used for representing a text
document, web page, a book or joumnal article, etc.
There are two kinds of Artifacts: structured and
unstructured. The structured Artifact is composed of
parts like W3C DOM. An annotation point can be set
on each part of an Artifact. Sometimes a part is
divided into small parts to set an annotation point. In
DOM terms, when a user sets an annotation point, a
newly created Reference object derived from
“Element” is inserted into “Document” instead of the
Element that is to be annotated. The annotated
Element becomes a child node of the Reference node.

For unstructured artifacts, such as books or
articles, it is impossible to use an annotation point
directly. However, this is not a concem, because
nearly the same effect can be obtained if the user
enters text to cite into a reference object, where it can
be seen in the threaded discussion menu.

Reference is a pointer object that refers to
either a part or whole of an artifact object and is often
a root point of a discussion thread.

A Note object includes a user's writings about
something in a workspace and usually has a pointer to
either a reference object or another note object. This
pointer is called “inreplyto,” a term from email and
netnews. A Note object also has “references”, a list of
objects that reference the Note via their own
“inreplyto.”

A workspace knows what objects it has and
can respond to a user query request, such as “all notes
associated with this document.” A workspace can
generate and return a threaded discussion by gathering
all Note objects that reply to reference objects
associated with a certain artifact.

5. Future Work

The current version of Pink allows the user to set an
annotation point on the entire external web page.
Annotation of parts requires a filtering object that
takes in an external page and changes it into a model
object. This is a kind of proxy server function, the way
CoNote and CritLink Mediator work. Pink already has
similar functionality, but there are two reasons not to
deploy this function as a service now.

One is the problem of intellectual property
rights. Rewriting a certain page and showing this
revised page to a user may not allowed in some cases,
even though Pink just appends tags and doesn't change
any contents of an artifact. For the Internet community
to share knowledge, flexible usage should allow at
least proper quotation.

Another reason is the problem of version
management. The Web page used as a target artifact
should embed a tag referred in the structure of artifact
that is not changed. However, Intemet documents on
active sites do change, especially security advisories.
The new version of the artifact may not include all the
contents mentioned in the past discussion. When the
system detects changes in an extemnal web page or
finds that a discussion thread is connected to obsolete
content, the simplest approach would be to treat the
old annotation and discussion as obsolete, and to only
display non-obsolete and new annotations.

However, valuable knowledge may lie in
these “obsolete” discussions. Consider for example a
workspace recording design rationale for software
revisions, or a leaming application in which a student
posts a document on a web server, an instructor
comments on it, and the student then revises the
document accordingly. The discussion for such

frequently changed sites needs to include older
versions. A better approach is needed. Ideally, the
system would enable users to browse the differences
between old and new Artifacts, and provide access to
the old discussion thread generated by the prior
versions.

On the other hand, there are no problems for the
contents created in the Workspace because the system
can show the part changed in the artifact easily.

6. Summary and Conclusions

The Web has fostered explosive growth in a variety of
online communities. Many of these communities
would benefit from better tools for online discussions
that are focused on the interpretation and/or creation of
shared documents and other artifacts. Functional
requirements of tools for artifact-centered discourse
include the ability to move between discourse and
artifacts in both directions: retrieving a discussion
associated with an artifact or portion thereof; and
bringing up an artifact that is referenced by a
contribution to the discussion. This paper described
the architecture and interface of Pink, a software
system that meets these functional requirements. The
system is based on an abstract 3-tier server
architecture that is designed to be extensible and
exchangeable. The implementation described in this
paper uses CGI scripts in the Ruby object oriented
language and standard web browser clients.

The significance of this work and similar
work by others goes beyond its potential for
improving artifact-centered discourse in online
communities. It also represents a better approach to the
design of web-based tools for collaboration, in which
the design is driven by an understanding of the
interactions to be supported.

References

[AnnotationEngine]
(http://cyber.law.harvard.edw/projects/annotate.ht
ml)

[Cadiz] JJ Cadiz, Anoop Gupta, Jonathan Grudin.
Using Web Annotations for Asynchronous
Collaboration Around Documents. Proc. CSCW
2000, 309-318. 2000.

[Davis] James R Davis and Daniel P. Huttenlocher.
Shared Annotation for Cooperative Leaming.
Third International World-Wide Web Conferenc.
1995

[Gelernter] David Gelemter. Generative
Communication in Linda. ACM Transactions on
Programming Languages and Systems, Vol. 7,
No. 1, pp.80-112. 1985.

[Guzdial] Guzdial, M. (1997, December). Information
ecology of collaborations in educational settings:
Influence of tool. In Proceedings of the 2na
Intemnational Conference on Computer Supported
Collaborative Learning (CSCL *97), (pp. 83-90).
Toronto: University of Toronto.

[JIME] http://www-jime.open.ac.uk/index.html

[Roscheisen] Martin Roscheisen, Christian Mogensen
and Terry Winograd. Beyond Browsing: Shared
Comments, Soaps, Trails, and On-line
Communities.

[Suthers] Suthers, D. Collaborative Representations:
Supporting Face-to-Face and Online Knowledge-
building Discourse. Proceedings of the 34th
Hawai'i Intemational Conference on the System
Sciences (HICSS-34), January 3-6, 2001, Maui,
Hawai'i (CD-ROM), Institute of Electrical and
Electronics Engineers, Inc. (IEEE). 2001.
(http://lilt.ics.hawaii.edu/lil/papers/2001/Suthers-
HICSS-2001.pdf)

[SuthersXu] Daniel Suthers and Jun Xu, “Kukakuka:
An Online Environment for Artifact-Centered
Discourse, Education Track of the Eleventh
World Wide Web Conference (WWW 2002),
Honolulu, May 7-11, 2002, pp.472-480

[Tecfa] TECFA newsletter http://tecfa.unrge.ch/

[W3C DOM] The World Wide Web Consortium.
Document Object Model (DOM) Level |
Specification. (http://www.w3.org/TR/1998/REC-
DOM-Level-1-19981001/) 1998.

[WikiWikiWeb]
http://www.c2.com/cgi/wiki?WikiWikiWeb

{Yee] Ka-Ping Yee. CritLink: Better Hyperlinks for

the WWW. Hypertext 98. 1998.

(http://www.crit.org/~ping/ht98.html)

