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Mining Quantitative Rules in a Software Project Data Set

Shuji Morisaki,† Akito Monden,† Haruaki Tamada,†

Tomoko Matsumura† and Ken-ichi Matsumoto†

This paper proposes a method to mine rules from a software project data set that contains
a number of quantitative attributes such as staff months and SLOC. The proposed method
extends conventional association analysis methods to treat quantitative variables in two ways:
(1) the distribution of a given quantitative variable is described in the consequent part of a
rule by its mean value and standard deviation so that conditions producing the distinctive
distributions can be discovered. To discover optimized conditions, (2) quantitative values
appearing in the antecedent part of a rule are divided into contiguous fine-grained partitions
in preprocessing, then rules are merged after mining so that adjacent partitions are combined.
The paper also describes a case study using the proposed method on a software project data
set collected by Nihon Unisys Ltd. In this case, the method mined rules that can be used
for better planning and estimation of the integration and system testing phases, along with
criteria or standards that help with planning of outsourcing resources.

1. Introduction

Many software development companies col-
lect data from software projects (records of
product size, development duration, staff-
hours, numbers of bugs, metrics for risk as-
sessment, customer satisfaction, and the like),
with the goals of improving productivity, meet-
ing deadlines, and improving quality in soft-
ware development. Generally, companies col-
lect and store such software engineering data for
use by production engineering divisions, quality
assurance divisions, project management offices
(PMOs), and other support divisions. Compa-
nies may use this information for purposes such
as estimating developer effort, predicting relia-
bility, and determining a wide range of develop-
ment standards (such as bug density and pro-
ductivity). For such purposes, a number of con-
ventional analysis methods have been widely re-
searched, including cost models 3),9),12),15), reli-
ability models 10), and orthogonal defect classi-
fication 4).

This paper focuses on a new analysis using
association analysis with the software project
data described above. Researchers have used
association analysis 1) effectively in the past to
analyze point-of-sales (POS) data for retailers
and Website traffic logs, to discover associa-
tion rules hidden amongst the data 16). There
has also been research on software project data:
through association analysis, Amasaki, et al. 2)
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mined preconditions (combination of risk ass-
esment values) for software projects to fall into
disorder using a data set consisting of a large
numbers of risk assessment variables.

General association analysis methods and
rules, however, are not always applicable to
software project data sets because they cannot
directly handle quantitative (ratio scale or in-
terval scale) variables. Since software project
data sets generally contain a number of quan-
titative variables of particular interests, such
as product size, bug density and staff-effort,
we would like to extend the general associa-
tion analysis approach to take advantage of the
quantitative variables instead of simply trans-
lating them to qualitative (nominal scale or
ordinal scale) values. We expect that iden-
tifying relationships among these values con-
tributes to achieving improved productivity, re-
duced bug density, and process improvements,
as well as elimination of defect causes. Us-
ing their means and variance can help to more
finely tune process improvements and cause
identification. Finding a rule that identifies sit-
uations associated with higher bug density may
make it possible to eliminate the causes of these
bugs by eliminating the situations expressed by
the rule. Similarly, finding rules associated with
large amounts of variance in productivity may
make it possible to reduce the variance by elim-
inating the situations identified by the rules.

This paper proposes a method for mining
rules suitable for a software project data set
by extending conventional association analy-
sis methods. To handle staff months, LOC,
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and other quantitative variables, the proposed
method extends association rules to include
quantitative variables in the consequent parts of
the rules. The proposed method divides these
variables into contiguous fine-grained partitions
for the antecedent parts of the rules. After
mining extended association rules, the method
merges rules by joining adjacent partitions.

In Section 2, below, we describe conventional
association analysis and the issues for apply-
ing conventional association analysis to soft-
ware project data. In Section 3 we describe the
proposed method, and in Section 4 describe the
case study. Section 5 presents related research.
Section 6 summarizes the findings and describes
future topics.

2. Association Analysis and Its Issues

2.1 Association Analysis
Researchers have used association analysis

to discover associations hidden amongst data
in the POS product-purchasing logs of retail
stores 1), Website traffic logs 16), proteins se-
quences 11), and the like. For example, in the
case of POS logs, researchers have mined rules
about products purchased together, such as
“purchases product A ∧ purchases product B ⇒
purchases product C.” There are a number of
possible uses for the rule in this example: the
retailer could place products A, B, and C near
to each other in the store so that customers can
find them easily; or, it could ensure revenues by
setting the prices of antecedent products A and
B to make up the discounts on the sale price of
consequent product C.

Association analysis is defined as follows 1);
Let I = {I1, I2, . . . , Im} be a set of items

where each Ik (1 ≤ k ≤ m) is an item and m
is the number of unique items. An association
rule is denoted by an expression A ⇒ B, where
A ⊂ I, B ∈ I, A ∩ B = φ. Let a database D be
{T1, T2, . . . , Tn} where Ti ⊆ I is called a trans-
action, n is the number of transactions. We call
“Ti satisfies the rule A ⇒ B” if A ⊂ Ti∧B ∈ Ti

holds. In POS log example, D corresponds to
a log of all past purchases and Ti ∈ D corre-
sponds to one purchase by a customer. I corre-
sponds to all unique products sold. A ⊂ I cor-
responds to one or more products purchased.
B ∈ I corresponds to a product purchased to-
gether with A.

With data like POS logs, however, which have
huge numbers of items, it is not realistic to mine
all rules: it takes inordinate amounts of com-

puter processing time, and it is not feasible to
interpret the huge number of mined rules man-
ually. For this reason, conditions are placed on
rule mining, setting minimum values for one or
all of three key indicators of rule importance
(support, confidence, and lift). Rules that are
not likely to be important are generally pruned.
Support: Support is an indicator of rule fre-

quency. It is expressed as support(A ⇒ B),
and is support(A ⇒ B) = a/n, where
a =

∣∣{T ∈ D|A ⊂ T ∩ B ⊂ T}∣∣ and
n =

∣∣{T ∈ D}∣∣.
Confidence: Confidence is the probability

that consequent B will follow antecedent
A. It is expressed as confidence(A ⇒ B),
and is confidence(A ⇒ B) = a/b, where
a is defined as in Support and b =

∣∣{T ∈
D|A ⊂ T}∣∣.

Lift: Lift is an indicator of the contribution
antecedent A makes to consequent C. It is
expressed as lift(A ⇒ B), and is lift(A ⇒
B) = confidence(A ⇒ B)/c, where c =∣∣{T ∈ D|B ⊂ T}∣∣.

For example, assume that the number of
projects, n = 20, the number of projects that
satisfies A is 10, the number of projects that
satisfies B is 8, and the number of projects
that satisfies both A and B is 6. For A ⇒ B,
the support is 0.3 (6/20), the confidence is 0.6
(6/10), and the lift is 1.5 (0.6/8/20).

2.2 Issues with Association Analysis
for a Software Engineering Project
Data Set

This paper envisions collecting software en-
gineering data as the project progresses, and
assumes that attributes include values such as
staff effort and LOC as defined in the ISBSG
repository 8) and the IPA SEC 7). Table 1
shows sample project data. In Table 1, row
1 is the attribute category, and row 2 is the
attribute name. Each of the rows 3 and be-
yond corresponds to a single project (Note that
all values in the table are made-up examples).
Many attribute values are measured and logged
for each project. Although the number of vari-
ables per project will differ depending on the
organization and projects in question, there will
be several hundred or so. On the other hand,
there will be roughly from several tens to sev-
eral thousands of projects. As shown in Ta-
ble 1, a major characteristic of software project
data is the existence of ratio scale variables
such as source lines of code (SLOC) and staff
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Table 1 An example of software development project data set.
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effort (human costs) as well as nominal scale
variables such as platform type and application
area type, as well as ordinal scale measurements
such as the level of required performance and
security.

Association analysis is normally applied to
qualitative variables (nominal or ordinal scale
variables); ratio scale and interval scale vari-
ables are generally converted to ordinal mea-
surements via preprocessing. For example, it
would be possible to convert SLOC into ordi-
nal scale variables consisting of three categories
—high, medium, and low—depending on their
value, but the optimum partition must be de-
termined via trial and error, and it is a non-
trivial task to discover the optimum partition
points for multiple variables. Sometimes, the
variables in the software project data that are
most interesting in our analysis are quantita-
tive variables such as those that tie in directly
to process improvement and/or elimination of
defect causes. Some examples are productiv-
ity (ratio of LOC or FP divided by staff-hours
worked), bug density, bugs detected per test
case, and proportion of outsourcing of the cod-
ing and testing phases. If we can discover con-
ditions (rules) producing undesired value distri-

butions of such variables, we can create counter-
measures to the conditions. Below, we describe
how the proposed method handles quantitative
variables contained in the target data.

3. Extension of Association Rule Min-
ing

3.1 Preliminary Definitions
Figure 1 shows an overview of pre-

liminary definitions. We assume that a
project data set has columns corresponding to
project attributes and rows corresponding to
projects. Each value in Fig. 1 is expressed
as an 〈attribute, value〉 pair. Let projects
be a set P = (P1, P2, . . . , Pn), and Pi =
(〈attr1, pi1〉, 〈attr2, pi2〉, . . . , 〈attrm, pim〉) (1 ≤
i ≤ n), where attrk is the kth attribute,
n is the number of projects in the project
data set and m is the number of attributes
in the project data set. Pi corresponds to
the value of the kth attribute, n is the num-
ber of projects in the project data set and
m is the number of attributes in the project
data set. Further, let values of an attribute
be a set V = (V1, V2, . . . , Vm), and Vk =
{〈attrk, v1k〉, 〈attrk, v2k〉, 〈attrk, vnkk〉}. Here,
vik ∈ Vk (1 ≤ i ≤ nk) are either qualita-
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Fig. 1 A structure of a project data set.

tive variables (nominal scale or ordinal scale)
or quantitative variables (ratio scale or interval
scale), where nk is the number of unique values
or categories (different values or categories have
appeared at least once) of attrk column. Note
that vik 
= vjk (1 ≤ i ≤ nk, 1 ≤ j ≤ nk, i 
= j)
holds and in the case of ratio/interval/ordinal
scale variables, vik < vik+1 holds.

Table 1 shows an example of a project data
set. Using Table 1 as an example, the third row
in the table (the item with project ID 06S101)
is P1, and P1 = {〈project ID, 06S101〉, 〈dept.
code, industrial dept.1〉, 〈development type, new
development〉, 〈business area type, finance〉,
. . .}. attr1 is project ID, p11 is “06S101,” and
V14 = {〈effort (planned), 12 〉, 〈effort (planned),
60 〉, . . .}, and v114 is “12.”

3.2 Handling Quantitative Variables
To resolve the issue of applying association

rules to software project data described in Sec-
tion 2, the proposed method handles quanti-
tative variables using methods S1 and S2, as
follows.

Assume that we have a (conventional) asso-
ciation rule A ⇒ B where antecedent part A
indicates a precondition and consequent part
B indicates a conclusion, S1 is an extension of
the association rule that uses statistics (mean
and standard deviation) of a quantitative (ra-
tio/interval scale) variable in the consequent
part B without translating the variable into
qualitative (nominal scale) one. S2 can be
applied for one or more quantitative variables
in antecedent part A. S2 finds optimal fine-
grained partitions by logically ORing the pre-
determined partitions.

[S1] Extension of consequent part
S1 uses the attribute, the mean value,

and the standard deviation of a quantitative
variable in the consequent part B to cre-

Fig. 2 Distributions of attribute value.

ate an extended association rule expressed as
A ⇒ attrk(µ, σ), where µ = 1

a

∑
pik, σ =√

1
a

∑
(pik − µ)2(A ⊂ Pi) and a = |A ⊂ Pi|.

The analyst specifies attrk for a rule min-
ing. Rules are mined by calculating the
mean and standard deviation of attrk in
projects that meet antecedent A. An example
would be “〈industry, finance〉 ⇒SLOC (84304,
163.565).”

We define the indicators below (lift of mean
and lift of standard deviation) by comparing
the means and standard deviations of all items
(projects).
Lift of mean: The lift of mean is µ divided

by the mean of the kth attribute of all
projects. lift of mean=

µ∑
pik

n

(1 ≤ i ≤ n)

Lift of standard deviation: Similarly, lift
of standard deviation =

σ√∑
(pik−µ)2

n

(1 ≤

i ≤ n)
For example, given a quantitative rule

“〈development language, C 〉 ⇒ productivity
(2.0, 0.864),” if the mean productivity of all
projects is 0.5, then the lift of mean is 2.0/0.5 =
4.0. The higher this value, the greater the effect
of the antecedent is on the consequent in this
rule.

Figure 2 shows an example that explains lift
of standard deviation. Solid line (a) is the dis-
tribution of pik of all projects (1 ≤ i ≤ n). Dot-
ted line (b) is the distribution of pik of projects
that meets antecedent part A (A ⊂ Pi). Lift
of standard deviation is the ratio of σ2 to σ1.
In this case, lift of standard deviation smaller
than 1 (σ2/σ1 < 1) indicates that situations ex-
pressed by the antecedent part A are drivers for
smaller deviation. Enhancement of situations
expressed by A may lead to smaller deviation



Vol. 48 No. 8 Mining Quantitative Rules in a Software Project Data Set 2729

of values of kth attribute.
[S2] Partitioning and joining via con-
version for the antecedent part
S2 is applied to the antecedents part A. Us-

ing the method proposed by Srikant, et al. 14),
quantitative variables are divided into multiple
partitions that are converted into categories. It
mines association rules from pre-converted cat-
egories, searches for rules in the obtained rule
set that can join partitions, and ORs them to
join the converted partitions. It is expected
that the optimum partitioning will be found
by creating a sufficiently large number of parti-
tions. There are two partitioning methods, as
described below. Both create d (d ≤ n) parti-
tions.
( 1 ) For a given quantitative variable attrk,

divide vik into d equal parts. Vlk is a
set partitioning the elements of Vk into
d parts, where Vlk = {〈attrk, vik〉 ∈
Vk|(vik ≥ vlk+u(l−1)∧(vik ≤ (vlk+ul))}
(1 ≤ l ≤ d) and u =

vlk − vnkk

d
.

( 2 ) Partition the values so that as close as
possible to an equal number of vik are in
each interval. Vlk is a set partitioning the
elements of Vk into d parts, where Vlk =
{〈attrk, v(l−1)·ul+1〉, . . . , 〈attrk, vlul

〉} (1
≤ l ≤ d),

ul =




n/d (l = 1)
n − ∑l−1

i=1 ui

d − l
(l 
= 1)

Quantitative variables are split into parti-
tions Vk and converted. The discrete values of
the mined rules meeting the following criteria
are logically ORed and joined, and the support
and confidence are recalculated. Pairs in the
mined rules meeting the following criteria are
found: Vlk∧A′ ⇒ B, V(l+1)k∧A′ ⇒ B (1 ≤ l ≤
d − 1); and the logical OR (∨) is used to join
Vlk and V(l+1)k, like so: (Vlk∨V(l+1)k)∧A′ ⇒ B
(1 ≤ l ≤ d − 1)

Although the antecedents of rules are joined,
their consequents are not. This process con-
tinues until no joinable rules are found. If two
rules are joined, the support, the lift of mean,
and the lift of standard deviation are recalcu-
lated as shown below.

Support after joining
support((Vlk ∨ V(l+1)k) ∧ A′ ⇒ B) =

support(Vlk∧A′ ⇒ B)+support(V(l+1)k∧A′ ⇒
B)

S1 and S2 are not mutually exclusive meth-

Fig. 3 Procedure.

ods. If the target data has multiple quantitative
variables, it is possible to specify one quantita-
tive variable as a consequent to be applied by
S1, and apply S2 to the rest of the quantita-
tive variables (appearing in the antecedent). In
other words, it is possible to do the following:
A1 ∨ A2 ⇒ attrk(µ, σ).

Here, µ =
∑

pi1k +
∑

pi2k

a1 + a2
and

σ =

√∑
(pi1k − µ)2 +

∑
(pi2k − µ)2

a1 + a2
where

A1 ⊂ Pi1 , A2 ⊂ Pi2 , a1 = |A1 ⊂ Pi1 | and
a2 = |A2 ⊂ Pi2 |.

3.3 Procedure
Figure 3 shows the procedure for extended

association rule mining. The cylinders in the
figure represent the data, and the squares rep-
resent processing. The solid arrows in the figure
represent the flow of data, and the dotted ar-
rows represent operations by the analyst. Pro-
cessing proceeds in the following sequence: con-
version, rule mining, and partition joining.

The analyst specifies the quantitative vari-
ables to use with S2, assigns a partition count
d and partition method, and executes the “con-
version” procedure. Conversion categorizes
quantitative variables into discrete data (ordi-
nal scale variables). The analyst then executes
the “mine rules” procedure specifying which
quantitative variable to use with S1 and a min-
imum support level. If the analyst has specified
any quantitative variables for S2, the procedure
“partition joining” merges rules with adjacent
partitions. If the procedure finds rules capable
of joining partitions, the rules are combined via
a logical OR. When joining, the support, lift
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Table 2 Attributes and values of software project data sets in the case study.

Attributes Value Type
Development Type New development, Enhancement / maintenance, Re-development Qualitative
Customer New customer, Existing customer Qualitative
Target industrial No experience, Experienced Qualitative
Outsourcer First trading, Second or later trading Qualitative
Application Type Account / finance, Sales / trade, Personnel, General management,

Goods management, Customer management, Contract / Agreement,
Trend analysis, Other

Qualitative

Use of commercial package using, without using Qualitative
Job Interactive job, Batch job Qualitative
Architecture Standalone, Mainframe, Three-Tier Client/Server, Intranet/Internet Qualitative
Platform Windows, Windows Server, HP-UX, Solaris, Linux, Other Qualitative
Number of Platforms The number of platforms Quantitative
Web Technology Java Script, ASP (Active Server Pages), IIS (Internet Information

Server), Apache, WebLogic, OracleAS, Nothing, Other
Qualitative

Main Programming Lan-
guage

COBOL, Pro*C, VisualC++, C, VisualBasic, Developer2000,
PL/SQL, C#, Java, Perl, Other

Qualitative

Number of Programming
Language

The number of programming language used Quantitative

DBMS Oracle, SQL Server, Nothing, Other Qualitative
Maximum number of staffs Maximum number of development personnel in all phases Quantitative
Proportion of staff month
of specification phase

Ratio of staff month required in specification phase to total staff
month

Quantitative

Proportion of staff month
(architectural design)

Ratio of staff month required in architectural design phase total staff
month

Quantitative

Proportion of staff month
(detailed design)

Ratio of staff month required in detailed design phase to total staff
month

Quantitative

Proportion of staff month
(coding and unit testing
phase)

Ratio of staff month required in coding and unit testing phase to total
staff month

Quantitative

Proportion of staff month
(integration and system
testing)

Ratio of staff month required in integration and system testing phase
to total staff month

Quantitative

Ratio of Outsourcing Ratio of total cost of staff and cost of outsourcing Quantitative

of mean, and lift of standard deviation of rules
are re-calculated.

4. Case Study

4.1 Overview
As a case study, the authors mined rules from

software project data provided by Nihon Unisys
Ltd. using a prototype tool implementing meth-
ods S1 and S2. The 21 attributes (variables)
shown in Table 2 were included in the software
project data. All projects were system integra-
tion projects. The waterfall development pro-
cess was used in all projects. Data was logged
for 37 projects. As shown in the “Variable” col-
umn in Table 2, the data included qualitative
and quantitative variables. Missing values are
also included.

The prototype tool uses the method for treat-
ing multiple attributes proposed by Srikant, et
al. 14) and apriori algorithm 1). Minimum sup-
port value and attrk is given to the tool. The
tool mines rules having a support value greater
than a specified minimum support value. In

this case study, there are more than two quan-
titative variables in the target data. S1 and S2
are used for mining rules. In the case study, the
minimum support was set to 0.005. Quantita-
tive variables other than the consequent part
were converted into six categories (1 is the
smallest and 6 is the largest). Two trials were
run specifying outsourcing ratio and proportion
of the staff month (integration and system test-
ing) as consequent part for each trial.

4.2 Result
The prototype tool mined about 4,000 rules

in each trial. There were about 600 rules with
joined partitions. We could categorize the ex-
tracted rules into five types; (1) rules having
large lift of mean, (2) rules having small lift of
mean, (3) rules having large lift of standard de-
viation, (4) rules having small lift of standard
deviation, and (5) rules whose lift values (lift of
mean and lift of standard deviation) are around
1.0 (i.e., neither large nor small). We consider
rules having very large or very small lift values
(above (1) to (4)) are potentially useful because
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Table 3 Examples of mined rules.

Lift Lift of
Rule Support of standard

mean deviation
R1 (customer = existing customer) ∧ (target industrial = experienced) ⇒

ratio of outsourcing (mean: 0.368, standard deviation: 0.113)
0.216 1.510 0.832

R2 (development type = new development) ∧ (maximum number of staffs
= smallest (1)) ⇒ ratio of outsourcing (mean: 0.118, standard devia-
tion: 0.0630)

0.216 0.482 0.463

R3 (customer = existing customer) ∧ (use of commercial packages = with-
out using) ∧ (proportion of staff month (coding and unit testing phase)
= large (5 ∨ 6)) ⇒ proportion of staff month (integration and system
testing) (mean: 0.210, standard deviation: 0.0352)

0.216 0.785 0.353

R4 (development type = new development) ∧ (target industrial = experi-
enced) ∧ (outsourcer = second or later trading) ∧ (ratio of outsourcing
= large (5 ∨ 6)) ⇒ proportion of staff month (integration and system
testing) (mean: 0.262, standard deviation: 0.150)

0.216 0.979 1.51

Fig. 4 A scatter plot of extracted rules in trial 1.

Fig. 5 A scatter plot of extracted rules in trial 2.

such rules specify conditions producing a signif-
icant (distinctive) result. For page limitation,
we selected four rules R1, R2, R3 and R4, as
delegates of categories (1) to (4), whose lift val-
ues were the largest or the smallest (Table 3).
To make the above categories recognizable and
to clarify the context of four rules R1, . . . , R4,
we added Figs. 4 and 5 that show scatter plots
whose x-axis is lift of standard deviation and y-
axis is lift of mean of rules. Figure 4 is for trial

1 (consequent part is the ratio of outsourcing),
and Fig. 5 is for trial 2 (consequent part is the
proportion of staff month (integration and sys-
tem testing)). Figures 4 and 5 help us to rec-
ognize categories (1), . . . , (5) and contexts for
rules R1, . . . , R4 although there is no “exact”
partition between categories. We believe that
a simple and effective methodology of rule re-
finement is to select rules whose lift values are
(nearly) the largest or (nearly) the smallest.

In Table 3, R1 and R2 are rules mined by
specifying the ratio of outsourcing staff month
of the coding and unit-test phases as the con-
sequent. The lift of mean of R1 shows that
the ratio of outsourcing of the projects includ-
ing R1 as an antecedent was 1.51 times greater
than the mean of the ratio of outsourcing for
all projects. This indicates that the outsourc-
ing ratio tended upwards if the company had
already done business with the client before,
the project was in a targeted industry, and the
company had developed for the targeted indus-
try in the past. Additionally, the lift of mean
of R2 shows that the ratio of outsourcing of
the projects including R2 as an antecedent was
0.482 times the mean of the ratio of the out-
sourcing for all projects. This indicates that the
ratio of outsourcing tends downward in smaller
projects for the development of new systems
without large numbers of staff. R1 and R2 can
be used as standards for the ratio of outsourcing
in project planning.

In Table 3, R3 and R4 are rules mined by
the specifying proportion of staff-hours (effort)
used for system testing as the consequent. The
lift of standard deviation of the proportion of
staff-hours used for system testing in projects
including R3 as an antecedent was 0.353-fold
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that for all projects combined. The variance
in the proportion of staff-hours used for sys-
tem testing per project trended downward for
projects where the company had developed for
the client before, development was conducted
without using commercial packages, and the
coding phase accounted for a large proportion
of total staff-hours. The lift of standard devi-
ation of the ratio of total costs to staff-hours
in projects including R4 as an antecedent was
1.51-fold that for all projects combined. Vari-
ance in the ratio of total costs to staff-hours
tended to rise for new development projects if
there was a large ratio of outsourcing, even if
the company had experience with the indus-
try and process, and had already outsourced to
the organization in question before. It is pos-
sible to plan the system-test phase or estimate
effort more accurately by taking into account
the tendency of variance to differ depending on
whether the antecedents R3 or R4 apply to the
project. We expect to discover other process
improvements to reduce variance in the propor-
tion of staff-hours used for system testing by
further examining the differences of antecedents
R3 and R4, and deducing states in which the
variance in proportion of staff-hours used for
system test is higher (lift of standard deviation
is greater) and states in which it is lower (lift
of standard deviation is lower).

5. Related Research

Fukuda, et al. 6) have proposed a method for
mining association rules including quantitative
variables as antecedents. This method is ca-
pable of calculating for intervals; for example,
given the quantitative variable age, it is able
to calculate the values x1, x2 for which the rule
“age interval [x1, x2] ⇒ purchased given service
A” has the highest support. Reference 5) also
extends this method so that it can handle two
quantitative variables. Although these meth-
ods can only mine rules with quantitative vari-
ables in the antecedent, they are one solution to
the issue of handling quantitative variables in
association-rule analysis. The present research
can also calculate the interval with higher sup-
port as Fukuda, et al. do, by converting quan-
titative variables into qualitative variables (or-
dinal scale), and joining rules via logical ORs.

A number of case studies have reported
association-analysis methods for software
project actual data. Amasaki, et al. 2) eval-
uate risk items for each development phase

from collected questionnaires, and conduct as-
sociation analysis for project-confusion fac-
tors (whether development budgets or dead-
line standards will be overrun), with the goal
of revealing the factors leading to disorder in
software-development projects. Their analysis
data, however, does not include quantitative
variables, and effective rules are only mined
within the scope of conventional association
analysis.

Song, et al. 13) mine association rules from
defect data logged during development (type of
defect cause, correction effort, etc.) to predict
defects with a high likelihood of simultaneous
occurrence and predict defect-correction effort
(staff-hours). Although they convert correc-
tion effort, a quantitative variable, into ordinal
form, the discrete partitions are hard-wired into
four categories: 1 hour or less, 1 hour to one
day, one to three days, and longer than three
days. Applying S2 to Song, et al.’s data should
enable more fine-grained categories to be ob-
tained. Additionally, method S1 could enable
access to new knowledge by mining rules with
mean correction effort and standard deviation
in the consequent.

6. Conclusion

This paper proposes a method to mine rules
from a software project data set that contains a
number of quantitative attributes such as staff
months, LOC, defect density, test case density,
and outsourcing cost. The proposed method
extends conventional association analysis meth-
ods to treat quantitative variables in two ways.
• The proposed method extends association

rules to include a single specified quanti-
tative variable’s mean value and standard
deviation in the consequent part.

• To treat other quantitative variables, the
proposed method divides quantitative vari-
ables into contiguous fine-grained parti-
tions appearing in the antecedent in pre-
processing. Partitions next to each other
are joined after rules are mined.

Since consequent parts of mined rules show
distributions in the cause of antecedent parts,
finding a difference of distribution leads to
quick cause identifications, systematic process
improvements, better planning, and more pre-
cise estimations. If a certain antecedent part
increases the mean value of the consequent un-
desirably, eliminating the situation expressed
in the antecedent part will decrease the mean



Vol. 48 No. 8 Mining Quantitative Rules in a Software Project Data Set 2733

value of the consequent part, providing quick
cause identification and systematic process im-
provement. If a certain antecedent part in-
creases the standard deviation of the conse-
quent part, we can consider the variation ex-
pressed in the antecedent during planning and
estimation in the project to provide better plan-
ning and estimations that are more precise.

In the case study, the proposed method
mined rules that can be useful for planning or
estimation from a software project data set col-
lected by Nihon Unisys Ltd. Obtained rules
in the case study express the distribution of
the outsourcing ratio and proportion of staff
months for integration and system testing while
conventional association rules would only ex-
press a range (a minimum and maximum value
of a partition). The rules can be used as cri-
teria or standards in the planning of a soft-
ware development project. While we do not
wish to draw strong conclusions from a single
case study, the proposed method may be useful
for the estimation of higher precision, managing
risks, and cause analysis. The proposed method
can be applied to a very large software project
data set including missing data. Furthermore,
the proposed method can be applied to exist-
ing software project data sets. We are planning
further investigation on larger software project
data sets and other kinds of data sets.
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