複数層ネットワークを用いた *E. coli*の生体ネットワークに おけるロバストネス解析手法の提案 (2014年2月7日版)

高橋 勝人^{†1,a)}

概要:生体ネットワークの研究において,複雑ネットワークを応用した機能予測やネットワークの制御の 研究が行われている.従来の研究では遺伝子や化合物といった対象を単一層のネットワークとして研究し ていた.しかし,実際の生体ネットワークでは複雑にネットワーク同士でも相互作用を及ぼし合っている. そこで本研究では生体ネットワークを,複数層構造を持つ統合ネットワークとして扱う方法を導入した. モデル生物に E. coli を用い,遺伝子制御ネットワークと代謝ネットワークの2つのネットワーク情報を 統合し,パーコレーション過程の計算実験を行た.また,この E. coli ネットワークを説明しうる論理モデ ルを導入し,同様にパーコレーション過程の計算を行った.この結果,層構造を考慮したパーコレーショ ン過程の計算を行った結果, E. coli のネットワークでは頑健な構造を有している事が明らかとなり,従来 の方法では捉えられない構造的特徴を明らかにすることができた.

キーワード:複雑ネットワーク,バイオインフォマティクス,複数層ネットワーク,パーコレーション, モデル化

Masato Takahashi^{†1,a)}

1. はじめに

生体ネットワークから社会ネットワークに至るまで,全 ての相互関係は複雑ネットワークのフレームワークを用い て説明することができる [1], [2], [3], [4]. 複雑ネットワー クは生体ネットワークの解析と理解において,その大胆な 抽象化にもかかわらず,有用な情報を提示してきた.細胞 内での相互作用ネットワークは,特にインタラクトームと 呼ばれ,遺伝子制御ネットワークから遺伝子疾患ネット ワークに至るまで様々なレベルにおいて研究が行われてい る [2], [5], [6], [7], [8]. また,複雑ネットワーク上でのパー コレーション過程から,レジリアンスという視点で生体 ネットワークを理解する試みもある [9].しかし,先行研究 において,本来ならば遺伝子相互作用や代謝経路等といっ た生体ネットワークは,相互に影響を及ぼし合っているに も関わらず,各ネットワークはそれぞれ独立に研究が行わ れてきた.

 $^{a)}$ g2112024@fun.ac.jp

そこで、本研究では生体ネットワークを複数層の構造を 持つ1つの統合ネットワークとして扱う事を提案する.検 証のため、*E. coli*をモデル生物にパーコレーション過程を 適用して研究を行った.

2. 研究手法

2.1 データセット

本研究では、遺伝情報と代謝経路に関して多くの情報が 得られている *Escherichia coli K-12 MG1655* (*E. coli*)を モデル生物とした. *E. coli* のネットワーク情報は EcoCyc データベース (Version 17.1 2013 年 7 月 11 日取得)[10] の 情報から構成した. EcoCyc の登録データから 4625 の遺 伝子と 2421 の代謝化合物が得られた. この情報から次の 方法で酵素の存在を媒介とした 2 層ネットワークを作成し た. なお,統合したネットワークは図 1 に示した様になる.

先ず,ある遺伝子が発現している酵素の情報を得る.次 にその酵素がどの酵素反応に関わっているか,EC番号を もとに参照する.EC番号で表された酵素反応に関わる化 合物の情報を取得し,EC番号と化合物の2部グラフを作

^{†1} 現在,公立はこだて未来大学大学院 Presently with Future University Hakodate

図 1 E. coli の複数層ネットワークの部分グラフ Fig. 1 A sub-graph of E. coli multi-layer network

成する. この2部グラフを化合物の1部グラフへ写像す る. 着目していた遺伝子と酵素反応で関係付けられた化合 物を,結びつける. ここまでの手順を各遺伝子に行い,最 後に,化合物のノードに重複が存在した状態になるため, 重複した化合物ノードをそれぞれ1つのノードにまとめ る.以上の手順で *E. coli* にの遺伝子と代謝物の2つの要 素を持つ複数層ネットワークを構成した.

2.2 論理モデル

EcoCyc から得た E. coli のネットワークから,内次数分 布は冪乗則,外次数分布では指数分布と冪乗則をそれぞれ 示すことを確認している.ここで,内次数分布とはある層 の内部のノード同士を繋ぐエッジの本数,外次数分布とは ある層から別の層を繋ぐエッジの本数を示す.この E. coli の複数層ネットワークにおける振る舞いを説明しうるネッ トワークの成長モデルを導入した.成長規則は A 層 B 層 の 2 層を用い,次の様に構成する.

A層側の成長規則

```
2)既にネットワークに存在するmf個のAノードをファーストコンタクト
としてランダムに選択する
```

- 3)ファーストコンタクトとして選んだmf個のノードと接続しているノード からms個のAノードとmc個のBノードをランダムに選ぶ
- 4)1で追加したノードとランダムに選ばれたノードを結ぶ

B層側の成長規則

1)各タイムステップにおいて、確率βで新しくB層へノードを追加する 2)ノードを追加した場合、ma個のA層ノードとmb個のB層ノードをランダムに選択 3)ランダムに選択したノードを新しく追加したB層ノードを接続する

以上の成長規則をネットワーク全体のノード数が指定したノード数Nに達するまで 繰り返し適用してネットワークを成長させる

2.3 マスター・スレーブパーコレーション

パーコレーションとは、ノードまたはエッジが除去され た割合と最大クラスタの大きさの変化の事である.ここで のクラスタとは、ネットワークの連結部分を指す.本研究 では、ノードの除去によるサイトパーコレーションを適用 し、ネットワークのレジリアンスを検証した.

先ず,2層ネットワーク全体として比較するため,両方の 層のノードのうちどちらか一方を各時点で1個ずつ除去し, ネットワーク全体の最大クラスタを計算した.単一層ネッ トワークとの比較のため,Barabási-Albert モデル (BA モ デル)[11],ランダムモデル (ER モデル)を用いて同様の計 算を行った. なお, *E. coli* ネットワーク以外は EcoCyc か ら得たネットワークと同じノードとエッジの数になるよう パラメータを設定した. ノードの除去する順番は,一様ラ ンダムと次数の高い順の2つの場合で行った. なお,ラン ダムなノード除去は10回試行し,その平均をとった.

次に,複数層ネットワークにおける主従関係を考慮した パーコレーション過程の計算を行った.本研究ではこの パーコレーションを区別してマスター・スレーブパーコ レーションと呼称する.

遺伝子制御や外的要因によって,ある酵素反応に関わる 遺伝子発現が全て無くなった場合,その酵素反応は停止す ると考え,酵素反応は遺伝子発現に従属していると捉える. そこで,ネットワークにおいて従属側と考えられる層をス レーブレイヤー,もう一方をマスターレイヤーと定義する. 本研究では,遺伝子制御ネットワーク側をマスターレイ ヤー,代謝ネットワーク側をスレーブレイヤーと考え,層 構造ネットワークにおける主従関係を考慮したパーコレー ションを提案する.

マスター・スレーブパーコレーションでは,遺伝子制御 ネットワークのレイヤーでのみノードの除去する.この過 程で代謝ネットワークノードの外次数が0となった時,そ の代謝化合物ノードを酵素反応ネットワークから除去する. これによって,遺伝子制御ネットワークのノードの残存率 と,代謝関係ネットワークのノードの残存率の関係を考え る.論理モデルでは,A層を遺伝子制御ネットワーク,B 層を代謝関係ネットワークとして同様の計算を行った.こ のマスター・スレーブパーコレーションに関しても,一様 ランダムと次数順で計算を行った.なお,ここでの次数は 内外次数の合計を用いた.

3. 結果

図2ネットワーク全体に対するパーコレーションの計算 結果である.縦軸はネットワークの最大クラスタの大きさ *S*,横軸はネットワーク全体の残存ノード数 ϕ をそれぞれ 標準化した値である.

ランダムなノードの除去に対しては全てのモデルで同様 の振る舞いを示した.対して,次数の高い順にノードを除 去した場合, *E. coli* と論理モデルではネットワークから ノードを 25%除去した段階で最大クラスタがほぼ消えるこ とが明らかになった.この振る舞いは BA モデルに似てお り,導入した論理モデルが *E. coli* のネットワークの特徴 に似た結果を示した.

マスター・スレーブパーコレーション結果は図3に示す 通りとなった.縦軸にはスレーブ層の最大クラスタの大き さ*S'*,横軸にはマスター層の残存ノード数 ψ をそれぞれ 標準化した値である.ランダムにノードを除去した場合, *E. coli* ネットワークと論理モデルは似た振る舞いを示し, 全体のパーコレーションの様子に似た頑健な振る舞いを示

¹⁾各タイムステップにおいて、1個Aノードを追加する

図 2 パーコレーションの計算結果 Fig. 2 Results of percolation process

図 3 マスター・スレーブパーコレーションの計算結果 Fig. 3 Results of master-slave percolation

した.対して,次数順にノードを除去した場合では E. coli ネットワークは図2で得られた振る舞いと異なり,緩やか なネットワークの崩壊を示した.

4. まとめと今後の課題

本研究では,独立したネットワークとして扱われていた 複数の実ネットワークを複数層構造のネットワークとして 統合する手法を提唱した.検証のため E. coli のデータを 用いてパーコレーションを用いてネットワークのレジリア ンスを評価し,複数層ネットワーク全体のレジリアンスは, スケールフリーネットワークである BA モデルと同様であ る事を確認した.また,この振る舞いは本研究で導入した 論理モデルでも同様であった.

次に,層構造を考慮したマスター・スレーブパーコレー ションの過程を計算した結果では,*E. coli*のネットワーク は次数に基づく優先的ノードの削除に対して頑健である事 が伺えた.これに対して,我々の導入したモデルではその ような特徴を示さなかった.以上の事から,*E. coli*ネット ワークには2層ネットワークとしてランダム,選択的両障 害に対して頑健性がある事が明らかとなった.

本研究は、複数層ネットワークとして表現した実ネット ワークにおける構造的特徴の一端を明らかにした.構造的 特徴の他にも、パーコレーションに関わる研究として、モ ジュール構造の発見アルゴリズムは重要な課題の1つであ る[12],[13].他に、ネットワーク上での情報拡散やコント ロールといった課題も存在する[14],[15].本手法では複数 のネットワークにまたがる構造的特徴を明らかにできた. よって,これら課題に対しても複数層ネットワークとして のアプローチは有用であり,応用する価値があると考えら れる.

参考文献

- Palla, G., Barabási, A.-L. and Vicsek, T.: Quantifying social group evolution., *Nature*, Vol. 446, No. 7136, pp. 664–667 (2007).
- [2] Barabási, A.-L. and Oltvai, Z. N.: Network biology: understanding the cell's functional organization., *Nature reviews. Genetics*, Vol. 5, No. 2, pp. 101–113 (2004).
- [3] Toivonen, R., Onnela, J.-p., Saramäki, J., Hyvönen, J. and Kaski, K.: A model for social networks, *Physica A: Statistical Mechanics and its Applications*, Vol. 371, No. 2, pp. 851–860 (2006).
- [4] Clauset, A., Shalizi, C. R. and Newman, M. E. J.: Power-Law Distributions in Empirical Data, *SIAM Review*, Vol. 51, No. 4, pp. 661–703 (2009).
- [5] Barzel, B. and Barabási, A.-L.: Network link prediction by global silencing of indirect correlations., *Nature biotechnology*, Vol. 31, No. 8, pp. 720–725 (2013).
- [6] Manichaikul, A., Ghamsari, L., Hom, E. F. Y., Lin, C., Murray, R. R., Chang, R. L., Balaji, S., Hao, T., Shen, Y., Chavali, A. K., Thiele, I., Yang, X., Fan, C., Mello, E., Hill, D. E., Vidal, M., Salehi-Ashtiani, K. and Papin, J. A.: Metabolic network analysis integrated with transcript verification for sequenced genomes., *Nature Methods*, Vol. 6, No. 8, pp. 589–592 (2009).
- [7] Vidal, M., Cusick, M. E. and Barabási, A.-L.: Interactome networks and human disease., *Cell*, Vol. 144, No. 6, pp. 986–998 (2011).
- [8] Barabási, A.-L., Gulbahce, N. and Loscalzo, J.: Network medicine: a network-based approach to human disease., *Nature reviews. Genetics*, Vol. 12, No. 1, pp. 56–68 (2011).
- [9] Rozenfeld, H. D., Gallos, L. K. and Makse, H. a.: Explosive percolation in the human protein homology network, *The European Physical Journal B - Condensed Matter*, Vol. 75, No. 3, pp. 305–310 (2010).
- [10] Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muñiz-Rascado, L., Bonavides-Martínez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P. and Karp, P. D.: EcoCyc: a comprehensive database of Escherichia coli biology., *Nucleic acids research*, Vol. 39, No. Database issue, pp. D583–90 (2011).
- [11] Barabási, A.-L. and Albert, R.: Emergence of scaling in random networks, *Science (New York, N.Y.)*, Vol. 286, No. 5439, pp. 509–512 (1999).
- [12] Fortunato, S.: Community detection in graphs, *Physics Reports*, Vol. 486, No. 3-5, pp. 75–174 (2010).
- [13] Newman, M. E. J.: Communities, modules and largescale structure in networks, *Nature Physics*, Vol. 8, No. 1, pp. 25–31 (2011).
- [14] He, G., Yang, Q., Fu, F. and Kwak, K. S.: Percolation theory aided data diffusion for mobile wireless networks, *ICT Convergence (ICTC)*, 2012 International Conference on, pp. 61–65 (2012).
- [15] Zhang, Z.-K., Zhang, C.-X., Han, X.-P. and Liu, C.: Emergence of Blind Areas in Information Spreading, *arXiv*, p. 4707 (2013).