
IPSJ SIG Technical Report

An RTOS-based Platform for LEGO Mindstorms EV3

Yixiao Li1,a) Takuya Ishikawa1 YutakaMatsubara1 Hiroaki Takada1

Abstract: In this paper, we describe the design and implementation of a platform for developing real-time applica-
tions running on LEGO Mindstorms EV3. The platform is based on the TOPPERS/HRP2 kernel and the porting of the
kernel is also described. Many device drivers such as PWM controlling and Bluetooth are developed for this platform.
The development work has been reduced a lot by proposing an approach to reuse the Linux kernel-space device drivers.
An API for C language is implemented and its performance is evaluated. At last, we show the development process of
our platform by developing a sample program for a self-balancing robot.

1. Introduction
Lots of researches and publications have shown that using

robots is playing an important role in the graduate level research
and college education such as computer science [1], [2], [3], [4],
[5]. For example, Kumar and Meeden showed [6] that building
a robotics laboratory can provide a pedagogical tool for teach-
ing artificial intelligence (AI) courses more effectively. Similarly,
Larsen and Wang Yi [7] developed a tool box called UPPAAL
for modeling, simulation and verification of real-time systems by
using a robotics kit to create the platform for experiments.

Mindstorms [8] is a series of robotics kits released by LEGO
Inc. since 1998. They include a programmable brick computer
called Intelligent Brick that control the whole system and a set of
modular sensors and motors, and LEGO blocks to allow users
to build robots flexibly. The latest generation of Mindstorms
series is called LEGO Mindstorms EV3 [8]. The capability of
Mindstorms EV3 has increased greatly comparing to its prior
generation model, the LEGO Mindstorms NXT which runs on
a 48MHz ARM7 CPU and has only 64KB RAM. Mindstorms
EV3 is equipped with a 300MHz ARM9 CPU and 64MB RAM
which allows it to run a Linux-based firmware. It also supports
modern wireless technologies such as Wi-Fi and Bluetooth v2.1
Enhanced Data Rate (EDR).

Mindstorms EV3 provides a standard development environ-
ment based on the Laboratory Virtual Instrument Engineering
Workbench (LabVIEW). LabVIEW uses a graphically dataflow
programming language whose programming is done by dragging
and dropping icons into a line in order to form commands. The
development environment is shown in Fig. 1. Although the de-
velopment environment is friendly to those who are not familiar
with computer programming, there are some disadvantages for
the developers who are already familiar with common program-
ming languages such as C or C++ as described below:
• Hard to write complex programs: The graphical program-

1 Graduate School of Information Science, Nagoya University
a) liyixiao@ertl.jp

Fig. 1 The standard development environment for Mindstorms EV3

ming language is too simple to write programs with complex
logic. Even if it was done in some way, the source program
will become almost unreadable and unmaintainable. A small
change in the functions can lead to a lot of modifications.

• Lack of real multi-tasking support: The standard develop-
ment environment does support multi-tasking to some ex-
tent. However, it doesn’t support priority-based scheduling
and task synchronization primitives such as semaphores.

• No real-time guarantee: All programs developed by the stan-
dard development environment are running on a virtual ma-
chine which doesn’t provide any real-time guarantees for
various control operations.

• No third party devices support: The standard development
environment is not open source and doesn’t provide inter-
faces to add the support for third party devices.

Therefore, we decided to build a development platform for
those developers who are suffering from the disadvantages men-
tioned above. The main objectives of our platform are described
as below:
• Real-time guarantees: The platform should work on a real-

time operating system (RTOS) to provide real-time guaran-
tees. The use of RTOS also gives a chance to boot Mind-

1ⓒ 2014 Information Processing Society of Japan

Vol.2014-SLDM-165 No.33
Vol.2014-EMB-32 No.33

2014/3/16

IPSJ SIG Technical Report

Privileged Mode

Non-privileged Mode

Device Drivers

TOPPERS/HRP2

PWM Analog UART

BT LCD

API for C language

API Bindings

C++ …
Motor

Gyro

Ultrasonic

Applications

Service calls

Fig. 2 The architecture for our platform

storms EV3 up much more quickly than the default Linux-
based firmware which takes more than 30 seconds to boot
up.

• Programming with common languages: The platform should
allow developers to develop with common languages. At
least, an Application Programming Interface (API) for C lan-
guage should be provided. Moreover, an easy approach to
add the support for other languages should be available.

• Assistance for development: Features to assist the process
of development should be provided. For example, features
such as viewing task log through Bluetooth and transferring
applications wirelessly are preferred.

• Support for third party devices: The architecture of the plat-
form should be open to support the third party devices easily.

It is worth noting that this research was conducted as part of the
Education Network for Practical Information Technologies (en-
PiT) [19].

2. Design of the Platform Architecture
We designed the architecture of our platform to achieve the ob-

jectives mentioned above. The architecture is shown in Fig. 2.
We chose the TOPPERS/HRP2 (HRP stands for ”High Reli-

able system Profile”, and 2 is the version number) [9] kernel as
the kernel of our platform. HRP2 is an RTOS that satisfies high
reliability and safety requirements of large-scale embedded sys-
tems by introducing the protection functionality such as mem-
ory protection, object access protection and extended service call
functionality. With the protection functionality of HRP2, we are
able to protect the kernel from defects in applications.

Above the HRP2 kernel are the device drivers. Since Mind-
storms EV3 supports lots of features, there are many device
drivers to be provided, such as pulse-width modulation (PWM)
control driver for controlling the motors, universal asynchronous
receiver transmitter (UART) communication protocol driver for
UART sensors and Bluetooth protocol stack. Device drivers are
running in privileged mode and should provide extended service
calls which can be called in non-privileged mode.

Above the device drivers are the API for C language. It is im-
plemented with extended service calls provided by device drivers.

However, unlike the device drivers which are mainly focusing on
supporting the communication protocols, the API is focusing on
providing interfaces to operate particular devices such as servo
motor, color sensor, gyro sensor and ultrasonic sensor. The sup-
porting of other languages such as C++ can be implemented rela-
tively easily by wrapping the API for C language. The API should
be able to run in non-privileged mode.

The topmost are applications. Applications are developed with
APIs and running in non-privileged mode. Therefore, exceptions
and crashes of applications won’t affect the kernel.

To implement the whole architecture, there are some key issues
to be solved:
• HRP2 kernel has not supported AM1808, the processor of

Mindstorms EV3 yet. We are required to port the kernel to
AM1808 at first.

• The scale of device drivers is too large. The source code of
the stock Linux-based firmware has been released by LEGO
[18]. We analyzed it with CLOC (Count Lines of Code), a
statistics utility to count lines of code. The result shows that
there are still approximately 60000 lines of code even after
removing all the headers, blank lines and comments. And
it is important to note that this is just a statistics on the de-
vice drivers exclusive for Mindstorms EV3 such as PWM
control driver. If we also counted the generic device drivers
like USB or Bluetooth protocol stacks, the scale of device
drivers will be approximately half a million lines. Since it
is very difficult, if not impossible, to implement the device
drivers from scratch, we must find a way to effectively reuse
the existing source code such as the Linux-based firmware or
other open source project that can be applied to our platform.

3. Porting of the TOPPERS/HRP2 kernel
We ported the TOPPERS/HRP2 kernel to the processor

AM1808 used by Mindstorms EV3 by following the porting
guide provided by the TOPPERS project [9]. The porting in-
cludes the following parts:
• Driver for ARM Interrupt Controller (AINTC): AM1808 is

based on the ARMv5 architecture which doesn’t define a
common interrupt controller programming interface like the
Generic Interrupt Controller (GIC) used in the ARMv7 ar-
chitecture and after. Instead, it uses an interrupt controller
called AINTC defined by the processor [10]. Therefore, we
implemented the driver for it.

• Handling IRQ with priority and nesting: AINTC has the fea-
ture of hardware prioritization and nesting of interrupts. We
supported handling IRQ with this feature.

• Driver for the serial port: We implemented the driver for the
serial port so that it can be used through the TOPPERS serial
interface to provide functions such as outputting the logs for
debugging.

• Support for ARMv5 MMU (Memory Management Unit):
An MMU or MPU (Memory Protection Unit) should be
supported to enable the memory protection functionality.
AM1808 is equipped with both MMU and MPU [10]. Al-
though the implementation of supporting an MPU can be
done more easily, we believe that the lack of capability to

2ⓒ 2014 Information Processing Society of Japan

Vol.2014-SLDM-165 No.33
Vol.2014-EMB-32 No.33

2014/3/16

IPSJ SIG Technical Report

Fig. 3 The format of page table entries in ARMv5 architecture

protect memory space used by special registers would be fa-
tal for our platform to provide complete protection of the
kernel against applications. Therefore, we chose the MMU
solution.
Unlike the Linux which modifies and manages page tables
dynamically, the HRP2 kernel requires page tables for each
protection domain, which has its own page tables like a pro-
cess in the Linux, generated statically. The kernel switches
among protection domains to provide the memory protection
functionality. The hardest part is to implement the genera-
tions of page tables. The HRP2 kernel already supported the
MMU of ARMv6 architecture and later. Since there are lots
of similarities between ARMv6 MMU and ARMv5 MMU,
we decided to modify the implementation for ARMv6 to
support the ARMv5 architecture.
At first, we designed the translation rules from ARMv6 page
tables to ARMv5 page tables. The formats of page table en-
tries are shown in Figure 3 and Figure 4. The definition of
coarse page table entry is exactly the same. However, for the
section entry and small page entry, a lot of fields are intro-
duced in ARMv6 architecture. The S (shared) bit for sharing
memory with multiple processors, APX (access permission
extension) bit for restricting writing in privileged mode and
the XN (execute-never) bit for restricting executing are not
supported in ARMv5 but can be ignored in our platform. In
ARMv6 architecture, the cache policy for a page table en-
try is determined by TEX (type extension) bit, C (cacheable)
bit and B (bufferable) bit altogether. Since only C bit and
B bit are supported in ARMv5 architecture, we analyzed the
cache policy on both the architectures, and then defined a
translation table between them as shown in Table 1.
The most important difference between ARMv5 architec-
ture and ARMv6 architecture is the nG (non-global) bit. A
feature called application space identifier (ASID) is intro-
duced in ARMv6 architecture. With this feature, an entry
in translation lookaside buffers can be associated with a spe-
cific identifier, called ASID, to eliminate the requirement for
TLB flushes on most context switches. A page which will be
associated with an ASID is called non-global page. The nG
bit determines whether a page is non-global. Unfortunately,
the ASID feature is not supported in ARMv5 architecture.
Therefore, the TLB flushes becomes necessary when switch-
ing among protection domains.
Flushing the entire TLB at each time of protection domain
switching is very expensive and may have a negative effect
for real-time applications. An instruction to invalidate a sin-
gle TLB entry is provided in ARMv5 architecture. With
this instruction, we made that only non-global pages will

Fig. 4 The format of page table entries in ARMv6 architecture

ARMv6 ARMv5
TEX C B Cache Policy C B
000 0 0 Strongly order 0 0
000 0 1 Shared device 0 0
001 0 0 Outermost cache non-cacheable

Innermost cache non-cacheable
0 1

000 1 0 Outermost cache write through
Innermost cache write allocate

1 0

001 1 1 Outermost cache write back
Innermost cache write allocate

1 1

Table 1 Translation rules for cache policy between ARMv6 and ARMv5
architecture

be invalidated on protection domain switching. Since the
non-global pages are determined statically, we optimized the
TLB flushes further by generating the assembly code for in-
validating non-global pages statically, rather than managing
a list for non-global pages and traversing it at each time of
protection domain switching. We measured the performance
of the method which flushes the entire TLB and our imple-
mentation. The results show that flushing the entire TLB
takes 1232 CPU cycles and our implementation takes only
25 CPU cycles per non-global page. That means if the num-
ber of non-global pages is small, our implementation can
achieve a very low overhead on protection domain switch-
ing.

4. Porting of Device Drivers
As mentioned earlier, the scale of device drivers for Mind-

storms EV3 is too large to implement from scratch. We must
find a way to reuse the existing source code to reduce our coding
work as more as possible. We proposed an approach to reuse the
kernel-space Linux device drivers on the TOPPERS/HRP2 kernel
and evaluated its effectiveness. We also ported an open source
Bluetooth protocol stack called BTstack [16] to our platform for
supporting wireless communication.

4.1 Reusing Linux device drivers
We performed an investigation on the development of Linux

device drivers [12]. It shows that Linux device drivers can be
divided into two types, the kernel-space device driver and the
user-space device driver. The kernel-space device drivers are de-
veloped with the Linux kernel API [13] which only provides ba-
sic management functionality for the kernel. On the other hand,
the user-space device drivers are developed with the Linux kernel
user-space API which is based on the Single UNIX Specification
version 4 (also known as POSIX.1-2008) [14].

The Linux kernel user-space API is so complex that it is almost
impossible to implement it on a non-UNIX-like operating system
in a short time. It will apparently cost much more time even than
implementing the device drivers by ourselves. Therefore we de-

3ⓒ 2014 Information Processing Society of Japan

Vol.2014-SLDM-165 No.33
Vol.2014-EMB-32 No.33

2014/3/16

IPSJ SIG Technical Report

cided not to reuse the user-space drivers. There are many sim-
ilarities between the Linux kernel API and the TOPPERS API,
which gives us a chance to reuse the kernel-space device drivers
by implementing a part of the Linux kernel API with the TOP-
PERS API. The Linux kernel API we implemented are described
below:
• Kernel-space memory management: Functions such as
kmalloc() and kfree() are implemented. The Linux uses
multiple virtual address spaces while the HRP2 kernel uses
a flat memory model. Therefore it is unnecessary to per-
form the address translation between kernel space address
and user space address. In the case of kmalloc(), it can be
implemented easily by wrapping the malloc() function.

• Interface for interrupt handling: Functions such as
request_irq() which is used to register an interrupt
handler for an interrupt number, request_gpio_irq()
which is used to register an interrupt handler for a GPIO
pin, and free_irq() which is used to remove an registered
interrupt handler are implemented. It should be noted that
the dynamic creation of an interrupt handler is not supported
by the TOPPERS/HRP2 kernel yet. We chose to define
the interrupt handlers statically and let the functions like
request_irq() or free_irq() simply perform enabling
or disabling of the corresponding interrupt. The interrupts
of GPIO pins are grouped into banks. To implement
the request_gpio_irq() function, we implemented a
GPIO interrupt dispatcher which dispatches interrupt to the
corresponding handler.

• Semaphore API: Functions such as down_trylock() and
up() are implemented. These functions can’t be imple-
mented by wrapping the semaphore management functions
in the TOPPERS API directly because these operations are
not permitted when CPU is locked (i.e. all the interrupts
are masked) according to the TOPPERS specification. We
implemented these functions natively by referencing the im-
plementation of corresponding functions in the TOPPERS
API.

• Spinlock API: Functions such as spin_lock_irqsave()
and spin_unlock_irqrestore() are implemented by
wrapping the SIL_LOC_INT() and SIL_UNL_INT()macros
which are used to control whether all the interrupts are
masked.

• High-resolution timer API: The high-resolution timers have
become the standard time framework in Linux since version
2.6.16 [15]. The Linux device drivers for Mindstorms EV3
use the high-resolution timer API for handling events peri-
odically. Unfortunately, the HRP2 kernel has not supported
the high-resolution timer feature yet. The HRP2 kernel han-
dles periodic events by kernel objects called cyclic handlers.
The period of cyclic handlers can only be set in millisec-
onds. However, the HRP2 kernel does allow us to provide
high-resolution periodic ticks. By defining the TIC_NUME
and TIC_DENOmacros, we can set the period of system ticks
to (TIC_NUME/TIC_DENO) milliseconds. We decided to set
this period to 200 microseconds and implemented an inter-
face for high-resolution cyclic handlers by handling system

// Include the common part for a driver

#include "driver_common.h"

// Hacks for this module

#define InitGpio PWM_InitGpio

static void SetGpioRisingIrq(...) {

...

}

// Include the source file to reuse

#include "d_pwm.c"

// Interfaces

void pwm_command(...) {

...

Device1Write(...);

...

}

Fig. 5 An example for reusing Linux device driver

ticks. We then implemented the high-resolution timer API
with this interface.

With the Linux kernel API implemented above, the core parts
of the Linux device drivers can already work on our platform. To
allow the interactions between device drivers and applications,
we are also needed to adapt the device driver model for our plat-
form. In Linux, a special file is used as an interface for a device
driver. It allows user-space applications to interact with a device
driver using the standard file operation system calls. There are
no file systems in the HRP2 kernel by default. Instead, it allows
us to add new system calls called extended service calls for a de-
vice driver. We decided to wrap the file operation functions as
extended service calls.

Fig. 5 uses an example to show how to reuse a device driver
in particular. At first, the header file driver_common.h is in-
cluded, which contains the Linux kernel API we implemented.
Then, some hacks are used to make the device driver compiled
and working properly. The source file of the device driver is in-
cluded after the hacks. To keep the maintainability, this source
file should not be changed. We just comments out the unneeded
code in it. At last, the interfaces for applications are implemented
as extended service calls by wrapping the file operation functions.

We reused the following device drivers with this approach suc-
cessfully:
• PWM control driver for motors
• Analog I/O driver for analog sensors
• UART communication protocol for UART sensors
• Soft UART ports driver
We used CLOC to evaluate the effectiveness of our approach.

The results show that we reused 14254 lines of code by writing
only 669 lines of code. This approach has saved more than 90%
of the coding work for these device drivers.

4.2 Porting of the BTstack
The standard Bluetooth protocol stack for the Linux is BlueZ.

BlueZ is a user-space device driver which is almost impossible
to port to our platform. We chose to port the BTstack, an open
source operating system independent Bluetooth protocol stack

4ⓒ 2014 Information Processing Society of Japan

Vol.2014-SLDM-165 No.33
Vol.2014-EMB-32 No.33

2014/3/16

IPSJ SIG Technical Report

BTstack

Bluetooth Stack

Run Loop

Services

Bluetooth Chipset

RFCOMM

L2CAP

HCI

UART

Serial Port Profile PH

Fig. 6 The architecture of BTstack

[16]. The architecture of BTstack is shown in Fig. 6.
We implemented the hardware initialization for the Bluetooth

chipset by referencing the Linux device driver. The chipset and
BTstack are communicating with each other via a UART port. We
implemented the method stubs in the UART hardware abstraction
layer defined by BTstack. BTstack uses a run loop to handle in-
coming data and schedule work. By default, BTstack only pro-
vides two types of run loops, one for POSIX system and the other
one for OS-less system. The run loop for OS-less system runs
as a busy loop. We modified it to run as a periodic task in our
platform. At last, we implemented the packet handlers (PH) to
provide the Bluetooth Serial Port Profile (SPP) which emulates a
serial port over air. We also made a serial port driver for SPP that
allows outputting task logs via Bluetooth.

It should be noted that the Bluetooth can work at a high data
rate up to 3 Mbps. Handling the data transferring with interrupts
may have a negative effect for real-time applications. We decided
to handle it with a low priority task working in polling mode.

5. Application Programming Interface
Providing an API can let developers write programs much

more easily than use the device drivers directly. We implemented
an API for C language by using the extended service calls pro-
vided by device drivers so that it can be used in non-privileged
mode. Some functions provided by our API are listed as below:
• ev3_motor_set_speed()

Control the speed and direction of a motor
• ev3_motor_sync()

Steer or synchronize with two motors
• ev3_motor_get_counts()

Get the angular position of a motor (a.k.a. rotary encoder)
• ev3_gyro_sensor_get_angle()

Detect the rotation of a robot with a gyro sensor
• ev3_gyro_sensor_get_rate()

Measure the angular velocity of a robot with a gyro sensor
• ev3_ultrasonic_sensor_get_distance()

Measure the distance to an object with an ultrasonic sensor
• ev3_touch_sensor_is_pressed()

Detect whether the button of a touch sensor is pressed
• ev3_color_sensor_get_color()

Distinguish between 8 different colors with a color sensor
• ev3_uart_sensor_get_raw()

Read the raw value of a UART sensor

Function Average time Maximum
ev3 motor set speed() 4.54 us 40 us

ev3 uart sensor get raw() 5.55 us 33 us
Table 2 Execution time of the representative functions chosen from our API

• ev3_led_set_color()
Set the color of LED on the body of Mindstorms EV3

• ev3_button_set_on_clicked()
Register a handler for the button click event

It should be noted that a button click event is triggered by a
GPIO pin interrupt so the registered handler will be called during
handling the interrupt. It means that the handler will run in priv-
ileged mode which can’t provide any protection. Using a dedi-
cated task running in non-privileged mode might be a workaround
but we didn’t choose it. We decided to leave this problem for the
future and wish to deal with it more elegantly.

By wrapping the API for C language, other programming lan-
guages such as C++ can be supported easily. In particular, we
have made our platform able to be compiled with C++ compiler.
The API design for C++ language is still under discussion.

We did a simple performance evaluation on the API
to show the efficiency of our platform. We chose
two representative functions ev3_motor_set_speed()

and ev3_uart_sensor_get_raw() from our API. The
ev3_motor_set_speed() function is implemented by sending
a message to the PWM control driver. This can be done by
simply calling the extended service call motor_command()
provided by the PWM control driver in our platform. However,
in Linux, the message is passed through the file system by calling
the file operation system call write(), which may lead to a
huge overhead. We measured the execution time of each of the
functions for 10000 times and the results are shown in Table 2.

To figure out how fast the results represent, we would like to
evaluate the performance of the standard development environ-
ment also. However, the standard development environment is
not open source so it is hard for us to measure it accurately. In-
stead, we decided to measure the Linux device drivers. We imple-
mented the ev3_motor_set_speed() function on Linux with
the write() system call. We used strace, a debugging tool
for Linux to monitor the system calls, to measure the function
for 40000 times. The results show that calling write() costs
596 microseconds averagely and 3424 microseconds at most. It
means the speed of our API can be almost 100 times of the stan-
dard development environment in this case.

6. A Sample Program for Self-balancing
Robot

On our platform, an application can be developed and executed
with the following steps:
(1) Write code with the API
(2) Build the binary image hrp2 by the make command
(3) Generate the boot image uImage from hrp2 by the mkimage

command
(4) Copy uImage to the root of a microSD card
(5) Insert the microSD card into the body of Mindstorms EV3
(6) Push the center button on the body of Mindstorms EV3 and

5ⓒ 2014 Information Processing Society of Japan

Vol.2014-SLDM-165 No.33
Vol.2014-EMB-32 No.33

2014/3/16

IPSJ SIG Technical Report

Large Servo Motor

Large Servo Motor

Gyro Sensor

EV3 Intelligent Brick

Fig. 7 A self-balancing two-wheeled robot

Fig. 8 A task to log the value of gyro sensor in the standard development
environment

the application will get executed
To validate the implementations of our platform, we made a

sample program for a self-balancing two-wheeled robot, which
has real-time requirements. The construction of the robot is
shown in Fig. 7 . We implemented the self-balancing algorithm
by referencing the HTWay [17]. We made the self-balancing al-
gorithm work as a task. There is another task in our sample pro-
gram. The task is to output the value of gyro sensor continu-
ously via Bluetooth and works in a lower priority than the self-
balancing task. The result shows that the robot can boot up in 5
seconds and both the tasks can work flawlessly.

On the other hand, the standard development environment pro-
vided by Mindstorms EV3 also includes a sample program for
self-balancing called GyroBoy. Although it takes more than 35
seconds to boot up, GyroBoy itself works correctly. However, if
we add a task like shown in Fig. 8 to log the value of gyro sensor
simultaneously, the robot will fall down very easily. This compar-
ison shows that our platform can boot up much faster and is more
suitable for the applications with real-time requirements than the
standard development environment.

7. Conclusions and Future Work
The most important goal of this research is to build a conve-

nient development platform with real-time guarantees for Mind-
storms EV3. We ported the TOPPERS/HRP2 kernel to provide
real-time guarantees and protection functionality. For the device
drivers, we proposed an approach to reuse the Linux kernel-space
device drivers. We also made a Bluetooth protocol stack called
BTstack work on our platform. We implemented an API for C

language and evaluated its performance. The results have shown
that our platform is much more faster than the standard devel-
opment environment. At last, we tested the whole platform by
making a sample program for a self-balancing robot. Our plat-
form is proven to be more suitable for real-time applications by
a comparison between this sample program and the standard de-
velopment environment.

In the future, we plan to support more features to assist the
development such as transferring and loading applications wire-
lessly. An elegant solution for the non-privileged mode interrupt
handlers described in the 5th section should be found. For now,
the data transferring of Bluetooth is working as a low priority in
polling mode. A DMA-based implementation should be done to
increase the efficiency. The device drivers for other important
functions such the LCD should also be implemented.

References
[1] Fagin, B. S., Merkle, L. D., and Eggers, T. W.: Teaching computer

science with robotics using Ada/Mindstorms 2.0, ACM SIGAda Ada
Letters, Vol. 21, No. 4, pp. 73-78 (2001).

[2] Klassner, F.: A case study of LEGO Mindstorms’ suitability for ar-
tificial intelligence and robotics courses at the college level, ACM
SIGCSE Bulletin, Vol. 34, No. 1, pp. 8-12 (2002).

[3] Klassner, F. and Anderson, S. D.: Lego MindStorms: Not just for K-
12 anymore, IEEE Robotics & Automation Magazine, Vol. 10, No. 2,
pp. 12-18 (2003).

[4] Fagin, B. and Merkle, L.: Measuring the effectiveness of robots in
teaching computer science, ACM SIGCSE Bulletin, Vol. 35, No. 1, pp.
307-311 (2003).

[5] Sell, R., and Seiler, S.: Combined Robotic Platform for Research and
Education, Proceedings of SIMPAR, pp. 522-531 (2010).

[6] Kumar, D. and Meeden, L.: A robot laboratory for teaching artifi-
cial intelligence, ACM SIGCSE Bulletin, Vol. 30, No. 1, pp. 341-344
(1998).

[7] Larsen, K. G., Pettersson, P. and Yi, W.: UPPAAL in a nutshell, Inter-
national Journal on Software Tools for Technology Transfer (STTT),
Vol. 1, No. 1, pp. 134-152 (1997).

[8] LEGO Group: LEGO.com Mindstorms, available from
⟨http://www.lego.com/en-us/mindstorms/⟩ (accessed 2014-02-12).

[9] TOPPERS Project Inc.: TOPPERS/HRP2 kernel, available from
⟨http://www.toppers.jp/en/hrp2-kernel.html⟩ (accessed 2014-02-12).

[10] Texas Instruments Inc.: AM1808/AM1810 ARM Microprocessor Tech-
nical Reference Manual (2011).

[11] ARM Ltd.: ARM Architecture Reference Manual ARMv7-A and
ARMv7-R edition (2012).

[12] Venkateswaran, S.: Essential Linux device drivers, Prentice Hall Press
(2008).

[13] Linux Kernel Organization: Documentation for Linux kernel, avail-
able from ⟨https://www.kernel.org/doc/⟩ (accessed 2014-02-12).

[14] The Open Group: The Single UNIX Specification, Version 4, available
from ⟨http://www.unix.org/version4/⟩ (accessed 2014-02-12).

[15] Mauerer, W.: Professional Linux kernel architecture, John Wiley &
Sons (2010).

[16] BlueKitchen: BTstack, available from
⟨https://code.google.com/p/btstack/⟩ (accessed 2014-02-12).

[17] HiTechnic Products: HTWay - A Segway type robot, available from
⟨http://www.hitechnic.com/blog/gyro-sensor/htway/⟩ (accessed 2014-
02-12).

[18] LEGO Group: LEGO MINDSTORMS EV3 source code, available
from ⟨https://github.com/mindboards/ev3sources/⟩ (accessed 2014-
02-12).

[19] INOUE, Katsuro and KUSUMOTO, Shinji and GOTO, Atsuhiro and
UBAYASHI, Naoyasu and KITAGAWA, Hiroyuki: ”Peta-gogy” for
Future : Education Network for Practical Information Technologies
enPiT, Journal of Information Processing, Vol. 55, No. 2, pp. 194-197
(2014). (in Japanese).

6ⓒ 2014 Information Processing Society of Japan

Vol.2014-SLDM-165 No.33
Vol.2014-EMB-32 No.33

2014/3/16

