
Vol. 48 No. 6 IPSJ Journal June 2007

Regular Paper

Design, Analysis, and Evaluation of Mobile Agent based Privacy

Protection Scheme for Multi-party Computation Problems

Md. Nurul Huda,† Eiji Kamioka††,††† and Shigeki Yamada†††

Existing cryptography-based algorithms for multi-party computation problems (MPCP) are
either too complex to be used practically or applicable only to the specific applications for
which they have been developed. In addition, traditional (non-cryptography-based) algo-
rithms do not provide good privacy protection for MPCPs. This paper presents the security
system design, intuitive analysis, and empirical evaluation of an agent server platform for pro-
tecting privacy in solving multi-party computation problems with traditional algorithms. We
have devised the security policies for an agent server platform and showed how the enforcement
of those policies can effectively protect privacy while solving many MPCPs. Experimental
analysis shows that the presented agent platform security system can significantly enhance
privacy protection while solving the problems with traditional algorithms.

1. Introduction

Generally speaking, a multi-party computa-
tion problem (MPCP) deals with computing
the value of a joint function from a group of par-
ties with their inputs. For example, in the vec-
tor dominance problem 18), Alice has a bidding
vector A and Bob has a price vector B. Both of
them want to determine whether they can make
a deal in buying/selling n items by finding out if
A dominates B, i.e. if Ai > Bi, ∀i ∈ {1, 2, . . . n},
where n is the number of elements in each vec-
tor. There are different types of applications
of MPCP in which privacy protection is a key
requirement 4),11).

In traditional algorithms, usually the inputs
are required to be aggregated to one or more
parties, who evaluate the function, i.e. some of
the participants’ inputs need to be disclosed to
others to solve the problem. The participants of
an MPCP are assumed to be collaborative, but
none of them may want to disclose their private
inputs to others, not even to the peer members.
The privacy goal in an MPCP is to compute the
function without disclosing any party’s private
inputs to the others.

A cryptography-based algorithm can solve
this problem by keeping the input data in an en-
crypted form. However, existing cryptography-
based generalized solutions are too complex to
be used practically. Researchers have developed
a few problem-specific cryptography-based al-

† University of Dhaka
†† Shibaura Institute of Technology
††† National Institute of Informatics

gorithms for solving specific MPCPs 3),18),21)

based on the specific characteristics of the
related specific problem. Even though the
problem-specific solutions are more efficient
than the generalized solutions, the applicability
of each of these cryptography-based algorithms
is limited to only the specific problem for which
it has been developed 18).

Traditional (non-cryptographic) algorithms
can be classified as centralized or distributed.
A centralized algorithm is run by a single en-
tity (agent) and results in a high privacy loss of
the participants to the central agent, because
they all need to give away all their private in-
formation to the central agent. A traditional
distributed algorithm is run by multiple par-
ticipants (agents) in a distributed architecture
and some of the participants have to disclose
part of their private inputs to the others 15),16).
Therefore, a traditional distributed algorithm
also results in privacy loss.

Multi-party computation problems are gener-
ally solved with software agents that represent
the participating users. Thus, in this paper, the
terms “participant” and “participating agent”
have been used interchangeably.

We present the design, analysis, and exper-
imental evaluation of the security system of
an agent server platform for enhancing privacy
protection while solving the MPCPs with tra-
ditional (non-cryptography based) algorithms.
The basic idea of our privacy protection scheme
is to execute the traditional/existing algorithms
within a closed-door one-way agent platform,
but to protect the shared private information
from being disclosed from the agent platform to

2085

2086 IPSJ Journal June 2007

unauthorized parties. In our preliminary works,
the concept of closed-door one-way agent plat-
form was introduced 8). The experimental re-
sults on the protection from various malicious
activities by the participants and the service
protocol were presented in papers, Refs. 9) and
10), respectively. In this paper, we at first
briefly describe the security system design of
the agent platform. Then, we prove through
intuitive analysis that the enforcement of our
proposed security policies for the agent server
platform can provide very good privacy protec-
tion for solving many MPCPs. We also show
a method of achieving complete privacy protec-
tion. Finally, we evaluate our privacy protec-
tion scheme by comparing the privacy loss in
our scheme with that in traditional schemes for
the meeting scheduling problem 14),22) and the
vector dominance problem 18).

Since, an MPCP deals with a common prob-
lem among a group of participants, for many
problems, the computational result can be ex-
pressed with a common value for all of the par-
ticipants. In this paper, we take into consider-
ation a type of MPCP in which the same com-
putational result can be revealed to all of the
participants without causing privacy loss. The
MPCPs with the above assumption are not triv-
ial but typical, and many multi-party applica-
tions are covered with the above assumptions.

The rest of the paper is organized as follows.
Section 2 describes the system design, includ-
ing the requirement analysis, devised security
policies, and architecture for enforcing those
policies. Section 3 carries out the security and
privacy analysis of the agent server platform.
Section 4 shows the effectiveness of our scheme
by comparing the privacy loss in it with those
in traditional algorithms. Section 5 discusses
some further considerations, and finally, Sec-
tion 6 concludes the paper.

2. System Design

Two or more parties want to conduct a com-
putation based on their private inputs, but nei-
ther party is willing to disclose its own inputs
to the others, not even to the peer parties or
a third party. We need to find a mechanism
for conducting such a computation so that no
more information is revealed to a participant
in the computation than what can be inferred
from that participant’s input and the output or
the computational result.

2.1 Requirements Analysis
In traditional computational models, the par-

ticipating agents reside at different hosts in a
distributed architecture and each of them is
owned, administered, and controlled by indi-
viduals. Thus, the private information, which
is shared with others in the problem solving
process, cannot be protected from disclosing
to the users or unauthorized parties. In order
to realize our basic idea (i.e., to execute the
traditional/existing algorithms within a closed-
door one-way agent platform, but to protect the
shared private information from unauthorized
parties), the information sharing should take
place within a centralized architecture (i.e. an
agent server platform), which can be adminis-
tered for uniform control over the participants.
The following considerations should be taken
into account for defining the security policies
and designing the security architecture for the
agent server platform.
(1) The server security policy should allow

the participants to access minimum sys-
tem resources, which are required for
their normal operations and for problem
solving.

(2) The participants should not be allowed
to access any system resources that could
be used for creating open channels with
the outside world.

(3) The system security architecture must
have a policy enforcement mechanism to
enforce the defined policies.

(4) The restrictions on the system resources
protect the participants from sending the
computation result to the users them-
selves. So, the system should provide
a mechanism for sending the computa-
tional results to the users.

(5) It must be verified that the computa-
tional result does not contain hidden pri-
vate data.

(6) The computational result should also be
protected from unauthorized parties by
being encrypted with a group key of the
participants 23).

2.2 Security Policies
We call our agent server platform the isolated

Closed-door One-way Platform (iCOP). Its pol-
icy consists of the resource access policies and
the policies for the computational result. We
define the mandatory system resources as the
resources without which any process can not be
executed e.g., memory and CPU. All other sys-

Vol. 48 No. 6 Mobile Agent-based Privacy Protection Scheme 2087

tem resource are considered the optional system
resources.
• Resource Access Policies: The resource ac-

cess policies allow the participating agents
(1) access to the mandatory resources, such
as the OS, memory, and CPU, at iCOP
and (2) exchange local messages within the
iCOP. However, they are not granted ac-
cess to any other system resources, such as
files and network sockets.

• Policies for the Computational Result:
Two policies are enforced for the computa-
tional results (1) each participating agent
Ai must pass the computational result Ri

to a stationary agent, called the service
agent and (2) the computational results
passed by the participating agents must be
identical, i.e., Ri = Rj ∀i, j ∈ {1..n}, where
n is the number of participants. This re-
quires the participating agents to follow a
pre-defined format (defined with alphabet
case, decimal point precision, date format
etc.) for creating the computational result.

2.3 Security Architecture
The agent platform security architecture has

two main components (Fig. 1): (1) the privacy
manager and (2) the service agent. The pri-
vacy manager enforces the resource access poli-
cies, which protect the participants from access-
ing the system resources and creating any com-
munication channels (open or covert) with the
outside world. The service agent enforces the
policies for the computational result and sends
the results to the users. The enforcement of
the policies for the computational result pro-
tects the participating agents from using covert
channels through the result sending process (ex-
planation in Section 3.2).

2.4 Problem Solving Mechanism
Private information sharing should take place

within the iCOP so that the shared informa-

Fig. 1 iCOP security architecture.

tion can be kept protected from disclosure to
the outside world. For solving the multi-party
computation problem, the participating mobile
agents, along with their private input data,
migrate into the iCOP (provided by a service
provider) with proper authorization, share their
private information within the iCOP through
local messages amongst them, and carry out
the computation within the platform (Fig. 2).
Each user must be registered with the service
provider and must sign a service contract.

Under the enforced security policies, the pro-
cess of creating and sending the computational
result (R) in iCOP has been illustrated in
Fig. 3. Each of the participating agents com-
putes the result, arranges it using a pre-defined
format, encrypts it with the group key, and
passes it to the service agent. The service agent
checks and verifies whether the computational
result meets the policies set forth for it and
sends it to the users.

2.5 Reliability and Scalability Issue
A single server is subject to a single point

of failure. In case of using a single server, if
the server fails or somehow compromised, the
whole system fails. In order to handle the fault
tolerance, increase the reliability and availabil-
ity of the server, and achieve better scalability,
we need multiple iCOP servers. These servers
make up the iCOP domain. After checking dig-
ital signatures of incoming agents, the authen-
tication server dispatches all of the participat-
ing agents of the same application to one of the
several computation servers (Fig. 4). Each of

Fig. 2 Problem solving mechanism.

Fig. 3 Process of creating and sending computational
result in iCOP.

2088 IPSJ Journal June 2007

Fig. 4 iCOP domain with multiple agent servers.

the computation server of the iCOP domain
must be made closed-door and one-way. By
distributing different applications into different
computation servers in iCOP domain, we can
achieve scalability and load balancing.

If one the server systems fails, only the ap-
plications in that server will fail, the rest of
the servers can continue their computation.
All of the applications will not be affected
by the failed system. Thus, we can achieve
application-wise fault tolerance. The use of
replication server or backup server also provide
fault tolerance of the whole system.

2.6 Trust Model
The agent server must be configured accord-

ing to the trusted computing specifications 12)

so that the participants can trust it. A par-
ticipating agent from a registered user is given
authorization by checking the digital signature,
which the agent carries with it. The service
agent is assumed to be semi-trusted i.e., it is
not malicious, would perform its functionality
reliably and treats the participants equally, but
private information should be kept secret from
it.

3. Security and Privacy Analysis of
Agent Server Platform

It is a common assumption in multi-party
computation domains that a secure communi-
cation channel between any two hosts exists.
Also, we assume that standard language level
safety and operating system level safety are
maintained in the server. So, because of the
limited resource permissions, the participating
agents cannot attack each other or the plat-
form.

The participating agents in iCOP are not
granted access to any system resources other
than the mandatory resources. They cannot
create any open communication channels with
an outside entity by using any of the manda-

Fig. 5 Mandatory system resources at the server are
shared by all processes in the system.

tory resources. However, there may be covert
(hidden) channels being created that may try
to leak the shared private information and all
of the covert channels in a trusted system must
be identified and handled 5). Thus, we perform
a covert channel analysis on iCOP.

3.1 Covert Channel Identification
Covert channels can be created through

shared resources or objects by changing their
attributes. We use the shared resource matrix
method 13) to identify potential covert channels
in iCOP. With this method, if an attribute of
a shared resource is found that can be modi-
fied and referenced by two different processes,
which are not allowed to communicate through
legal channels, then potential covert channels
exist through that resource.

Every process in our agent server, including
those of the participating agents in iCOP, uses
mandatory system resources (Fig. 5). A mali-
cious participating agent in iCOP may try to
modify the attributes of those resources and
the malicious external processes may be able to
refer to those attributes. So, potential covert
channels between the participating agents and
other programs in the system may exist through
the mandatory system resources.

The computational result from the partici-
pating agents is sent to the outside receivers
(i.e., users) by the service agent, i.e., the result-
ing object is shared between the participating
agents and the users by transferring the object
itself. Thus, potential covert channels between
the participating agents and the users may exist
through the computational result.

Our security policies do not allow any other
objects or resources to be shared between the
participants and any other entity outside the
iCOP. So, there can be no other covert chan-
nels between the participating agents and the
outside entity through other resources/objects.
Table 1 summarizes the data disclosure chan-

Vol. 48 No. 6 Mobile Agent-based Privacy Protection Scheme 2089

Table 1 Summary of data disclosure channels in
iCOP.

Chan.
Type

Through Exist?

Open Any resource or object No
Covert 1. Mandatory system resources May exist

2. Computational result May exist
3. Optional system resources No

nels between the participating agents in iCOP
and the outside world.

3.2 Covert Channel Handling
Two types of covert channels may exist in

iCOP: through the mandatory system resources
and through the computational result (Table 1).
In this section, we describe how these covert
channels are handled in the iCOP.

The covert channels through the mandatory
system resources are very noisy, because all the
processes in the system change the attributes
of the mandatory system resources. A covert
channel is noisy if the corresponding shared ob-
ject is available to other processes as well as to
the potential data sender and receiver, and its
attributes are modified by more than one pro-
cess; it is noiseless if the corresponding shared
object is available only to the potential data
sender and the receiver and its attributes are
modified by only one sender 5). The covert
channels through the mandatory system re-
sources are common in every system, because in
every system the mandatory system resources
are shared among all of the processes. Thus,
the underlying operating system handles these
covert channels using various techniques (e.g.,
memory partitioning, CPU scheduling etc.) to
eliminate them or to reduce their bandwidths to
very low values making them ineffective 5),19).
So, we do not take any special measure for
them. As an additional measures, their band-
widths can be further reduced by introducing
additional delays and noise deliberately into
those channels (e.g., using random allocation
algorithms; introducing extraneous processes
that modify covert channel variables in random
patterns) 5).

The enforcement of the two specific policies
(conditions) set forth for the computational re-
sults can protect the participants from using
covert channels through the computational re-
sults. A covert channel through the computa-
tional result is possible only when the result is
sent to the users by the service agent. Let us
suppose, that an actual computational result
containing no private information is R. Addi-

Fig. 6 Process of encoding data into computational re-
sult by changing attributes creating different
objects.

Fig. 7 Possible cases of relations among computa-
tional results from different participants.

tional data can be encoded into the computa-
tional result using many different techniques ?)

and the encoded data can even be kept hid-
den by using cryptography (Fig. 6). However,
it must be noted that encoding any additional
data into the resulting object produces a differ-
ent object, regardless of the content type of the
object (text or binary) and encoding method of
the additional data (as shown in Fig. 6). Thus,
when a participating agent Ai encodes some
private information with its computational re-
sult Ri, it will not be identical to the actual
computational result R.

We categorized the possible maliciousness,
associated relationships among the computa-
tional results passed by the participants, and
the corresponding inferences for the enforced
policies into five cases (Fig. 7).

In Case 1 in Fig. 7, one of the participants,
say A1, has not provided any computational re-
sult to the service agent. So, the policies are
not met, and the result is not sent to the users,
i.e. no scope for creating a covert channel. In
Case 2, one of the participants, say A1, is mali-
cious, it has encoded some private information
into its computational result. So, the computa-
tional results will not be identical, the policies
are not met, and the result is not sent to the
users, i.e. no scope for creating a covert channel.
In Case 3, most of the participants are malicious
and they have encoded private information with

2090 IPSJ Journal June 2007

their results, which are not identical to the non-
malicious participant. Thus, the policies are
not met, the computational result is not sent
to the users and there is no scope for creating a
covert channel. In Case 4, none of the partici-
pants are malicious, they have created identical
computational results (that are equal to the ac-
tual computational result) containing no hidden
information, i.e. no covert channel has been cre-
ated, the policies are met, and the result is sent
to the users. Finally, in Case 5, all of the partic-
ipants have been considered malicious and each
of them has encoded private information into
their results. If they make identical results, the
result is sent to the users and it causes a mutual
privacy loss.

From the above analysis, we see that (mu-
tual) privacy loss is possible when all of the par-
ticipants are malicious (i.e., Case 5). If at least
one of the participants cares about its own pri-
vacy and wants to protect its own private infor-
mation from being leaked out, all it needs is to
be not malicious and make its own result iden-
tical to the actual computational result, which
eliminates the possibility of a Case 5 and there
remains no scope for privacy loss. Thus, the en-
forcement of the policies set forth for the com-
putational results can prevent encoding hidden
data into the computational result for leakage.

3.3 Other Methods of Leaking Data
During our investigation, we found that it is

possible to signal hidden data to the users in
the result sending process without encoding the
data into the computational result. We have de-
vised one such method, which we call the result
biasing method. If there are a number of pos-
sible solutions to a given problem, a protocol
can be created that maps one bit stream (that
is to be leaked) with each of the possible so-
lutions numbers. For example, Table 2 shows
an example protocol in which four bit streams
have been mapped with four valid solutions of
the problem. The sender agent and the receiver
user must use the same protocol i.e., the pro-
tocol need to be created before the agent (data
sender) migrates into iCOP. To send one of
the bit streams to the user, that are defined
in the protocol, the potential sender agent in

Table 2 Simple example protocol for result biasing
method.

Soln. No. Mapped with Soln. No. Mapped with
1 00 2 01
3 10 4 11

iCOP needs to manipulate its own inputs in the
problem solving algorithm so that the compu-
tational result leads to the respective solution
number in the protocol 11). For example, with
the protocol of Table 2, the sender needs to bias
the result towards solution No.3 in order to send
a “10” to its user and the user interprets the
sent data (“10”) from the sent solution num-
ber with the help of the protocol. Thus, with
this method, hidden data can be sent in the
result sending process without encoding it into
the computational result.

Leaking data through the result sending pro-
cess without encoding it into the resulting ob-
ject requires the existence of multiple solutions
to the problem, and an agent can bias all the
other agents towards a specific solution.

3.4 Complete Privacy
There are distributed algorithms as well

as centralized algorithms for some problems.
However, there are no distributed algorithms
for some other types of problems (e.g., the
vector dominance problem). These problems
are solved with centralized algorithms. In the
iCOP, even though the participants are pro-
tected from encoding the shared private infor-
mation into the computational result and dis-
closing it to the users, they are not protected
from manipulating their own inputs during exe-
cution of a distributed algorithm, and thus sig-
naling hidden data to the users as described
in Section 3.3. However, the manipulation of
the inputs can be protected and complete pri-
vacy can be achieved if the inputs are exchanged
first with a commitment protocol 17), and then
centralized algorithms are used by each of the
participants for solving the problem. A com-
mitment protocol can detect any change in the
committed values. Thus, if some of the partic-
ipants manipulate the inputs (i.e., changes its
inputs), the computational results created by
them will not be identical to the others.

Figure 8 shows a summary of the data dis-
closure channels in iCOP and their protection

Fig. 8 Summary of data disclosure channels in iCOP
and their protection schemes.

Vol. 48 No. 6 Mobile Agent-based Privacy Protection Scheme 2091

schemes. All of the open channels are pro-
tected by the privacy manager. The possibil-
ity of creating covert channels, which requires
shared resources, are protected by not sharing
objects/resources, except the computational re-
sult, between the participating agents and the
outside world. Enforcing the policies set forth
for the computational result protects most of
the scope of creating covert channels through
the computational result. In addition to en-
forcing these policies, the participants can en-
sure complete privacy by committing inputs
and solving the problem themselves using cen-
tralized algorithms.

4. Experimental Evaluation and Anal-
ysis

We evaluated our privacy protection scheme
by comparing the privacy loss using the iCOP
architecture with the privacy loss using the tra-
ditional architecture for the same algorithm in
solving the vector dominance problem 18) and
the meeting-scheduling problem 22). For the
vector dominance problem, a traditional cen-
tralized algorithm was used. For the meeting
scheduling problem, we used four existing algo-
rithms: ADOPT 16), optAPO 15), EPMS 7), and
the centralized algorithm.

4.1 Privacy
Privacy loss was measured using the Min met-

ric 7) and the VPS metric 14), in which informa-
tion is represented in terms of states. In the
Min metric, the privacy loss measure does not
vary when the information is lost to more than
one participant. However, in the VPS metric,
the privacy loss varies based on the number
of participants to whom the information is re-
vealed.

For the vector dominance problem, the agents
exchange their vectors using a commitment pro-
tocol 17) from within the iCOP, resulting in
both agents getting both vectors. Then, each
agent simply compares the respective compo-
nents of the two vectors, creates the computa-
tional result, say a “TRUE”, (in the pre-defined
format) and passes it to the service agent. Even
though the participants get each other’s private
vectors from inside the iCOP, they cannot leak
anything, i.e. no privacy loss.

With the meeting scheduling problem, a num-
ber of participants schedule a meeting with
their private valuations of time in each slot (i.e.,
preferences), whose components can take values
from the set V := {1, . . . , K}. The value of K

was varied from the set {3, 4, 5, 6, 7}. The num-
ber of time slots d was assumed to be 10 and
the number of participants n was varied from 3
to 20.

The privacy loss in optAPO occurs in the
initialization phase at which the participants
exchange their private information with their
neighbors. The minimum privacy loss (i.e.,
one neighbor) in optAPO is d/((n − 1) ∗ d) =
1/(n− 1) in the VPS metric and n ∗ 1/n = 1 in
the Min metric.

The privacy loss in the ADOPT algorithm
varies from scenario to scenario and is calcu-
lated from the amount of information shared
with the others. Thus, we measure the privacy
loss in the ADOPT algorithm by taking the av-
erage privacy loss from different scenarios in the
simulation.

In the EPMS algorithm, the privacy loss in
the VPS metric is 1/(n ∗ (n − 1)); n > 2 and
that in the Min metric is d/n 7).

In the centralized algorithm, the privacy loss
in the VPS metric is (n − 1) ∗ (1/(n − 1))/n =
1/n and that in the Min metric is ((n − 1) ∗
1)/n = (n−1)/n. Note that we have taken into
consideration that one of the participants solves
the problem by accumulating all the inputs and
using a centralized algorithm.

Figure 9 (a) shows the privacy loss for vary-
ing numbers of participants in the four algo-
rithms in the traditional architectures in the
Min metric and Fig. 9 (b) shows the same in

(a) Min metric

(b) VPS metric

Fig. 9 Privacy loss for four algorithms in traditional
architecture.

2092 IPSJ Journal June 2007

the VPS metric. From the figure, we can see
that in traditional architecture, the privacy loss
in the optAPO is the highest, followed by the
centralized algorithm (in which one of the par-
ticipants solves the problem), the ADOPT, and
the EPMS.

The maximum privacy loss in the iCOP de-
pends upon the inherent privacy loss in the al-
gorithm and the maximum amount of informa-
tion that can be leaked from the iCOP. For the
purpose of analysis, the maximum privacy loss
in the iCOP has been shown.

Figure 10 (a) shows the average privacy
loss for optAPO in the traditional architecture
and in the iCOP for the Min metric and Fig-
ure 10 (b) shows the same in the VPS metric.
We see that the privacy protection by the iCOP
is significant.

Figures 11 and 12 show the average privacy
loss in ADOPT and EPMS, respectively, and
Fig. 13 shows the average privacy loss in the
traditional centralized approach and multiple
centralized algorithm by each participant.

The privacy losses in the iCOP security archi-
tecture using a distributed algorithm are much
lower than those the algorithm causes in the
traditional distributed architecture. We took
into consideration that a number of possible so-
lutions exist and a participating agent can bias
all other participating agents towards a specific
solution by manipulating its own inputs. How-
ever, if there are fewer possible solutions, then

(a) Min metric

(b) VPS metric

Fig. 10 Reducing privacy loss in optAPO algorithm
using iCOP.

the privacy loss in the iCOP architecture using
a distributed algorithm will be less than that
shown in Fig. 10 to Fig. 12. Finally, the privacy
loss in the iCOP security architecture using a
centralized algorithm executed by each partici-
pant separately (i.e., multiple centralized algo-
rithm) with the committed inputs resulted in
no privacy loss (Fig. 13).

For the distributed algorithm in the iCOP se-
curity architecture, the same information is re-
vealed to other agents as for it in the distributed
architecture, but within the iCOP and only a

(a) Min metric

(b) VPS metric

Fig. 11 Reducing privacy loss in ADOPT algorithm
using iCOP.

(a) Min metric

(b) VPS metric

Fig. 12 Reducing privacy loss in EPMS algorithm
using iCOP.

Vol. 48 No. 6 Mobile Agent-based Privacy Protection Scheme 2093

(a) Min metric

(b) VPS metric

Fig. 13 Reducing privacy loss by using multiple
centralized algorithms in iCOP.

very small fraction of the revealed information
can be disclosed outside the iCOP, resulting in
very low privacy loss. On the other hand, with
each of the participants using centralized algo-
rithms, no information can be disclosed outside
the iCOP, resulting in no privacy loss.

4.2 Computational Time
Executing a distributed algorithm in a server

may require higher computational time than ex-
ecuting it in a distributed architecture. Also,
the execution of a centralized algorithm by mul-
tiple agents in a server will require a much
higher computational time than executing it
once (as in a traditional centralized scheme).
For the purpose of analysis, we consider the
worst case, i.e., only one agent server exists in
the iCOP domain. Then, we compare the com-
putational time in the iCOP with those in the
traditional architecture for the same algorithm.

For computational time measurements, the
Cycle-based Runtime (CBR) metric 2) was
used, which takes into consideration the con-
currency in distributed algorithms and the la-
tency of the underlying communication envi-
ronment. To measure inter-agent remote mes-
saging delays (in traditional schemes) and inter-
platform agent migration delays (required in
our scheme), we used two hosts (Host A and
Host B) with the specifications shown in Ta-
ble 3 and the Aglet environment 24).

The computational time was measured for
the ADOPT algorithm in the distributed archi-

Table 3 Hosts’ specifications.

Host A Host B
Processor 1.4GHz 1.8GHz
RAM 768MB 256MB
NIC 100Mbps 100Mbps
OS Windows XP Windows XP

(a) For different numbers of agents.

(b) For different network speeds.

Fig. 14 Comparison of computational times in
traditional architecture and in iCOP.

tecture, the ADOPT algorithm in the iCOP ar-
chitecture, the centralized algorithm executed
by a single agent, and the centralized algorithm
executed by each of the participating agents
in the iCOP architecture for varying numbers
of agents/participants and the averages of 15
runs have been shown in Fig. 14 (a). For a
small number of participants, the traditional
centralized scheme requires the least compu-
tational time followed by the distributed algo-
rithm in the distributed architecture, the cen-
tralized algorithm executed by each of the par-
ticipants in iCOP, and the distributed algo-
rithm in iCOP. However, with the increase in
the number of agents, the total computational
time increases. The growth is minimized in the
centralized scheme, followed by the distributed
algorithm in iCOP, the distributed algorithm
in the distributed architecture, and the central-
ized algorithm executed by each participant in
the iCOP.

Figure 14 (b) shows the computational time
(10 agents) with different relative network
speeds L. The value of L for the network used
in our experiment has been labelled 100. Other

2094 IPSJ Journal June 2007

values than those in L = 100 were estimated
based upon the measured value with L = 100.
If the communication latency is decreased i.e., if
we use a faster network, say L = 1000, then the
computational time in the distributed scheme
becomes lower than that in the iCOP. However,
if we use a slower network, say L = 10, then the
computational time in the iCOP becomes lower
than that in the distributed scheme. This is be-
cause a remote messaging requires quite a large
computational time and a distributed algorithm
in the distributed architecture requires a large
number of remote messages.

5. Discussion

The iCOP security architecture is similar to
the Java Sandbox architecture. However, the
default policies of the Sandbox architecture al-
lows it agents to connect back to the origina-
tor 6), i.e. open channels between the Sandbox
and the agent originator exists. This problem
cannot be solved by simply closing all the Sand-
box channels, because if this is done, the com-
putational result cannot be sent to the users. In
addition, the necessary message permission for
the participating agents also creates additional
permissions (e.g., socket permission). Due to
the additive nature of Java permissions 6), when
message permission is granted to the participat-
ing agents, access to the network sockets cannot
be prevented in the default Sandbox. The iCOP
privacy manager explicitly checks the permis-
sion for every resource. Thus, it can precisely
control (restrict) the access to every resource.
In addition, the service agent and the security
policies of our protection scheme help in send-
ing only the computational result to the users,
protecting the shared private information.

The traditional centralized scheme for solving
the multi-party computation problem requires
disclosing all the private inputs of the partici-
pants and the computational result to the cen-
tral agent, who solves the problem on behalf
of the participants. On the other hand, in our
scheme, the participants solve the problem by
themselves without disclosing their private in-
formation to a central agent and they can keep
their private information from being disclosed
to others. One key advantage of using the pro-
posed protection scheme is that existing algo-
rithms can be used for solving the problems.

Unlike cryptographic algorithms, the pro-
posed protection scheme can be used for pro-
tecting privacy in different types of multi-party

computation problems. For example, besides
the problems discussed earlier in this paper, it
can also be used in solving several other prob-
lems, including the permutation problem, the
scalar product problem, the scientific computa-
tion problem, the geometric computation prob-
lem, and the statistical analysis problem 4).

6. Conclusion

We have presented the design, analysis, and
experimental evaluation of a new privacy pro-
tection scheme in solving multi-party compu-
tation problems without using complex crypto-
graphic algorithms. In the proposed scheme,
the participating agents can use existing (dis-
tributed or centralized) algorithms for solving
the problems, but in a confined agent platform
named iCOP. In using a distributed algorithm,
only a few bits may be leaked through the re-
sult sending channel depending upon the prob-
lem characteristics. The maximum privacy loss
in using a distributed algorithm in our scheme
is much lower than the privacy loss caused by
the algorithms in a traditional distributed ar-
chitecture. Also, our scheme can provide com-
plete privacy if the participants exchange their
inputs with a commitment protocol and each
of them solves the problem independently using
centralized algorithms with the committed in-
puts in the iCOP. However, this requires higher
computational time than for a distributed algo-
rithm when the number of participants is large.

References

1) Bennett, K.: Linguistic steganography: Sur-
vey, analysis, and robustness Concerns for hid-
ing information in text, CERIAS Technical Re-
port 2004-313 (2004).

2) Davin, J. and Modi, P.J.: Impact of problem
centralization in distributed constraint opti-
mization algorithms, Proc.AAMAS’05, Nether-
lands, pp.1057–1063 (2005).

3) Du, W. and Atallah, M.J.: Privacy-preserving
cooperative scientific computations, Proc. 14th
IEEE Workshop on Computer Security Foun-
dations, Canada, pp.273–282 (2001).

4) Du, W.: A study of several specific secure
two-party computation problem, Ph.D. thesis,
Purdu University (2001).

5) Gligor, V.D.: A guide to understanding
covert channel analysis of trusted systems.
http://www.fas.org/irp/nsa/rainbow/
tg030.htm

6) Gong, L., Ellison, G. and Dageforde, M.: In-
side Java 2 Platform Security: Architecture,

Vol. 48 No. 6 Mobile Agent-based Privacy Protection Scheme 2095

API Design, and Implementation, 2nd edition,
Addison-Wesley (2003).

7) Huda, M.N., Kamioka, E. and Yamada, S.: An
efficient and privacy-aware meeting scheduling
scheme using common computational space,
IEICE Trans. Inf. & Syst., Vol.E90-D, No.3,
pp.656–667 (2007).

8) Huda, M.N., Kamioka, E. and Yamada, S.:
Privacy Protection in Mobile Agent based Ser-
vice Domain, Proc. ICITA’05, Sydney, Aus-
tralia, pp.482–487 (2005).

9) Huda, M.N., Kamioka, E. and Yamada, S.:
Privacy Protection in Multi-Agent based Ap-
plications, Proc.8th Intl.Conf.on Computer and
Information Technology (ICCIT’05), Dhaka,
Bangladesh, pp.728–733 (2005).

10) Huda, M.N., Kamioka, E. and Yamada, S.:
Privacy Preserving Services for Wireless Net-
work Environments, Proc. Intl. Conf. on Next-
Generation Wireless Systems (ICNEWS’06),
Bangladesh, pp.166–170 (2006).

11) Huda, M.N.: A Mobile Agent-based Pri-
vacy Protection Mechanism in Solving Multi-
party Computation Problems, Ph.D. thesis,
The Graduate University for Advanced Stud-
ies (2007).

12) Kay, R.L.: How to implement trusted comput-
ing: A guide to tighter enterprise security, Tech-
nical Report, Trusted computing group.

13) Kemmerer, R.A.: A practical approach to
identifying storage and timing channels: twenty
years later, Proc. ACSAC’02, pp.109–118
(2002).

14) Maheswaran, R.T., Pearce, J.P., Bowring, E.,
Varakantham, P. and Tambe, M.: Privacy loss
in distributed constraint reasoning: a quanti-
tative framework for analysis and its applica-
tions, J. of AAMAS, Vol.13, No.1, pp.27–60,
Springer (2006).

15) Mailler, R. and Lesser, V.: Solving distributed
constraint optimization problems using cooper-
ative mediation, Proc. AAMAS’04, New York,
pp.438–445 (2004).

16) Modi, P.J., Shen, W., Tambe, M. and Yokoo,
M.: ADOPT: Asynchronous distributed con-
straint optimization with quality guarantees,
Artificial Intelligence Journal, Vol.161, pp.149–
180 (2005).

17) Roca, J.C. and Ferrer J.D.: A non-repudiable
bitstring commitment scheme based on a
public-key cryptosystem, Proc. ITCC’04, Las
Vegas (2004).

18) Sang, Y., Shen, H. and Zhang, Z.: An efficient
protocol for the problem of secure two-party
vector dominance, Proc. PDCAT’05, Dalian,
China (2005).

19) Snow, B.: Four ways to improve security,

IEEE Security & Privacy Magazine, Vol.3,
No.3, pp.65–67 (2005).

20) Shooman, M.L.: Reliability of Computer Sys-
tems and Networks — Fault Tolerance Analysis
and Design, Wiley (2002).

21) Yao, A.: Protocols for secure computations,
Proc. 23rd Annual IEEE Symposium on Foun-
dations of Computer Science (1982).

22) Yokoo, M., Suzuki, K. and Hirayama, K.: Se-
cure distributed constraint satisfaction: Reach-
ing agreement without revealing private infor-
mation, Artificial Intelligence, Vol.161, No.1-2,
pp.229–245 (2005).

23) Zhu, S., Setia, S. and Jajodia, S.: Perfor-
mance optimizations for group key manage-
ment schemes, Proc. ICDCS’03, pp.163–171
(2003).

24) http://sourceforge.net/projects/aglets/

(Received January 22, 2007)
(Accepted April 6, 2007)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.3, pp.320–331.)

Md. Nurul Huda is an As-
sistant Professor at the Uni-
versity of Dhaka. He re-
ceived his B.Sc. degree in Ap-
plied Physics and Electronics
and M.Sc. degree in Computer
Science from the University of

Dhaka, Bangladesh in 1995 and 1997, respec-
tively and Ph.D. degree from the Graduate Uni-
versity for Advanced Studies, Japan in 2007.
He carried out research work at the National
Institute of Informatics (NII), Tokyo from April
2004 to March 2007. His current research inter-
ests include privacy protection in multi-party
computation problems and routing protocols in
wireless ad-hoc networks. He is a member of
the IEEE.

2096 IPSJ Journal June 2007

Eiji Kamioka is an Associate
Professor at Shibaura Institute
of Technology. He received his
B.S., M.S., and Ph.D. degrees
in physics from Aoyama Gakuin
University in 1989, 1991, and
1997, respectively. He worked

for SHARP communication laboratories from
1991 to 1993, researching and developing mul-
timedia communication systems, and joined the
Institute of Space and Astronautical Science
(ISAS) in 1997 until 1998 as a Research Fellow
of the Japan Society for the Promotion of Sci-
ence (JSPS). Then, He proceeded to NII as an
Assistant Professor in 1998. His current inter-
ests encompass ubiquitous computing networks
and context-aware computing networks. He is
a member of the IEICE, IEEE, IPSJ and JPS
(The Physical Society of Japan).

Shigeki Yamada is a Pro-
fessor at the National Insti-
tute of Informatics (NII). He re-
ceived his B.E., M.E., and Ph.D.
degrees in electronic engineer-
ing from Hokkaido University in
1972, 1974, and 1991, respec-

tively. He worked in the NTT laboratories
from 1974 to 1999, where he was involved in
research and development on high-performance
digital switching systems and network-wide dis-
tributed systems. He moved to NII in 1999.
His current research interests include ubiqui-
tous and context-aware computing networks,
mobile networks, and privacy-enhancing tech-
nologies. From 1981 to 1982, he was a visiting
scientist in the Computer Science Department,
University of California, Los Angeles. He is a
member of IEICE, IPSJ and a senior member
of IEEE.

