ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.48
  3. No.8

Mining Quantitative Rules in a Software Project Data Set

https://ipsj.ixsq.nii.ac.jp/records/9871
https://ipsj.ixsq.nii.ac.jp/records/9871
098e5214-89aa-444a-8add-cc6e8864ef86
名前 / ファイル ライセンス アクション
IPSJ-JNL4808020.pdf IPSJ-JNL4808020.pdf (335.3 kB)
Copyright (c) 2007 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2007-08-15
タイトル
タイトル Mining Quantitative Rules in a Software Project Data Set
タイトル
言語 en
タイトル Mining Quantitative Rules in a Software Project Data Set
言語
言語 eng
キーワード
主題Scheme Other
主題 特集:ソフトウェア工学の理論と実践
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
その他タイトル
その他のタイトル 開発支援環境・自動化技術
著者所属
Graduate School of Information Science Nara Institute of Science and Technology
著者所属
Graduate School of Information Science Nara Institute of Science and Technology
著者所属
Graduate School of Information Science Nara Institute of Science and Technology
著者所属
Graduate School of Information Science Nara Institute of Science and Technology
著者所属
Graduate School of Information Science Nara Institute of Science and Technology
著者所属(英)
en
Graduate School of Information Science, Nara Institute of Science and Technology
著者所属(英)
en
Graduate School of Information Science, Nara Institute of Science and Technology
著者所属(英)
en
Graduate School of Information Science, Nara Institute of Science and Technology
著者所属(英)
en
Graduate School of Information Science, Nara Institute of Science and Technology
著者所属(英)
en
Graduate School of Information Science, Nara Institute of Science and Technology
著者名 Shuji, Morisaki Akito, Monden Haruaki, Tamada Tomoko, Matsumura Ken-ichiMatsumoto

× Shuji, Morisaki Akito, Monden Haruaki, Tamada Tomoko, Matsumura Ken-ichiMatsumoto

Shuji, Morisaki
Akito, Monden
Haruaki, Tamada
Tomoko, Matsumura
Ken-ichiMatsumoto

Search repository
著者名(英) Shuji, Morisaki Akito, Monden Haruaki, Tamada Tomoko, Matsumura Ken-ichi, Matsumoto

× Shuji, Morisaki Akito, Monden Haruaki, Tamada Tomoko, Matsumura Ken-ichi, Matsumoto

en Shuji, Morisaki
Akito, Monden
Haruaki, Tamada
Tomoko, Matsumura
Ken-ichi, Matsumoto

Search repository
論文抄録
内容記述タイプ Other
内容記述 This paper proposes a method to mine rules from a software project data set that contains a number of quantitative attributes such as staff months and SLOC. The proposed method extends conventional association analysis methods to treat quantitative variables in two ways: (1) the distribution of a given quantitative variable is described in the consequent part of a rule by its mean value and standard deviation so that conditions producing the distinctive distributions can be discovered. To discover optimized conditions (2) quantitative values appearing in the antecedent part of a rule are divided into contiguous fine-grained partitions in preprocessing then rules are merged after mining so that adjacent partitions are combined. The paper also describes a case study using the proposed method on a software project data set collected by Nihon Unisys Ltd. In this case the method mined rules that can be used for better planning and estimation of the integration and system testing phases along with criteria or standards that help with planning of outsourcing resources.
論文抄録(英)
内容記述タイプ Other
内容記述 This paper proposes a method to mine rules from a software project data set that contains a number of quantitative attributes such as staff months and SLOC. The proposed method extends conventional association analysis methods to treat quantitative variables in two ways: (1) the distribution of a given quantitative variable is described in the consequent part of a rule by its mean value and standard deviation so that conditions producing the distinctive distributions can be discovered. To discover optimized conditions, (2) quantitative values appearing in the antecedent part of a rule are divided into contiguous fine-grained partitions in preprocessing, then rules are merged after mining so that adjacent partitions are combined. The paper also describes a case study using the proposed method on a software project data set collected by Nihon Unisys Ltd. In this case, the method mined rules that can be used for better planning and estimation of the integration and system testing phases, along with criteria or standards that help with planning of outsourcing resources.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 48, 号 8, p. 2725-2734, 発行日 2007-08-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-23 03:10:02.912555
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

Ken-ichiMatsumoto, 2007: 2725–2734 p.

Loading...

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3