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We propose the Eigen Co-occurrence Matrix (ECM) method, which is a modeling method
for tracking the behaviors of an individual, system, or network in terms of event sequences of
discrete data. Our method uses the correlation between events in a sequence to extract distinct
characteristics. A key idea behind the ECM method is to regard a sequence as a serialized
sequence that originally had structural relations and to extract the embedded dependencies of
the events. To test its retrieval performance, we applied the ECM method to the problem of
anomaly detection in intrusion detection systems. Specifically, we used the method to model
a UNIX command sequence and attempted to detect intruders masquerading as valid users.
The experimental results reveal that the ECM method offers distinct characteristic models
for analyzing event sequences.

1. Introduction

The problem of anomaly detection in intru-
sion detection systems can be examined by
modeling the behaviors of an individual, sys-
tem, or network in terms of event sequences
of discrete data 1). The created models are
then used to classify normal and abnormal be-
haviors by computing similarities. Approaches
to anomaly detection differ in how they create
models and how they define similarity. Various
modeling approaches for event sequences have
been proposed in intrusion detection systems
literature. Typical instances of such approaches
can be classified as either vector space-based
methods 2)∼4) and the network -based meth-
ods 5)∼8).

The advantages of these two types of methods
are complementary to each other. The vector
space-based methods can automatically gener-
ate a model from an event sequence, but the
relations between the events cannot be repre-
sented, whereas the network-based methods can
represent the relations between the events, but
a domain specific knowledge is often required
to define the topology of the network.

This paper describes a method that has the
advantages of both of the above-mentioned
methods. The idea behind the method is to re-
gard an event sequence as a serialized sequence
that originally had structural relations and
to extract the embedded dependencies of the
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events. Logging operations in most computer
systems log a series of actions of a task in a se-
rialized manner. Consider a situation wherein
a UNIX user uses a shell to perform a task A
using commands logged as (a1, a2, a3, . . . , an).
Assume that there is a structural dependency
from a1 to a3, meaning that the user had to per-
form action a1 to perform action a3. However,
the serialized command log would not explic-
itly describe this dependency. Our method au-
tomatically creates a model that extracts these
embedded structural relations among events.

Our method, which is called the Eigen Co-
occurrence Matrix (ECM) follows the previ-
ously reported terminology 9) and mainly uses
two techniques, namely a co-occurrence matrix
and a principal component analysis (PCA). The
concept of the co-occurrence matrix, which of-
ten appears in the field of information retrieval,
is to represent relations between words ex-
tracted from one or several documents. These
matrices are often used as a preprocessing for
feature extraction from text documents. The
ECM method, on top of a conventional matrix,
uses sequential information to construct a co-
occurrence matrix so that embedded structural
relations among events in a sequence are ex-
tracted.

Co-occurrence matrices, depending on the
number of observed events, can be sparse and
highly dimensional. To reduce the dimension-
ality and to extract its principal features, the
ECM method uses PCA. PCA is a common
statistical technique used for finding patterns
in high dimensional data and successfully used
in applications like facial recognition and image
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compression.
Throughout the development of the ECM

method, attention was paid to the seamless
integration of the vector space- and network-
based methods. Consequently, the method can
easily extract statistically sound structural re-
lations, and the resulting model can be used
to analyze the characteristic features of a se-
quence. Moreover, the models can be used to
measure similarities among sequences for clas-
sifying anomalous sequences from normal se-
quences.

The remainder of this paper is organized as
follows. Section 2 describes related work and
Section 3 describes the basic concepts and ter-
minology used in this paper. Section 4 proposes
our method for modeling sequences. Section 5
describes anomaly detection using ECM mod-
els. Section 6 reports our experiments with the
masquerader dataset using UNIX command se-
quences and shows the results. We conclude
this paper in Section 7.

2. Related Work

Most of the methods used in analyzing se-
quences for anomaly detection can be catego-
rized into two groups, vector space-based and
network -based.

One example of a vector space-based method
is n-gram, a technique often used in the field of
classification. This technique models sequences
by counting the occurrences of n-connected
events (n-gram). However, unlike the ECM
method, this method does not consider the cor-
relations between events that are not adjacent
to each other, in which there may be implicit
relations.

One example of the network-based method is
Sekar, et al.’s 5) finite state automaton (FSA),
a profile of a program from program-generated
system calls. A more accurate profile of a pro-
gram is generated by using the pushdown au-
tomaton developed by Wagner, et al. 6). The
use of such automaton-based models is ade-
quate when analyzing sequences that have well-
defined syntax, such as programs, because the
nodes in the automaton can remember the short
and long-range relations of events by construct-
ing the language of the sequences.

As an alternative approach for a network-
based model, Warrender, et al. 10) used the hid-
den Markov model (HMM). An HMM models
sequences based on a predefined topology, on
which the probability of occurrences and tran-

sition probability among the observed events
are learned. The learned HMM computes the
probability of an event in an input sequence.
While the methods described above learn and
compute event probabilities on top of a pre-
defined network, the ECM method automat-
ically generates networks with an arbitrarily
chosen topology in which the characteristic bi-
nomial relations of events of an input sequence
are represented. Moreover, the generated net-
works can be used to classify the input se-
quence.

3. Basic Concepts and Terminologies

Before describing our proposed method, we
explain the basic concepts and terminologies
used in the method, namely, window, co-
occurrence matrix, and network model.

3.1 Window
Let X = (x1, x2, . . . , xm) be a sequence of

events in a set E = {e1, e2, . . . , en}, where each
event has an associate time of occurrence de-
noted by T = (t1, t2, . . . , tm). Figure 1 de-
scribes an example sequence.

A sequence is analyzed per window, a unit of
analysis that slides over specified segments on
the sequence. In Fig. 1, a window with a size
of five is depicted, thus making two windows.
The size of a window which we denote as w
is an important factor in analyzing a sequence.
A window may or may not have overlaps, and
the size can usually be determined through trial
and error and is empirically based on detection
performance.

3.2 Co-occurrence Matrix
Most logging operations in computer systems

log a series of actions as a serialized sequence.
A co-occurrence matrix is computed from such
a serialized sequence, intending to retrieve em-
bedded correlations among events. Here, an
event indicates a logging unit in a sequence.

Given sequence X, a correlation is considered
for every event pair, ei and ej in event set E.
We would like the correlation of the two events
to be stronger when the interval time between

Fig. 1 Window in sequence.
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Ci,j : correlation strength between ei and ej

s : scope size
for i = 1 to m do

for j = 1 to m + s do
C(i,j) = 0

end for
end for
for p = 1 to n do

for q = p to (p + s) do
i = index of ep

j = index of eq

C(i,j) = C(i,j) + 1
end for

end for
Fig. 2 Pseudo-code for constructing a co-occurrence

matrix from a sequence.

the two events is short and/or when they ap-
pear more frequently. We compute such cor-
relation strength C(i,j) between ei and ej by
counting their number of occurrences within a
certain interval which we call scope. In Fig. 1,
a scope with a size of two is described. As with
window size, the size of the scope needs to be
determined by trial and error, and is empirically
based on retrieval performance.

Computing the correlation strength for ev-
ery event pair in E in the sequence X gener-
ates a co-occurrence matrix, which we denote
as Cx. The algorithm for constructing the co-
occurrence matrix is described in Fig. 2. The
resulting co-occurrence matrix for the first win-
dow of the sequence in Fig. 1 is shown in Fig. 3.

3.3 Network Model
The co-occurrence matrix described above

can be represented as a directed graphs by re-
garding it as an adjacency matrix. We call such
directed graph network models. An example
network model derived from the co-occurrence
matrix shown in Fig. 3 is depicted in Fig. 4. A
network model is essentially a directed graph of
the co-occurrence matrix (or adjacency matrix
in other words) with rows and columns labeled
by a set of events in E. For example, the value 2
in the second row of the first column in the ma-
trix of Fig. 3 represents the correlation strength
from event e2 to e1 in the Fig. 4.

An adjacency matrix, C, can contain both
positive and negative values, which enables us
to divide C into C+ and C− as follows,

C = C+ + C−, (1)
where C+ (or C−) denotes an adjacency matrix
whose elements are determined by the corre-
sponding positive (or negative) elements in C.




e1 e2 e3

e1 0 2 1
e2 2 1 1
e3 0 0 0


.

Fig. 3 Co-occurrence matrix for sequence in Fig.1.

Fig. 4 Network model of a co-occurrence matrix.

A network model can be constructed from C+

(or C−) correspondingly. We call the resulting
model a positive network (or negative network).

4. Eigen Co-occurrence Matrix
Method

This section presents the ECM method that
uses co-occurrence matrices and PCA to model
a sequence. A notable feature of the method is
its automatic generation of a model that rep-
resents implicit structural relations of events;
the structural relations are represented in the
form of network models, which gives a good idea
of the overall behavior of an input sequence.
The overall procedure of the method is shown
in Fig. 5.

4.1 Principal Component Analysis
Principal componenet analysis (PCA) is a

process whereby a data set expressed in M-
dimensional space is reduced to a K dimen-
sional space. In this space, the K dimensions
computed represent the K-axis subspace of the
original data set, which accounts for as much
of the variation in the data set as possible and
thus is optimal for moving about the given data
set in K dimensions.

PCA is necessary to our method because a co-
occurrence matrix of a sequence with n unique
events has n × n degrees of freedom. Without
PCA, for example, 500 unique events would re-
quire calculations in 250,000-dimensional space.
This is computationally unreasonable. By using
PCA, this 250,000-dimensional space can be re-
duced to an arbitrarily small coordinate space,
with each of the resulting axes expressing the
most important aspects of co-occurrences.

Let a set of sequences be X = {X1, X2, . . . ,
XN} and their corresponding co-occurrence
matrices be C = {C1, C2, . . . , CN}. We sub-
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Fig. 5 Overview of Eigen Co-occurrence Matrix Method.

tract their average co-occurrence matrix Cmean

from each matrix and represent them in vec-
tors by concatenating each row of matrices and
denote them as A = {a1, a2, . . . , aN}. PCA is
done by performing singular value decomposi-
tion (SVD) upon the dataset {a1, a2, . . . , aN}.
This generates a set of three matrices, U, S, and
V. U is an M ×K matrix, where M is n×n de-
gree. The columns of U are a list of normalized
eigenvectors of covariance matrix AAT repre-

senting the axes of greatest variance in terms
of M dimensions of vector representation of co-
occurrence matrices after subtraction of mean
matrix Cmean. These eigenvectors represent the
new coordinate space. S is a K × K diagonal
matrix whose values on the diagonals represent
the square root values for each of the eigenval-
ues in matrix AAT . A larger weight equals a
greater importance of eigenvalues thus it allows
us to rank the eigenvalues in order of impor-
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


emacs latex bibtex xdvi cd ls less

emacs 1 2 2 0 0 0 0
latex 0 1 1 2 0 0 0
bibtex 0 1 0 1 0 0 0
xdvi 0 0 0 0 0 0 0
cd 0 0 0 0 0 0 0
ls 0 0 0 0 0 0 0
less 0 0 0 0 0 0 0




Fig. 6 Co-occurrence matrix for X1.




emacs latex bibtex xdvi cd ls less

emacs 0 0 0 0 0 0 0
latex 0 0 0 0 0 0 0
bibtex 0 0 0 0 0 0 0
xdvi 0 0 0 0 0 0 0
cd 0 0 0 0 1 2 2
ls 0 0 0 0 1 1 2
less 0 0 0 0 1 1 1




Fig. 7 Co-occurrence matrix for X2.




emacs latex bibtex xdvi cd ls less

emacs 0 1 0 1 0 0 0
latex 0 0 0 1 0 0 0
bibtex 0 0 0 0 0 0 0
xdvi 0 0 0 0 0 0 0
cd 1 0 0 0 0 1 1
ls 1 1 0 0 0 0 1
less 1 1 0 1 0 0 0




Fig. 8 Co-occurrence matrix for X3.

tance. Matrix V with K × N dimensions gives
the representation of eigenvectors of AT A.

Let us consider three sequences X1, X2, and
X3, of six UNIX commands as our running ex-
ample.

X1 : emacs emacs latex bibtex latex xdvi
X2 : cd ls less cd ls less.
X3 : cd ls less emacs latex xdvi

One can assume that the user edits a file us-
ing an emacs application and compiles it with
latex and bibtex commands in the sequence
X1. While in the sequence X2, the user browses
directories and files using commands such as cd,
ls, and less and the user in X3 browses files
and directories and edits a file using emacs and
compiles it with latex. The co-occurrence ma-
trices for these three sequences are depicted in
Figs. 6, 7, and 8, respectively. All three co-
occurrence matrices are computed with a win-
dow size of six and a scope size of three.

We call the eigenvalues computed using PCA
the Eigen co-occurrence matrices. The first
and the second Eigen co-occurrence matrices of
the three sequences are depicted in Fig. 9 and
Fig. 10, respectively. Note that the first Eigen
co-occurrence matrix shows positive correla-
tions among events cd, ls, and less, and neg-
ative correlations among events such as emacs,
latex, bibtex, and xdvi.

In contrast, the second Eigen co-occurrence




emacs latex bibtex xdvi cd ls less

emacs −0.23 −0.27 −0.23 0 0 0 0
latex 0 −0.23 −0.23 −0.27 0 0 0
bibtex 0 −0.23 0 −0.23 0 0 0
xdvi 0 0 0 0 0 0 0
cd 0 0 0 0 0.23 0.27 0.27
ls 0 0 0 0 0.23 0.23 0.27
less 0 0 0 0 0.23 0.23 0.23




Fig. 9 First Eigen cooccurrence matrix.




emacs latex bibtex xdvi cd ls less

emacs 0.16 0 0.16 −0.32 0 0 0
latex 0 0.16 0.16 0 0 0 0
bibtex 0 0.16 0 0.16 0 0 0
xdvi 0 0 0 0 0 0 0
cd −0.32 0 0 0 0.16 0 0
ls −0.32 −0.32 0 0 0.16 0.16 0
less −0.32 −0.32 0 −0.32 0.16 0.16 0.16




Fig. 10 Second Eigen cooccurrence matrix.

matrix shows a mixture of positive and negative
correlations among the same set of commands
as in the negative correlations of the first Eigen
co-occurrence matrix and negative correlations
among that of the positive correlations.

4.2 Construction of Network Models
The last part of the ECM method is to con-

struct network models, which can be used for
detailed analysis of the obtained features. The
ECM method offers two ways to construct net-
work models: (1) a combined network (CN)
model and (2) a layered network (LN) model. A
CN model represents the overall characteristic
features observed in the original co-occurrence
matrix and a LN model represents its distinct
characteristic features.

4.2.1 Combined Network Model
A CN model which we denote C ′, is a recon-

structed co-occurrence matrix from the Eigen
co-occurrence matrix space and represents the
overall characteristic features of the original co-
occurrence matrix C. Matrix C ′ is computed
by,

C −Cmean �
K∑

k=1

< uk, ai > uk = C ′, (2)

where < x, y > denotes an inner product of x
and y and C ′ can be further separated into C ′

+

and C ′
−, the positive and negative network, re-

spectively. Here the positive (or negative) net-
work provides the characteristic patterns ob-
served for each sequence in terms of the cor-
relation strength in relation to the average co-
occurrence matrix of the sequences in the learn-
ing dataset.

There may be elements in C ′
+ (or C ′

−) that
are too small to server as the principal charac-
teristics of C ′. Thus, instead of using all the C ′

+
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


emacs latex bibtex xdvi cd ls less

emacs 1.15 1.00 1.15 −0.58 0 0 0
latex 0 1.15 1.15 1.00 0 0 0
bibtex 0 1.15 0 1.15 0 0 0
xdvi 0 0 0 0 0 0 0
cd −0.58 0 0 0 −0.58 −1.00 −1.00
ls −0.58 −0.58 0 0 −0.58 −0.58 −1.00
less −0.58 −0.58 0 −0.58 −0.58 −0.58 −0.58


.

Combined matrix

(a) Positive network (h ≥ 1.0) (b) Negative network (h ≤ −1.0)

Fig. 11 Combined network models for sequence X1.




emacs latex bibtex xdvi cd ls less

emacs 0.87 1.00 0.87 0 0 0 0
latex 0 0.87 0.87 1.00 0 0 0
bibtex 0 0.87 0 0.87 0 0 0
xdvi 0 0 0 0 0 0 0
cd 0 0 0 0 −0.87 −1.00 −1.0
ls 0 0 0 0 0.87 −0.87 −1.0
less 0 0 0 0 0.87 −0.87 −0.87


.

First layered matrix

(a) Positive network (h ≥ 1.0) (b) Negative network (h ≤ −1.0)

Fig. 12 First layer network models for sequence X1.

(or C ′
−) elements to construct network models,

we allow the setting of a threshold h and choose
the elements that are larger (or smaller) than h
(or −h) to construct the network models. As-
signing a higher value to h reduces the number
of nodes in the network and consequently cre-
ates a network model with a different topology.

In Fig. 11, the combined network con-
structed from the example sequence X1 is de-
picted as an example. The threshold for the
network is set to 1.0 for the positive network
and −1.0 for the negative network. It can
be seen that the positive network is composed
of commands that appear in the sequence,
whereas the negative network is composed of
commands that do not. Note that these net-
works describe the characteristic relations of
the sequence X1 in relation to overall features
of all the three given sequences, X1, X2, and
X3.

4.2.2 Layered Network Model
A CN model, while providing the overall char-

acteristic of a sequence, loses the distinct char-
acteristics derived from the Eigen co-occurrence
matrices. An LN model can represent such fea-
tures and is given by

C ′
k =< uk, ai > uk, (3)

where C ′
k denotes an adjacent matrix computed

by a co-occurrence matrix projected on the
kth Eigen co-occurrence matrix of the vector
representation of the ith co-occurrence matrix
Xi. As in the LN model, a positive and a
negative network can be constructed from C ′

k.
Figures 12 and 13 are examples of the first
and second layers of network models for ex-
ample sequence X1. It can be observed from
the figures that the characteristic features for
X1 are mostly derived from the first Eigen co-
occurrence matrix and the second Eigen co-
occurrence matrix contributes very little to the
features of X1.
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


emacs latex bibtex xdvi cd ls less

emacs 0.29 0 0.29 −0.58 0 0 0
latex 0 0.29 0.29 0 0 0 0
bibtex 0 0.29 0 0.29 0 0 0
xdvi 0 0 0 0 0 0 0
cd −0.58 0 0 0 0.29 0 0
ls −0.58 −0.58 0 0 0.29 0.29 0
less −0.58 −0.58 0 −0.58 0.29 0.29 0.29


.

Second layered matrix

(a) Positive network (h ≥ 0.2) (b) Negative network (h ≤ −0.2)

Fig. 13 Second layered network models for sequence X1.

5. Anomaly Detection Using ECM
Models

Our approach to anomaly detection is based
on the idea that anomalous behavior is an un-
usual activity that will manifest as significant
excursions from normal behavior. A common
approach to anomaly detection is to first cre-
ate a profile defining a normal user’s behavior
and then to measure the similarity of a cur-
rent behavior with the crated profile and note
any behavior that deviates from the profile. In
this section, we describe an application of ECM
method to anomaly detection. The anomaly
detection procedure follows the general flow de-
picted in Fig. 14.

5.1 Procedures
When a sequence Xt is to be tested for

whether it is normal or anomalous, we follow
this procedure:
(a) Construct a co-occurrence matrix from Xt.
(b) Project the obtained co-occurrence matrix

on the co-occurrence matrix space, which
is computed from a set of normal learning
sequences (profile), and obtain its feature
vector.

(c) Multiply each element of the feature vector
by its corresponding Eigen co-occurrence
matrix to obtain network models.

(d) Compute the similarity between network
models of Xt and those of the profile.

(e) Classify the testing sequence as anomalous
or normal based on a similarity measure-

Fig. 14 General flow of system.

ment using threshold ε.
5.2 Similarity Measurement
The problem of measuring the similarity

among network models can be transformed to
the problem of matching between networks.
However, this problem is known to be NP com-
plete. As a simplified similarity function to re-
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duce the computational cost, we define r con-
nected nodes as a unit of a sub-network and use
the number of sub-networks that the two net-
works have in common as the similarity mea-
surement.

Given a network model Cx, we transform it
into a vector representation Wx, each of whose
element wi1,i2,...,ir

is a binary value (0 or 1)
indicating the existence of sub-networks with
r connected nodes. The wi1,i2,...,ir

is defined
as,

wi1,i2,...,ir
= wi1+i2m+...+irmr−1

=
r−1∏
k=1

a(ik, ik+1), (4)

where

a(ik, ik+1) =

{
1 if a(ik, ik+1) > h

0 otherwise,
(5)

where ik defines the kth node of the r con-
nected sub-network whose starting node is the
ith event ei in the event set E. For example,
when r is 2, the vector representation of the
matrix in Fig. 3 becomes the vector with 9 di-
mensions:

e1e1 e1e2 e1e3 e2e1 e2e2 e2e3 e3e1 e3e2 e3e3
0 1 1 1 1 1 0 0 0 .

(6)
Representing sub-network models as a binary

vector enables us to compute the similarity by
simply taking the product of vectors. Thus, the
similarity between two network models Ca and
Cb is defined as,

sim(Ca, Cb) =< Wa, Wb >, (7)
where < Wa, Wb > indicates the inner product
of vectors Wa and Wb.

The similarity between given two CN models,
CNa and CNb can thus be computed by,

similarityCN = sim(CNa, CNb). (8)
Likewise, the similarity between two LN mod-
els, LNa and LNb, can be computed by,

similarityLN =
N∑

k=1

sim(LNk
a , LNk

b ), (9)

where LNk is the kth layer network model.

6. Experiments

We applied the ECM method to one of the
anomaly detection problems, masquerade de-
tection using UNIX command sequences. Mas-
queraders are intruders masquerading as valid
users.

6.1 Data
We used a database of 15,000 commands en-

Fig. 15 Composition of experimental dataset.

tered at a UNIX prompt for a set of 50 users
provided by Schonlau, et al. 11). The dataset
consists of 50 users’ commands entered at a
UNIX prompt, with the 15,000 recorded com-
mands for each user. Due to privacy concerns,
the dataset includes no reporting of the flags,
aliases, arguments, or shell grammar. The users
are designated as User 1, User 2, and so on.
The first 5,000 commands are entered by a le-
gitimate user, and the masquerading commands
are inserted in the remaining 10,000 commands.
All the user sequences were decomposed into
blocks of 100 commands (w = 100). Figure 15
illustrates the composition of the dataset.

6.2 Parameter Settings
In the creation of Eigen co-occurrence ba-

sis, we took all the users’ training data-sets,
consisting of 2,500 (50 sequences x 50 users)
blocks (N = 2,500). The set of observation
events (E = e1, e2, . . . , en) was determined by
the unique events appearing in the learning
data-set, which accounted for 635 commands
(n = 635). Each decomposed block was con-
verted into a co-occurrence matrix with a scope
size of six (s = 6). We took 50 Eigen co-
occurrence matrices (K = 50), whose contribu-
tion rate was approximately 90%, and defined
this as the co-occurrence matrix space.

The user’s profile was created using his train-
ing data-set. We first converted all of his train-
ing blocks to co-occurrence matrices and ob-
tained the corresponding positive and negative
LN models with a threshold of 0 (h = 0). We
only used the positive LN models to define each
user’s profile.

To classify a testing sequence Xi as anoma-
lous or normal, we computed the similarity be-
tween LN models of Xi and those of the user
profile. If the computed similarity was under a
threshold εu of the User u, then the testing se-
quence was classified as anomalous; otherwise,
it was classified as normal. In the similarity
measure for sub-networks, we gave r the value
of three (r = 3).
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Fig. 16 ROC curve for the ECM method with the best results from other
methods shown for comparison.

6.3 Results
The results show the trade-off between the

true positives and false positives. A receiver
operation characteristic curve (ROC curve) is
often used to represent this trade-off. The per-
centages of true positives and false positives are
shown on the y- and the x-axes of an ROC
curve, respectively. Any increase in true posi-
tive rates will be accompanied by an increase in
false positive rates. The closer the curve follows
the left-hand border and then the top border of
the ROC space, the more accurate the results
are, since this pattern indicates high true pos-
itive rates and, correspondingly, low false posi-
tive rates.

Schonlau, et al. 11) and Maxion, et al. 12)

have applied a number of masquerade detec-
tion techniques, including Bayes 1-step Markov,
hybrid multi-step Markov, IPAM, uniqueness,
sequence-match, compression, and naive Bayes,
to the same dataset used in this study. (See
Refs. 11) and 12) for detailed explanations of
each technique.) Their results are shown in
Fig. 16, along with our results from the ECM
method. For the ECM method, we have plotted
different true positive rates and false positive

rates by changing α in the expression:
εopt
u + α, (10)

where εopt
u is the optimal threshold for User

u. The optimal threshold εopt
u is obtained by

finding the largest correct detection rate with
a false detection rate of less than α%. We set
α to 20 in this experiment and used the same
values of εu throughout all the test sequences
(no updating). As a result, the ECM method
achieved a 72.3% correct detection rate, with a
2.5% false detection rate. As can be seen from
the data, the ECM method achieved one of the
best scores among the various approaches.

7. Conclusion and Future Work

We presented a method, called ECM, which
works as a modeling step before the classifi-
cation of event sequences. ECM starts with
the creation of a co-occurrence matrix, a ma-
trix whose rows and columns correspond to the
observation events. The values of the matrix
represent the strength of the correlation be-
tween two events. ECM then finds the lower-
ranked approximation to the co-occurrence ma-
trix, through the use of a Principal Component
Analysis (PCA) and consequently, the Eigen
co-occurrence matrix space is defined with low-
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dimensionality space. When a new sequence is
issued, it is projected into this low-dimensional
space, and a feature vector is created. ECM fi-
nally generates so-called combined network and
layered networks, which can represent the de-
tailed characteristics of a sequence in terms of
frequency (or rarity) in relation to the average
sequence of all the sequences that are being ex-
amined.

We have shown the ECM method to be effec-
tive in detecting masqueraders using the Schon-
lau dataset. This shows that the principal fea-
tures from the obtained model of a user behav-
ior are successfully extracted, and that a de-
tailed analysis using layered networks can pro-
vide sufficient, useful features for classifications.

Since the ECM method can be used to model
any sequence, a lot of interesting work remains.
Applying the method to other sequences col-
lected by computer systems, such as system
calls issued by programs, network packets, and
keystroke logs, would be very interesting.

However, a learning dataset for our method
may be very large depending on the type of se-
quences being considered, i.e. network packets,
and thus, building a learning dataset can be
computationally costly. Another issue related
to building the learning dataset is its mainte-
nance to keep it up-to-date to changes of be-
havioral pattern of the input data. When in-
stalling the system to the actual system, it will
be essential to provide schemes for updating
the learning dataset. Moreover, the network-
matching scheme adopted in the masquerade
detection experiments is a pretty rough mea-
sure, and our method could benefit from the
use of finer measures that could be borrowed
from the graph-theory field.

Finally, the concept of constructing network
models from Eigen co-occurrence matrices is
applicable not only to matrices generated from
sequences but also to other types of data, such
as medical databases that contain many at-
tributes. In the work we have done 13) we have
shown that ECM models can effectively capture
characteristic features from medical datasets
that that can be used to distinguish healthy
patients from diseased ones.
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