
Non-Interactive Proof Verification Procedures

of Reversible and Quantum Finite Automata

Marcos Villagra
1

Tomoyuki Yamakami
1

Abstract: We discuss the computational complexity of non-interactive verification procedures of finite
automata that determine whether given proofs are correct. First, we show that languages admitting
non-interactive proof systems by one-way quantum or reversible finite automata are exactly regular
languages. When those automata are forced to read their entire input (referred to as a classical
acceptance model), there are regular languages that do not admit those systems. In this model, we
further show that quantum proofs, even in the form of entangled quantum states, are no more power-
ful than non-entangled proofs. We also give a semigroup-theoretic sufficient condition for languages
characterized by non-interactive proof systems with reversible finite automata. From this condition,
we draw a conclusion, that no finite language admits non-interactive proof systems with reversible
finite automata, and moreover, the non-closure under complementation of the corresponding class of
languages.

Keywords: verification procedure, proof, Merlin-Arthur proof system, quantum automaton, reversible

automaton, nondeterminism

1. Introduction

1.1 Background

A computational verification procedure of a “proof”

has been discussed for decades using various mathemat-

ical models of two-party communication and computa-

tion, where a proof is a piece of information that may

contain sufficient data to help verify the correctness of

a certain assertion. We shall study in this work a situ-

ation in which a prover presents a proof, either correct

or erroneous, for its verification by a weak verifier, who

runs a one-way finite (state) automaton.

A more general interactive model has been studied in

the past literature [4], [9]. Dwork and Stockmeyer [4]

conducted an initial study on the power and limitations

of interactive proof (IP) systems whose verifiers are lim-

ited to 2-way probabilistic finite automata (or 2pfa’s, in

short). A good survey of this model of “classical” inter-

active proof systems can be found in [3]. More recently,

Nishimura and Yamakami [9] studied “quantum” inter-

active proof (QIP) systems.

The number of interactions in a proof system can be

seen as a computational resource which could affect the

recognition of languages. Results in polynomial-time

computation state that a three-message QIP is sufficient

1 Department of Information Science, University of Fukui,

3-9-1 Bunkyo, Fukui 910-8507, Japan. The first author’s

research is supported by a JSPS Research Fellowship.

to recognize any language that has a QIP with a polyno-

mial number of messages [7]. This is not believed to be

true for a classical IP because it would entail a collapse

of the polynomial hierarchy.

In this work, we aim at a better understanding of

non-interactive proof systems with finite-state verifiers

as a continuation of previous work by Nishimura and

Yamakami [9]. A non-interactive proof system is an

interactive proof system in which a prover presents a

proof and a verifier checks its validity. Classically, this

is known as a Merlin-Arthur (MA) proof system. We

say that a language L has an MA proof system if there

exists a one-way finite automaton (called Arthur) such

that, for every input x ∈ L Arthur accepts x if a prover

(called Merlin) provides a concrete proof and Arthur

verifies that the proof is correct; on the contrary, for

every input x /∈ L and any proof Arthur rejects x.

Merlin can take various forms. We consider three

forms of Merlins. In a deterministic Merlin model, Mer-

lin deterministically chooses a string as a proof and

sends it to Arthur, who runs a 1-way reversible finite au-

tomaton (or 1rfa). This model corresponds to nondeter-

ministic computation. For this reason, we call it a 1-way

nondeterministic reversible automaton or 1nrfa. We also

consider a model in which Merlin applies any quantum

operation to generate a “quantum proof” (a pure quan-

tum state) and sends it to Arthur who runs a 1-way

1ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-AL-147 No.18
2014/3/4

quantum finite-state automaton (1qfa). We refer to this

model as a Quantum Merlin-Arthur system (QMA). In

this model, we differentiate two forms of quantum Mer-

lin. In the first model, Merlin generates the proof, sends

it to Arthur and does nothing afterwards; in the second

model, Merlin generates the proofs, sends it to Arthur

and possibly do some computation on its inner states

while Arthur is occupied verifying the proof. If Merlin

entangles its inner states with the proof, any local op-

eration on Merlin’s side can potentially affect Arthur’s

verification procedure.

1.2 Contributions

In this work, we shall study the power and limita-

tions of the aforementioned proof systems. To make our

notations readable, we say that a machine is nondeter-

minstic to indicate the deterministic Merlin model and

QMA for the quantum Merlin model. Using these nota-

tions, we define the following language classes: 1NRFA,

and QMA(1qfa).

First, we start by studying some basic properties of

the classes 1NRFA and QMA(1qfa). We show that

1NRFA and QMA(1qfa) coincide exactly with the class

of regular languages REG. On the contrary, if we de-

mand our machines to read the entire input (a model

sometimes called classical acceptance), then they are

strictly included inside REG. To emphasize classical

acceptance, we add the suffix “-CLA” to each lan-

guage class. Thus, we introduce the language classes

1NRFA-CLA and QMA(1qfa)-CLA. The latter actually

agrees with QMA(mo-1qfa), i.e., QMA(1qfa)-CLA =

QMA(mo-1qfa) where mo-1qfa is a 1qfa tha makes only

one measurement at the end of its computation. One

key technical challenge to show these containments is

to argue that once a proof was given, Merlin cannot

cheat Arthur by making some prior entanglement with

the provided proof. This is achieved by showing that

the acceptance probability of Arthur is independent of

any changes Merlin does to its inner states, even in the

presence of entanglement.

For the class 1NRFA-CLA, we introduce a sufficient

condition based on semigroup theory for languages in

the class. This result allow us to show several impossi-

bility results on specific languages. Relying on that re-

sult, we can show that any finite language cannot be in

1NRFA-CLA, and furthermore, we show the non-closure

under complementation property of 1NRFA-CLA.

1.3 Outline of the Paper

This paper is organized as follows. In Section 2 we in-

troduce the new concepts which includes Merlin-Arthur

proof systems and nondeterminism for reversible and

quantum finite-state automata. In Section 3 we exam-

ine the power of a deterministic Merlin. In Section 4

we show our semigroup-theoretic sufficient condition for

proving lower-bounds on nondeterministic reversible au-

tomata with classical acceptance. Section 5 explores

the power of having a quantum Merlin and presents the

main argument for a cheating Merlin.

2. Merlin-Arthur Proof Systems and

Finite Automata

In this section, we describe the process of the verifi-

cation of proofs by finite automata. Let A be a finite

automaton. A will receive, beside its input denoted x,

another string w which we will call the proof. During its

computation, A will use w in order to accept or reject

x. If x ∈ L then there always exists a proof that makes

A accept x; otherwise, if x /∈ L then does not matter

which proof is given to A, it will always reject x. This

is similar to an IP; however, since the proof is received

by Arthur in its entirety at the beginning of the compu-

tation, this proof system model is normally referred to

as non-interactive.

The proof is normally assumed to come from an all-

powerful computer traditionally called Merlin (the ver-

ifier is Arthur). Merlin will decide what proof he will

give to Arthur based only on the input at the beginning

of the computation. This is typically called a Merlin-

Arthur proof system. In this paper we will consider two

types of Merlin: 1) deterministic, and 2) quantum.

Now we proceed with a formal definition of the proof

verification procedure. We always assume that Σ is the

finite input alphabet and the proof is always defined

over a (possibly different) finite proof alphabet Γ.

2.1 Verification by Reversible Automata with

Deterministic Merlin

Let A be a deterministic automaton defined as A =

(Q,Σ, δ, q0, Qacc, Qrej,Γ). We also include the proof

alphabet Γ in the definition. As explained in the previ-

ous paragraph, the change of state of A depends on the

input and the proof; therefore, the transition function

is defined as δ : Q × Σ × Γ → Q. If x ∈ L then there

exists a proof w ∈ Γ|x| such that A on input (x,w)

arrives to an accepting state. If x /∈ L then for every

proof w ∈ Γ|x|, on input (x,w), A arrives at a reject-

ing state. Since Merlin is deterministic, there exist a

function η : Σ∗ → Γ∗ that on input x generates the

proof w = η(x) where |w| = |x|. The function η is not

necessarily recursive.

Given our definitions above, it is not hard to see that

if A is a 1dfa, the implementation of a proof yields ex-

actly the well-known 1-way nondeterministic finite state

automata (or simply 1nfa). We can further define a 1-

way nondeterministic reversible automaton (or 1nrfa)

2ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-AL-147 No.18
2014/3/4

by allowing A to a 1rfa. Nondeterminism is the case

of a deterministic Merlin, and it is normally called that

way in the literature.

In order for δ to be reversible, we need to define it in

the following way. Let q, q′ ∈ Q and γ, γ′ ∈ Γ. For any

σ ∈ Σ, the transition function is injective with respect

to the state and proof, i.e., if δ(q, σ, γ) = δ(q′, σ, γ′)

then (q, γ) = (q′, γ′) whenever both are defined (if both

are undefined it does not matter). We define the class

of languages recognized by 1nrfa as 1NRFA.

If we require classical-acceptance, then A is a permu-

tation automaton which we denote 1nrfa-cla. The class

of languages recognized by 1nrfa-cla is 1NRFA-CLA.

2.2 Verification by Quantum Automata with

Quantum Merlin

Here we explain how a quantum automaton receives

and verifies a proof. This also requires an explanation

of how a quantum Merlin produces the proof, which is

strikingly different than classical Merlin.

Let HA be the Hilbert space of the verifier, HM

be the Hilbert space which corresponds to Merlin’s in-

ner workspace, and let Hp be the Hilbert space con-

taining the proof. We will also need a Hilbert space

Hinput that will contain the input string to the sys-

tem. Thus, the Hilbert space of the entire system is

HM ⊗ Hinput ⊗ Hp ⊗ HM . For convenience, we will

omit the register that corresponds to the input string.

Nevertheless, we should remember that it is there.

If Merlin provides the proof without any entangle-

ment, the initial state of the system is |z〉|φ〉|q0〉, where

|z〉 is the state of Merlin’s inner workspace, |φ〉 is the

proof, and |q0〉 is the initial state of Arthur. In general,

however, Merlin can provide the proof with entangle-

ment between subspaces Hp and HM . Thus, the initial

state should be

|ψ0〉 =
∑

z,w∈Γ|x|

αz,w|z, w〉|q0〉. (1)

2.2.1 Quantum Merlin with mo-1qfa Verifier

First we explain the computation of an mo-1qfa A

on input |x〉 and proof |φ〉. Similarly as in the case

of interactive proofs, the verifier is a set of unitaries

{Uδ,i}i∈[0,n+1] where each Uδ,i acts on HA conditioned

on Hinput⊗Hp. The subscript in each unitary indicates

that we apply Uσ (where σ = xi) to the internal states

conditioned on the i-th position of the input string and

the i-th qubit of the proof.

The computation of an mo-1qfa QMA system at the

i-th step is

|ψi〉 = Uδ,i · · ·Uδ,1|ψ0〉. (2)

Thus, the probabilities of accepting or rejecting an in-

put x given proof |φ〉, denoted pacc(x, φ) and prej(x, φ),

is pacc(x, φ) = 〈ψn+1|Πacc|ψn+1〉 and prej(x, φ) =

〈ψn+1|Πrej|ψn+1〉, where Πacc and Πrej are projectors

onto the subspaces spanned by the accepting and reject-

ing states of A respectively.

Note that in Eq. (2) Merlin gives the proof only at

the beginning of the computation and does nothing af-

terwards. Quantum communication, however, allows a

different way of non-interactive system using entangle-

ment. Merlin can provide a proof at the start that is

entangled with its own internal states. Then during the

computation, Merlin can alter the proof by applying

only local operations on his inner-workspace. We call

this non-interactive proof computation a QMA system.

In a QMA system with an mo-1qfa verifier, we start

with the same initial state |ψ0〉 and define the state at

the i-th step as

|ψi〉 = PiUδ,i · · ·P1Uδ,1|ψ0〉, (3)

where each Pi is a unitary operator that acts on HM

conditioned on Hp. Note that Merlin cannot change

the proof register directly because of the non-interactive

model we want to achieve. Thus, the accepting and re-

jecting probabilities are defined as before using instead

the time evolution given in Eq. (3).

Now we can define the acceptance and rejection con-

ditions of a QMA system with mo-1qfa verifier.

Definition 2.1 (QMA system with mo-1qfa)

Let ε be any constant in the interval [0, 1/2). A QMA

system with mo-1qfa verifier with error ǫ recognizes

language L if it satisfies the following two conditions.

(1) (completeness) For all x ∈ L there exists |φ〉 ∈

CΓ|x|

, pacc(x, φ) ≥ 1− ε.

(2) (soundness) For all x 6∈ L and any proof |φ〉 ∈

CΓ|x|

, prej(x, φ) ≥ 1− ε.

If the computation of A is given by Eq. (2) then we

say that A is a 1-way nondeterministic mo-1qfa (mo-

1nqfa). If the computation of A is given by Eq. (3)

then we say that A is a QMA system.

Thus, the class of languages recognized by mo-1nqfa

is denoted MO-1NQFA. The class of languages recog-

nized by QMA systems with mo-1qfa verifiers is denoted

QMA(mo-1qfa).

2.2.2 Quantum Merlin with 1qfa Verifier

In this section we will explain the time evolution of a

1qfa, i.e., a quantum automaton that measures its states

at each step.

The best way to describe the global evolution of the

computation of a 1qfa is to keep track of accumulated

accepting/rejecting probabilities at each step [6]. Let

V = ℓ2(Q) × R × R. A vector Ψ = (ψ, pacc, prej)
T ∈

V means that the 1qfa has accepted thus far with

probility pacc, rejecting with prej , and neither with

3ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-AL-147 No.18
2014/3/4

probability ‖ψ‖2. A norm on V can be defined as

‖(ψ, pacc, prej)
T ‖ = 1

2
(‖ψ‖+ |pacc|+ |prej|). The time

evolution Tδ,i is given for each i ∈ {0, . . . , n+ 1} as

Tδ,i(ψ, pacc, prej)
T =

ΠnonUδ,i|ψ〉

pacc + ‖ΠaccUδ,i|ψ〉‖
2

prej + ‖ΠrejUδ,i|ψ〉‖
2

.

The initial state is Ψ0 = (ψ0, 0, 0). Thus, on input

x = x1 · · ·xn the state at step i is Ψi = Tδ,iΨi−1.

The acceptance of a QMA system with 1qfa verifier

can be defined the same way is in the previous section.

Here, however, a 1qfa can stop its computation without

reading the entire input. Similarly, we define the classes

of languages 1NQFA and QMA(1qfa) as before depend-

ing on the way Merlin behaves during the computation.

3. The Power of Classical Merlin

In this section, we explore the power of a determinis-

tic Merlin with Arthur running a 1rfa. The main result

in this section is that the class of languages recognized

by 1nrfa’s are exactly the regular languages. However,

if we require the 1nrfa to read its entire input (classical

acceptance), then it is equivalent to an IP system with

1nrfa-cla verifier.

Theorem 3.1

(1) 1NRFA = REG.

(2) 1NRFA-CLA = IP(1nrfa-cla).

(3) 1NRFA-CLA ⊆ 1NRFA.

Proof. Statement 3 is trivial. To prove state-

ment 2, first note that the containment 1NRFA ⊆ REG

can be shown by a standard simulation of a 1nfa by a

1dfa. For the containment REG ⊆ 1NRFA, we pro-

ceed by showing that IP(1rfa) ⊆ 1NRFA. The equality

IP(1rfa) = REG is implicit in [9].

Let (P, V) be an IP system with 1rfa verifier recog-

nizing L. Let V = (Q,Σ, δ, q0, Qacc, Qrej ,Γ). We will

define a 1nrfa A recognizing L.

Let A = (Q,Σ, δ′, q0, Qacc, Qrej,Γ × Γ). Thus, the

machine A have the same states with the same initial

state and halting states. The transition function is de-

fined as

δ′(q, σ, (γ, γ′)) = (q′, γ′) if δ(q, σ, γ) = (q′, γ′), (4)

and undefined otherwise. Intuitively, at each step, we

need to guess what the prover sent and what the veri-

fiers sends. In this case γ is the symbol received from

the prover, and γ′ is the symbol sent from the verifier.

We claim that δ′ is reversible. Let q and q̌ be two

states. Assume δ′(q, σ, (γ, γ′)) = δ′(q̌, σ, (γ̌, γ̌′)), and

say they map to (q̄, γ̄). Then by our definition we have

that γ′ = γ̌′ = γ̄ and δ(q, σ, γ) = δ(q̌, σ, γ̌) = (q̄, γ̄). By

the reversibility of δ we have that γ = γ̌ and q = q̌, and

hence, δ′ is reversible.

It is easy to see that for x ∈ L there exists a proof

that makes A. This is because there exists a conversa-

tion between V and a honest-prover P . For any x /∈ L

all proofs makesA to reject, because no prover can cheat

V . This proves statement 1.

In statement 2, note that IP(1rfa-cla) ⊆ 1NRFA-CLA

holds, because in Eq. (4), if δ is totally defined for its

entire domain then δ′ is also totally defined.

To finish the proof, we show that 1NRFA-CLA ⊆

IP(1rfa-cla). Let L ∈ 1NRFA-CLA and let M =

(Q, Σ̆, q0, δ, Qacc, Qrej,Γ) be the 1nrfa recognizing L.

We construct an IP system (P, V) recognizing L where

V is a p-aut. Let V = (Q, Σ̆, q0, δ
′, Qacc, Qrej,Γ).

The transition function is defined as δ′(q, σ, γ) = (p, γ)

where δ(q, σ, γ) = p. Thus, the verifier never modi-

fies the communication cell and the prover provides the

proof. Thus, δ′ is reversible because δ is reversible. If

an input x is in L, then there exists a prover that can

provide the proof. However, if x is not in L, no prover

can ever come up with a proof. ✷

4. Limitations of Classical Merlin

with Classical Acceptance

In this section, we show that if an 1rfa is required

to scan the entire input (classical acceptance) then its

recognition power is strictly weaker than that of a finite-

state automaton.

To prove that a language cannot be recognized by a

1nrfa-cla with classical Merlin, we will show in Section

4.1 a sufficient condition that all languages that are rec-

ognized must obey. In Section 4.2, we will show how

this criterion can be used to prove impossibility results

for specific regular languages.

To read through the subsequent sections, we assume

the reader’s familiarity with semigroup theory. A thor-

ough treatment of the subject can be found in [10].

Briefly, a semigroup is a set with a binary operation

on the same set. A monoid is a semigroup contain-

ing an identity element. A finite monoid M recog-

nizes a language L if there exists a semigroup homo-

morphism ϕ : Σ∗ →M and a subset N ⊆ M such that

L = ϕ−1(N). An idempotent is an element e such that

ee = e.

4.1 A Sufficient Condition for Languages Rec-

ognized by 1nrfa-cla

Lemma 4.1 If A is a 1nrfa-cla recognizing a lan-

guage L, then there exists a finite monoid M recog-

nizing L where each element m ∈ M is a finite set of

one-to-one total relations over the states of A. Fur-

thermore, for any state q and any idempotent e ∈ M

there exists a relation r ∈ e such that (q, q) ∈ r.

4ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-AL-147 No.18
2014/3/4

Proof. Let A be a 1nrfa-cla and let R(Q) be a set

of relations on the set of states of A. Define a mapping

µ : Σ∗ × Γ∗ → R(Q) such that (p, q) ∈ µ(x,w) if and

only if there is a path between states p and q on input

x and proof w. In particular, each relation µ(x,w) is

a total one-to-one relation because A is reversible with

respect to its input and proof.

Let S(Q) be the set of all total one-to-one relations on

Q and let M = 2S(Q)−{Ø}. We define a new mapping

ϕ : Σ∗ → M as ϕ(x) =
⋃

w∈Γ|x|{µ(x,w)}. The func-

tion ϕ maps each word to a finite set of total injective

(one-to-one) relations.

Given two subsets R, T ⊆ S(Q) we define the prod-

uct R•T
def
= {r ◦ t : r ∈ R, t ∈ T } where ◦ denotes the

functional composition.

Claim 1 (M, •) is a finite monoid.

Claim 2 The function ϕ is a monoid morphism.

The recognition of L by M follows from Claims 1 and

2. We need to find a setN ⊆ M such that L = ϕ−1(N).

Let N = {m : ∃r ∈ m ∃qacc ∈ Qacc (q0, aacc) ∈ r}.

Clearly, L = ϕ−1(N) because only strings in L have

paths from q0 to certain accepting states.

All what remains to prove the lemma is the last prop-

erty on the idempotents. First, however, is convenient

to define a semigroup action on M. For any m ∈ M we

define a right action of m on Q as q ·m = q′ if and only

if there exists r ∈ m such that (q, q′) ∈ r. Any action

requires the following distributivity property.

Claim 3 For any m,s ∈ M and any q ∈ Q, (q ·m) ·

s = q · (m • s).

Now we are ready to prove the property on the idem-

potents, which relies on the following claim.

Claim 4 For any r ∈ e and any (q, p) ∈ r there exists

r′ ∈ e such that (q, p) ∈ r ◦ r′.

Proof. Let e ∈ M be and idempotent and let

r ∈ m. For any (q, p) ∈ r, since e is an idempotent,

q · e2 = p · e = p. Hence, there exists a relation r′ ∈ e

such that (p, p) ∈ r′, and therefore, (q, p) ∈ r ◦ r′ and

r ◦ r′ ∈ e2 = e. ✷

Claim 5 For any q ∈ Q and any idempotent e ∈ M,

q · e = q.

Proof. Any r ∈ e is a permutation on Q. Hence,

by Claim 4, there always exists a relation r such that

(q, q) ∈ r. ✷

✷

4.2 Impossibility Results for Regular Lan-

guages

In this section, we will show some applications of

Lemma 4.1. In particular, we show that there exists reg-

ular languages that cannot be recognized by any 1nrfa-

cla.

Theorem 4.2 1NRFA-CLA $ REG.

The proof of the theorem will trivially follows from

the examples we present next. As a first application of

Lemma 4.1 we show the following.

Proposition 4.3 If L is a finite language then L /∈

1NRFA-CLA.

Proof. Assume by contradiction that L ∈

1NRFA-CLA. Then by Lemma 4.1 the monoid M rec-

ognizes L. Now let L = {x1, . . . , xk} be an enumeration

of L, i.e., |L| = k. Say that mi = ϕ(xi). Since M is

finite, each element always have an idempotent power,

i.e., for each m ∈ M there exists a positive integer ℓ

such that mℓ is an idempotent.

For any xi ∈ L, let q0 ·(ϕ(|c)•mi) = q for some state q.

Since xi ∈ L we have that q0 ·(ϕ(|c)•mi•ϕ($)) = qacc for

some accepting state. Now, mℓ is an idempotent and,

by Lemma 4.1, we have that q0 · (ϕ(|c) •mi •m
ℓ
i) = q

also holds. Hence, q0 · (ϕ(|c) •mi •m
ℓ
i • ϕ($)) = qacc.

This implies that xix
ℓ
i ∈ L which is a contradiction. ✷

Next, we give some examples of infinite regular lan-

guages. Let One = {w1 : w ∈ {0, 1}∗} defined over

the binary alphabet {0, 1} and let Two = {w2 : w ∈

{0, 1}∗} defined over the ternary alphabet {0, 1, 2}.

Proposition 4.4 One /∈ 1NRFA-CLA.

Proof. Assume by contradiction that One ∈

1NRFA-CLA. Then by Lemma 4.1 there exists a

monoid M recognizing One. Let x1 ∈ One where

x ∈ {0, 1}∗ is some arbitrary string. Then q0 ·

(ϕ(|c) • ϕ(x1) • ϕ($)) = qacc for some accepting state

qacc. Let q0 · (ϕ(|c) • ϕ(x1)) = q for some state q and

let ϕ(x0)k be an idempotent power for some positive

integer k. Again by Lemma 4.1 (q, q) ∈ ϕ(x2)k. This

implies that q0 ·
(

ϕ(|c) • ϕ(x1) • ϕ(x0)k • ϕ($)
)

= qacc,

and hence, x1(x0)k ∈ L which is a contradiction. ✷

Corollary 4.5 1QFA 6= 1NRFA-CLA.

Corollary 4.5 follows from the fact that One cannot be

recognized by any 1qfa [6].

Proposition 4.6 Two /∈ 1NRFA-CLA.

The proof is omitted due to its similarity to the proof

5ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-AL-147 No.18
2014/3/4

of Proposition 4.4.

Corollary 4.7 1RFA-CLA 6= 1NRFA-CLA.

It is easy to show that Two cannot be recognized by

any 1rfa-cla; thus, Corollary 4.7 follows.

Proposition 4.8 The class 1NRFA-CLA is not

closed under complement.

This can proved by constructing a 1nrfa-cla for the

unary language {0}+. Since its complement is finite the

proposition follows.

5. The Power of Quantum Merlin

We have shown in Theorem 3.1 that the class of lan-

guages recognized by 1nrfa is composed exactly of reg-

ular languages. Analogously, in this section, we show

that all languages in QMA(1qfa) are also regular. An

important point is to show that QMA(1qfa) includes

1NRFA. This latter result requires a key technical ob-

servation that a quantum Merlin cannot cheat Arthur

even in the case of an entangled proof.

Theorem 5.1 QMA(1qfa) = REG.

The proof of this theorem is divided in two sub-

sections. In Section 5.1, we will show that quantum

Merlin helps to recognize more languages than classi-

cal Merlin. From that result and Theorem 3.1 it follows

that QMA(1qfa) contains all regular languages and that

IP(1rfa-cla) ⊆ QMA(mo-1qfa). Then in Section 5.2 we

will show that quantum Merlin, with mo-1qfa or 1qfa

as verifiers, is not more powerful than a finite-state au-

tomaton. The main technical contribution of this latter

section is that a quantum Merlin that creates entangle-

ment between its inner-states and the proof, it has ex-

actly the same recognition power of a quantum Merlin

that does not create any entanglement.

5.1 Quantum Merlin cannot Cheat

We start by showing that a 1nrfa (1nrfa-cla) can be

simulated by a 1nqfa (mo-1nqfa), i.e., quantum nonde-

terminism is more powerful than classical nondetermin-

ism.

Lemma 5.2

(1) 1NRFA-CLA ⊆ MO-1NQFA.

(2) 1NRFA ⊆ 1NQFA.

Proof. We only prove statement (1). Statement

(2) is a simple modification of the same argument. Let

A = (Q,Σ, δ, q0, Qacc, Qrej ,Γ) be a 1nrfa with classical

acceptance and let L be the language recognized by A.

We construct a mo-1nqfa machine M recognizing L.

Let M = (Q̌,Σ, δ̌, q̌0, Q̌acc, Q̌rej, Γ̌). The idea is

to simulate exactly the behavior of A. To that end,

let Q̌ = Q, q̌0 = q0, Q̌acc, Q̌rej, Γ̌ = Γ. The transi-

tion function is δ̌(q, σ, γ, q′) = 1 if δ(q, σ, γ) = q′ and

δ̌(q, σ, γ, q′) = 0 otherwise. δ̌ is unitary because δ de-

fines a permutation on Q given the input and proof.

Let x ∈ L. Then there exists a proof w that makes

A accept. Thus, the same proof w makes M accept.

Now let x /∈ L. Let |φ〉 =
∑

w∈Γ|x| αw|w〉 and let

|w〉 = |w0〉 · · · |wn+1〉. Also let krej = |Qrej|. On

input x and proof αw|w〉, since A rejects on all proofs,

M will arrive on a rejecting state αw|qrej〉. The initial

configuration of A is |x, φ, q0〉. After step i the state is

|ψi〉 = Uδ,i · · ·Uδ,0|x, φ, q0〉 = |x, φ〉
∑

w∈Γ∗ αw|qw,i〉.

where δ̂(q0, x0 . . . xi, w0 . . . wi) = qw,i Hence,

Uδ,n+1 · · ·Uδ,0αw|x,w, q0〉 = αw|x,w, qrej,w〉. Note

that each pair of vectors |x,w, q〉 for any w ∈ Γ|x|

are pair-wise orthogonal, and hence, each path in

|ψn+1〉 for each proof w does not interfere. Thus,

|ψn+1〉 = Uδ,n+1 · · ·Uδ,0
∑

w∈Γ|x| αw|x〉|w〉|q0〉 =
∑

w∈Γ|x| αw|x,w〉|qrej,w〉 because A rejects all proofs

on x. Thus, after the measurement, M will end its

computation on a rejecting state with probability 1. ✷

As we saw in Section 2.2, we have two different types

of quantum Merlin, one that makes no local operations

during the computation (nondeterminism) and one that

does. The following proposition shows that in fact both

models are equivalent.

Proposition 5.3

(1)MO-1NQFA = QMA(mo-1qfa).

(2) 1NQFA = QMA(1qfa).

The proof of the proposition relies on the following

key lemma. Intuitively, the statement says that the ac-

ceptance and rejecting probabilities are not affected by

the local operations of a quantum Merlin.

Lemma 5.4 Let A be a QMA system with mo-1qfa

verifier. The acceptance/rejection probability of A is

independent of any changes made by Merlin on its

workspace during the computation. The same holds

if A is a 1qfa.

Proof. When A applies its first unitary Uδ,1 only

acts on its inner-states (conditioned on the proof regis-

ter) and as the identity anywhere else. Hence,

Uδ,1|ψ0〉 = Uδ,1

(

∑

z,w

αz,w|z, w〉 ⊗ |q0〉

)

=
∑

z,w

αz,w|z, w〉 ⊗
∑

q
(1)
w ∈Q

β
q
(1)
w

|q(1)w 〉.

When the prover acts it only do so on its private

workspace. Hence we obtain

6ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-AL-147 No.18
2014/3/4

P1Uδ,1|ψ0〉

=
∑

z,w

αz,wP1|z, w〉 ⊗
∑

q
(1)
w ∈Q

β
q
(1)
w

|q(1)w 〉

=
∑

z,w,z
(1)
w

αz,wαz(1)w

|z(1)w 〉|w〉 ⊗
∑

q
(1)
w ∈Q

β
q
(1)
w

|q(1)w 〉.

Then A applies its next unitary and so on. In general,

|ψi〉 = PiUδ,i · · ·P1Uδ,1|ψ0〉

=
∑

z,w,z
(1)
w ,...,z

(i)
w

αz,wαz(1)w

· · ·α
z
(i)
w

|z(i)w , w〉

⊗
∑

q
(i)
w ∈Q

β
q
(i)
w

|q(i)w 〉.

After reading the entire input A measures his halting

states. The probability of accepting is

〈ψn+2|Πacc|ψn+2〉

=
∑

z,w,z
(1)
w ,...,z

(n+2)
w

|αz,w|
2|α

z
(1)
w

|2 · · · |α
z
(n+2)
w

|2

∑

q
(n+2)
w ∈Qacc

|β
q
(n+2)
w

|2

=
∑

z,w

|αz,w|
2

∑

q
(n+2)
w ∈Qacc

|β
q
(n+2)
w

|2

 .

The second equality follows because for each w and each

i we have
∑

z
(i)
w

|α
z
(i)
w

|2 = 1. Thus, the acceptance prob-

ability depends only on the initial amplitudes of the

proof and evolution on the verifiers side.

In a similar manner the rejection probability can be

shown to be independent of the prover changes to its

workspace.

To see that the statement holds for a 1qfa it is suf-

ficient to note that after each unitary Uδ,i is applied

a measurement is made solely on the states of A. By

arguing in the same way as above, the probabilities of

halting or continuing the computation are independent

of what the prover does during the computation. ✷

Lemma 5.5 (1)MO-1NQFA ⊆ QMA(mo-1qfa).

(2) 1NQFA ⊆ QMA(1qfa).

Proof. Let A = (Q,Σ, δ, q0, Qacc, Qrej ,Γ) be a mo-

1qfa and let L be the language recognized by A with

error ǫ. We argue that the same machine A cannot be

cheated by a prover P that perform local operations only

on his own workspace. From Lemma 5.4 we know that

the accepting/rejecting probabilities are independent of

any changes the prover does during the computation.

Hence, it does not matter what changes any cheating-

prover mades to the amplitudes of any proof, it will fail

to fool A. ✷

Lemma 5.6 (1)QMA(mo-1qfa) ⊆ MO-1NQFA.

(2)QMA(1qfa) ⊆ 1NQFA

Proof. Let A = (Q,Σ, δ, q0, Qacc, Qrej ,Γ) be a

QMA mo-1qfa system recognizing L. We argue that for

the same machine A there exists a honest-prover that

does not change its inner-workspace during the compu-

tation.

The soundness condition is trivial, because the prover

of a mo-1nqfa only provides the proof at the beginning

and does nothing afterwards.

The completeness condition also holds because any

proof given at the beginning is also a valid proof by

Lemma 5.4. ✷

Thus, from lemmas 5.5-5.6 Proposition 5.3 follows.

5.2 Quantum Merlin does not Help

The main goal of this section is to show that quan-

tum Merlin with an mo-1qfa or 1qfa verifier is not more

powerful than a deterministic finite-state automaton.

Proposition 5.7 QMA(mo-1qfa) ⊆ QMA(1qfa) ⊆

REG.

The first containment in Proposition 5.7 is easy to see

because a 1qfa can simulate an mo-1qfa. To prove the

second containment, we make use of generating func-

tions. However, before making our argument with gen-

erating functions, we need to simplify our model of

QMA system with 1qfa verifier.

Definition 5.8 Let A be a QMA 1qfa with error ǫ.

Let ǫ′ < ǫ. We define the finite ǫ′-approximation of A,

denoted Aǫ′ , as a 1qfa that behaves exactly as A where

Merlin is limited to choose proofs from a finite set for

all input lengths. More formally, let x be any string

(n = |x|). Define Pn ⊆ HM ⊗ CΓn

to be a finite set

such that for all proofs |φ〉 ∈ HM ⊗ CΓn

there exists

|φ′〉 ∈ Pn satisfying ‖φ− φ′‖ ≤ ǫ′ (this is equivalent to

say that Pn is a dense subset). A language L is recog-

nized by Aǫ′ if and only if (1) for all x ∈ L there exists

|φ〉 ∈ Pn where Aǫ′ (x, |φ〉) accepts with probability at

least 1− ǫ− ǫ′; (2) for all x /∈ L for all |φ〉 ∈ Pn where

Aǫ′ (x, |φ〉) rejects with probability at least 1− ǫ− ǫ′.

Next, we show that, for any 1qfa A, there exists an

ǫ-approximation Aǫ recognizing the same language. To

that end, we make use of the following lemma proven

by Nishimura and Yamakami [9].

Lemma 5.9 [9] For any sufficiently large number

k ∈ N+, any k-qubit unitary operator Uk, and any

real number ǫ > 0, there exists a quantum circuit C

of size at most 23k log3(1/ǫ) acting on k quits satisfy-

ing ‖UC − Uk‖ ≤ ǫ, where UC is the unitary operator

7ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-AL-147 No.18
2014/3/4

computing C and ‖A‖ = sup|ψ〉6=0 ‖A|ψ〉‖/‖|ψ〉‖.

Lemma 5.10 Let A be a QMA 1qfa with success

probability at most 1/2 + ǫ recognizing a language

L. Then, for some ǫ′ < ǫ, there exists a finite ǫ′-

approximation Aǫ′ that recognizes L.

Proof. Let x be any string. We need to construct a

finite set P of proofs that makes Aǫ recognize L. Let

|φ〉 be any proof given by Merlin to A. By Lemma 5.4,

without loss of generality, we will only consider the case

where the proof is given at the beginning and there are

no other actions later on Merlin’s side.

Assume that when Merlin provides the proof he do

so by applying a unitary Uφ acting on k qubits, i.e.,

|φ〉 = Uφ|0〉.

Fix any finite universal basis for quantum computa-

tion U . Let C be the set of all quantum circuits of size

at most 23k log3(1/ǫ′) made with gates from U for some

ǫ′ < ǫ. Define P = {|ψ〉 = U |0〉 : U ∈ C}. By Lemma

5.9 there exists an unitary Uk of size 23k log3(1/ǫ′)

such that ‖Uφ − Uk‖ < ǫ′. Hence, for any proof |φ〉

supplied by Merlin there exists |φ′〉 ∈ P such that

‖φ − φ′‖ < ǫ′. Furthermore, P is finite because there

are at most |U|2
3k log3(1/ǫ) many circuits in C.

The soundness follows trivially from the soundness of

A because P is a finite subset of all possible proofs.

To show the completeness, let |φ〉 be a valid proof for

some x ∈ L. Then there exists |φ′〉 ∈ P such that

‖|φ〉 − |φ′〉‖ < ǫ′. Hence, the probability of acceptance

of Aǫ is at least 1− ǫ− ǫ′ (similarly for rejection). ✷

Given a QMA system with 1qfa A, by Lemma 5.10,

in order to prove that its language is regular, it is suf-

ficient to show that the language recognized by Aǫ for

some ǫ is regular. This finishes the proof of Proposition

5.7. We argue by computing the generating function

corresponding to Aǫ.

We make a brief review of generating functions of lan-

guages. We refer the interested reader to the book by

Sakarovitch [10] for a thorough treatment.

Let L be a language and let sn is the number of all

words in L of length n. The generating function of L is

a formal series GL(z) =
∑∞
n=0 snz

n =
∑

w∈L z
|w|.

Note that a language is regular if and only if its gen-

erating function is a rational polynomial.

Lemma 5.11 Let Aǫ be the finite ǫ-approximation of

some 1qfa A. If L is the language recognized by Aǫ,

then L is regular.

Proof. To show that L is regular, it is sufficient to

show that its generating function is a rational polyno-

mial. We define the generating function of Aǫ as

GAǫ
=
∑

x∈Σ∗

∑

|φ〉∈P

pacc(x, φ)

x

=
∑

|φ〉∈P

∑

x∈Σ∗

pacc(x, φ)x.

The acceptance probability is pacc(x, φ) =

〈(0, 1, 0), Tx(|q0, φ〉, 0, 0)〉. Thus, GAǫ
=

(0, 1, 0)
∑

|φ〉∈P

∑

x∈Σ∗ Tx(|q0, φ〉, 0, 0)
T x. If we

define T =
∑

σ∈Σ σTσ , we have that

GAǫ
= (0, 1, 0)

∑

|φ〉∈P

∑

x∈Σ∗

Tx(|q0, φ〉, 0, 0)
T x

= (0, 1, 0)
∑

|φ〉∈P

∑

n∈N

Tn(|q0, φ〉, 0, 0)
T

= (0, 1, 0)
∑

|φ〉∈P

(I − T)−1(|q0, φ〉, 0, 0)
T .

Let each σ ∈ Σ be σ = z, where z is a variable. The

term
〈

(0, 1, 0), (I − T)−1(|q0, φ〉, 0, 0)
〉

is a polynomial

on z because the acceptance probability is given by ma-

trix multiplication of each Tσ. Finally, since the class of

rational polynomials is close under finite addition, GAǫ

must be a rational polynomial. ✷

References

[1] A. Ambainis and R. Freivalds. 1-way quantum finite
automata: strengths, weaknesses, and generalizations.
In Proc. of the 39th Annual Symposium on Founda-
tions of Computer Science, pp.332–342, 1998.

[2] A. Brodsky and N. Pippenger. Characterizations of 1-
way quantum finite automata. SIAM J. Comput. 31
(2002) 1456–1478.

[3] A. Condon. The complexity of space bounded inter-
active proof systems. In Complexity Theory: Current
Research (eds. Ambos-Spies, et al.), Cambridge Uni-
versity Press, pp.147–189, 1993.

[4] C. Dwork and L. Stockmeyer. Finite state verifiers I:
the power of interaction. J. ACM 39 (1992) 800–828.

[5] J. Gruska. Quantum Computing. McGraw Hill, 2000.
[6] A. Kondacs and J. Watrous. On the power of quantum

finite state automata. In Proc. 3FOCS 1997, pp.66–75,
1997.

[7] C. Marriott and J. Watrous. Quantum Arthur-Merlin
Games. Computational Complexity 14 (2005) 122–152.

[8] C. Moore and J. Crutchfield. Quantum automata and
quantum languages. Theoret. Comput. Sci. 237 (2000)
275–306.

[9] H. Nishimura and T. Yamakami. An application of
quantum finite automata to interactive proof systems.
J. Comput. System Sci., 75 (2009) 255-269. Extended
abstract in Proc. of CIAA 2004.

[10] J. Sakarovitch. Elements of Automata Theory. Cam-
bridge University Press, 2009.

8ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-AL-147 No.18
2014/3/4

