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Abstract: RC4 is a stream cipher designed by Rivest in 1987. It is the most famous stream cipher and widely used
e.g., SSL/TLS, WEP and WPA. Although RC4 in particular implementations and settings such as the WEP implemen-
tation and the broadcast setting, was already broken, RC4 itself is not completely broken yet. In 2011, Teramura et al.
generalized classes of weak keys of RC4 by using the predictive state, which are special classes of the internal state
of RC4. The total number of Teramura et al.’s weak keys is approximately 2117.29. Their weak-key attack can recover
a 128-bit secret key with efficiency of 295.10, where efficiency is defined as time complexity per success probability of
the attack. This attack works only if particular patterns of the keystream are observed. In this paper, we further expand
weak-key space of RC4. By thoroughly analyzing the relation between the key and the initial state of the pseudo-
random generation algorithm, we can find new classes of predictive state which are utilized for key recovery attacks.
As a result, 2118.58 keys can be defined as new weak keys, whose number is more than twice the number of Teramura et
al.’s weak keys. Moreover, our attack is applicable to any keystream, while Teramura et al.’s attack is feasible only in
particular patterns of the keystream. Given any keystream, our weak-key attack can recover a 128-bit secret key with
efficiency of 2115.11. Our attack is the best-known single-key key recovery attack on RC4 with respect to efficiency. In
addition, if we focus on specific keystreams similar to Teramura et al.’s attack, the 128-bit secret key can be recovered
with efficiency of 276.32, which is more efficient than Teramura et al.’s attack.
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1. Introduction

RC4 is a stream cipher designed by Rivest in 1987 [1]. It is
widely used in security protocols such as Secure Sockets Layer
(SSL), Transport Layer Security (TLS) [2], Wired Equivalent Pri-
vacy (WEP) [3] and Wi-Fi Protected Access (WPA) [4]. The key
length L and the array size of an internal state N are variable.
Typical parameters are L = 16 (128-bit key) and N = 256. RC4
consists of two algorithms: Key Scheduling Algorithm (KSA)
and Pseudo-Random Generation Algorithm (PRGA). An internal
state of the PRGA is initialized by a secret key in the KSA, and
the arbitrary length keystream is generated from the internal state
in the PRGA. The plaintext/ciphertext is encrypted/decrypted by
XORed with the keystream.

A number of attacks for the WEP implementation were sug-
gested since the weakness of WEP was pointed out by Fluhrer
et al. [5]. Among them, the VX attack, which was suggested
by Vaudenay et al. in 2007 [6], is a powerful attack. In 2013,
Sepehrdad et al. improved the VX attack [7]. Their attack is fea-
sible with 22,500 packets and probability 0.5 and worked with an
inexpensive PC. On the other hand, in 2001, Mantin et al. pre-
sented a practical plaintext recovery attack for the second plain-
text byte on RC4 in the broadcast setting where the same plain-
text is encrypted with different user keys [8]. The attack requires
only N ciphertexts. In 2011, Maitra et al. showed biases of the
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3rd to 255th of the RC4 keystream, and proposed an attack based
on these biases for recovering the 3rd to 255th of the plaintext
bytes [9]. They estimated the number of required ciphertexts for
the attack as N3. In 2013, Isobe et al. proposed the full plaintext
attack on RC4 in the broadcast setting. Their attack can recover
first 257 bytes and 250 bytes of a plaintext from 232 and 234 cipher-
texts with probability almost one [10]. Since Isobe et al.’s attack
and Sepehrdad et al.’s attack require specific conditions such as
the WEP implementation and the broadcast setting, it does not
mean that RC4 itself was completely broken.

Over past 20 years, a number of security analyses on RC4 it-
self have been proposed. Single key distinguisher [11], [12], [13]
is the attack for distinguishing a keystream from a true random
stream. Equivalent key [14], [15] is a pair of keys which gener-
ates same keystream. A state recovery attack, which recovers the
internal state from the keystream, was proposed by Knudsen et al.
in 1998 [16]. In 2008, Maximov et al. improved this attack [17].
Their attack requires 2241 time complexity. Herewith, RC4 which
has the key length longer than 241-bit was broken, however, 128-
bit key RC4 did not have the influence from this attack. The key
recovery attack was proposed by Sepehrdad et al. in 2010 [18].
This attack recovers a secret key from a keystream with efficiency
of 2122.06 without any condition of the keystream. The efficiency
is defined as time complexity per success probability of the at-
tack. Generally speaking, key recovery attacks relying on weak
keys or biases do not succeed with probability one. Therefore,
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it is necessary to use a criterion in consideration of the success
probability. The efficiency means the average time complexity to
get the one key with many trials. By the efficiency, a variety of
key recovery attacks are able to be compared with the same cri-
terion. When the x-bit key is used, the efficiency lower than 2x

means that the attack is more effective than a random key search.
Sepehrdad et al.’s key recovery attack was the best single-key at-
tack of 128-bit key RC4.

Weak key is the class of special keys which can be recovered
from the keystream more effective than a random key search.
In 1995, Roos showed the existence of weak key in RC4 [19].
The key recovery attack using Roos’ weak keys has efficiency of
2122.9. Teramura et al. expanded Roos’ weak keys in 2011 [20].
They exploit a part of the predictive state for a key recovery at-
tack, where the predictive state is the special states of the PRGA
on RC4, and predicts a few bytes keystream from a few bytes
of the internal state. The total number of Teramura et al.’s weak
keys is roughly estimated as 2117.29. By using these weak keys, a
128-bit key is recovered with efficiency of 295.10, only if particu-
lar patterns of keystream are observed. This attack seems not to
be the standard key recovery setting, because it is applicable to
particular patterns of the keystream. Generally, key recovery at-
tacks of stream ciphers are estimated for arbitrary keystream even
if weak key setting [18].

In this paper, we aim to further expand the weak-key space of
RC4, and estimate the accurate number of weak keys and effi-
ciency of the key recovery attack in a standard setting. By thor-
oughly analyzing the relation between the key and the initial state
of the PRGA, we can find new classes of predictive state which
are utilized for key recovery attacks. Specifically, we exploit the
discrete predictive states in the range of S [0], . . . , S [15], while
Teramura et al.’s weak key use only continuous predictive states
as S [0], S [1], . . . , S [a− 1]. Also, we succeed in relaxing the con-
dition for leading a part of the secret key from predictive state
by utilizing probabilistic events in the KSA. As a result, 2118.58

keys can be defined as new weak keys, whose number is more
than twice the number of Teramura et al.’s weak keys. Then, we
propose key recovery attacks based on our new weak keys. Our
attack is applicable to any keystream unlike Teramura et al.’s at-
tack. Given a keystream, our attack enables to recover a 128-bit
secret key with efficiency of 2115.11. Table 1 is the comparison of
previous and our key recovery attacks. Our attack is the known
best single-key key recovery attack on RC4 with respect to the
efficiency. In addition, if we focus on specific keystreams similar
to Teramura et al.’s attack, the 128-bit secret key can be recovered
with efficiency of 276.32, which is more efficient than Teramura et

Table 1 Comparison of the key recovery attacks. Roos’ and Sepehrdad et al.’s attacks use one keystream
for one attack (single-key setting), but Teramura et al.’s attack must continue throwing away
keystreams until an objective keystream appears (multiple-key setting).

Time complexity Probability Efficiency

Single-key setting

Roos [19] 2112 2−10.9 2122.9

Sepehrdad et al. [18] (probability optimized) 238.09 2−87.90 2125.99

Sepehrdad et al. [18] (efficiency optimized) 1 2−122.06 2122.06

Ours 296.36 2−18.75 2115.11

Multiple-key set-
ting

Teramura et al. [20] 295.1 2−7.1 288

Ours 265 2−11.32 276.32

al.’s attack.
The paper is organized in the following way: in Section 2, we

describe RC4 and predictive state. Furthermore, the number of
predictive states is measured in this section. In Section 3, we in-
troduce the previous weak keys, and Section 4 is the proposal of
new weak keys. Two key recovery attacks are proposed in Section
5. We measured efficiencies of those attacks in the same section.
Finally, we conclude this paper in Section 6.

2. RC4

In this section, we briefly review the algorithm of the stream
cipher RC4.

2.1 Description of RC4
The stream cipher RC4 consists of two parameters and two al-

gorithms. Parameters are n and L, and Algorithms are the KSA
and the PRGA. n is the word length and L is the key length. 1
byte is n bits. The variable N, which is frequently used in RC4,
is decided by n, N = 2n. The KSA initializes an N-byte internal
state by using an L-byte secret key K. In general, n is equal to 8
and L is equal to 16. In other words, N is equal to 256 and the
key length is 128-bits (=16-bytes). In this paper, these parame-
ters are used unless otherwise noted. Although, our theory is able
to adapt for other parameters. The KSA initializes the internal
state S using K, and the PRGA generates a pseudo-random num-
bers (called a keystream). Details of the KSA and the PRGA are
described in Algorithm 1 and Algorithm 2.

The array S is permutations of {0, 1, 2, . . . , 255}, the values
don’t overlap in S . In this paper, the KSA and the PRGA are
distinguished by a star (*), which is attached to variables at the
KSA. The internal state of RC4 consists of an N-byte permuta-
tion array S and two indices i and j. Variable t is used to clarify
other variable’s value at each round. Let S t[x] be the value of the
array S at the index x and S −1

t [y] be the index of the value y in
the array S after the t-th round in the PRGA.

2.2 Predictive State
Fluhrer and McGrew have observed stronger correlations be-

tween keystreams and the initial states of the PRGA, and intro-
duced the notion as fortuitous state [12]. This is a special class of
internal states defined by the values of it, jt, and several state ele-
ments of array S at the t-th round, which predicts the keystream.
Mantin and Shamir expanded and generalized the notion of fortu-
itous state as predictive state [8]. The predictive state was defined
as follows.
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Algorithm 1 Key Scheduling Algorithm
for x = 0 to N − 1 do

S ∗−1[x]← x

end for

j∗−1 ← 0

for t = 0 to N − 1 do

i∗t ← t

j∗t ← j∗t−1 + S ∗t−1[i∗t ] + K[i∗t mod L] mod N

S ∗t ← Swapped S ∗t−1(S ∗t−1[i∗t ] and S ∗t−1[ j∗t ])

end for

Algorithm 2 Pseudo-Random Generation Algorithm
i0 ← 0

j0 ← 0

t ← 0

loop

t ← t + 1

it ← t mod N

jt ← jt−1 + S t−1[it] mod N

S t ← Swapped S t−1(S t−1[it] and S t−1[ jt])

Output Zt ← S t[S t[it] + S t[ jt] mod N]

end loop

Definition 1 [8, Definition 1] An a-state is a partially specified

RC4 state, that includes i, j, and a (not necessarily consecutive)
elements of S .

Definition 2 [8, Definition 2] Let A be an a-state for some a.

Suppose that all the RC4 states that are compatible with A pro-

duce the same output word after r rounds. Then A is said to pre-

dict its r-th output.

Definition 3 [8, Definition 3] Let A be an a-state, and suppose

that for some r1, . . . , rb ≤ 2N, A predicts the outputs of rounds

r1, . . . , rb. Then A is said to be b-predictive.

In the PRGA, each Zi is calculated from 3-states, S [i], S [ j] and
S [S [i] + S [ j]]. Their pointers i, j and S [i] + S [ j] are overlapped
frequently. Therefore, as 2-predictive 2-state, there are cases that
many keystreams can be predicted from less internal state. There
is the condition b ≤ a between a and b, it was proven by Paul and
Preneel [21]. In this paper, unless otherwise specifically noted, a
predictive state has i = 0, j = 0.

In this study, we search thoroughly the b-predictive a-state un-
der conditions of b, a ≤ 4 and using only S [0], S [1], . . . , S [15].
Those predictive states are guaranteed to be correlated weak keys.
Incidentally, we use the searching algorithm shown by Teramura
et al. [20]. Because of the much quantity of search, the total
number of high parameters is not calculated. Nevertheless, we
confirm the existence of the predictive state which has high pa-
rameters by limiting a search range. It is empirically known that
the b-predictive b-state tend to have the straight positions such
as S 0[1], S 0[2], . . . , S 0[b], the range [−b,+2b] and the value of
S 0[1] is limited in [1, b].

Now, there are derivation relations between predictive states
which have other a. For example, there is the following 1-
predictive 2-state:

Table 2 Number of predictive states which is lead from weak keys. “Total”
includes the subset of other predictive state, and “w/o extension” is
omitted them.

a b Total w/o extension
2 1 540 540
2 2 1 1
3 1 72,386 68,105
3 2 593 4
3 3 2 2
4 1 20,221,906 18,769,291
4 2 335,941 107,365
4 3 5,558 682
4 4 18 2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S 0[1] = 1
S 0[2] = 2⇒ Z1 = 2.
i0 = 0, j0 = 0

(1)

The following 5-predictive 5-state is an expansion of the above
predictive state.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S 0[1] = 1

S 0[2] = 2

S 0[3] = 0

S 0[4] = 254

S 0[5] = 3

i0 = 0, j0 = 0.

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1 =2

Z2 =0

Z3 =2

Z4 =1

Z5 =3.

(2)

In this case, the predictive state of the latter is a special case of the
former. We checked each predictive state’s relation and derived
the number of primitive predictive states. Table 2 is the result of
it.

3. Previous Key Recovery Attack

Weak key is a class of special keys that can be attacked with
higher efficiency than other keys. In this section, we introduce
existing weak keys in RC4. Our weak key proposed in the next
section is an extension of these.

3.1 Roos’ Weak Key [19]
In 1995, Roos discovered that there was a strong association

between Z1 and K[0],K[1],K[2] in high probability. Roos’ weak
key exists with 2−10.9 of probability in all keys, and can obtain the
fragment 2 byte information of the key. Therefore, Roos’ weak
key can be decoded with time complexity of 2128−16 = 2112. Effi-
ciency of Roos’ weak key is

2112

2−10.9
= 2122.9. (3)

Incidentally, the total number of Roos’ weak key is 2117.1.

3.2 Teramura et al.’s Weak Key [20]
In 2011, Teramura et al. generalized the classes of weak keys

using predictive state. Teramura et al. derived the condition of
keys which leads predictive state with high probability, and de-
fined those keys as Teramura et al.’s weak keys. Their weak keys
can obtain the fragment a-byte information of the key from b-
predictive a-state using {S [0], S [1], . . . , S [a − 1]}. And they dis-
cover that Roos’ weak keys are subsets of Teramura et al.’s weak
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keys using 1-predictive 2-states. Specifically, Roos’ weak keys
use the following predictive state:

⎧⎪⎪⎨⎪⎪⎩
S 0[1] = 1

S 0[2] = X
⇒ Z1 = X. (4)

Their weak key’s efficiency depends on parameter a and b

strongly. Among weak keys which Teramura et al. discovered,
the most effective parameter is 5-predictive 5-state. When using
only one weak key, Teramura et al.’s attack must continue throw-
ing away keystreams until an objective keystream appears. Those
weak keys exists with 2−7.1 in specific keystreams, which have
particular patterns, and can obtain the 40-bit (= 5-byte) informa-
tion of the key. Therefore, the time complexity is 2128−40 = 288

and the probability is 2−7.1 in the most effective parameter. Effi-
ciency of the most effective parameter is

288

2−7.1
= 295.1. (5)

This efficiency is 232.9 times greater than Roos’ weak key.

3.3 Sepehrdad et al.’s Key Recovery Attack
In 2010, Sepehrdad et al. proposed the attack under this con-

dition [18]. Sepehrdad et al.’s key recovery attack calculates
the most frequent key from the plural biases using Z1, . . . , Z47.
Sepehrdad et al. gather up old biases and discover the new biases.
For example, there is the following bias:

K[0] + K[1] − z1 = 255 (6)

This bias occurs with 1.04237/N of probability. Their attack bun-
dles such biases and calculates the probable keys. When their
attack be optimized to efficiency, the key can be calculated with
the probability 2−122.06 without any key search, therefore the effi-
ciency is 2122.06. Optimized to probability, the probability reduces
to 2−87.90, however, the time complexity increases to 238.09 and the
efficiency is 2125.99.

4. New Weak Key

We further extend Teramura et al.’s weak keys by thoroughly
analyzing the relation between the key and the initial state of the
PRGA. Teramura et al.’s weak keys used only the b-predictive
a-state with S [0], . . . , S [a − 1], whereas our weak keys can use
discrete predictive states, which have free positions in the range
of S [0], . . . , S [15]. In addition, we succeed in relaxing the con-
dition in the KSA. Teramura et al.’s weak key was necessary to
prepare a value of S [x] at x-round of the KSA. In contrast, our
weak key allows that some values are not prepared in x-round,
and set those values by stochastic means at initial round of the
PRGA. As a result, we define 2118.58 keys as weak keys.

4.1 Condition of Weak Key
K[x] and S 0[x] (x = {0, . . . , L − 1}) correlate to each other.

Therefore, the keystreams which generated by S 0[0], . . . , S 0[L −
1] contain more key informations than other keystreams.
S pre[x1], . . . , S pre[xa], which defined by b-predictive a-state, con-
jecture c-byte key, K[y1], . . . ,K[yc] (a − b < c ≤ a,∀yi ∈

{x1, . . . , xa}). The conditions of weak key are

S ∗k−1[ j∗k] = S pre[k]

⇔ j∗k = S ∗−1
k−1[S pre[k]] (k ∈ y)

⇔ K[k] = S ∗−1
k−1[S pre[k]] − S ∗k−1[k] − j∗k−1 mod N. (7)

In addition, K[k̄] does not satisfy the above equation (k̄ ∈ x\y).
We introduce a simple example. When you choose the predic-

tive state which is written in Eq. (2) and parameters as c = 3 and
y = (1, 3, 4) which are selected at random, the weak key is written
as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K[1] = S ∗−1
0 [1] − S ∗0[1] − j∗0

K[2] � S ∗−1
1 [2] − S ∗1[2] − j∗1

K[3] = S ∗−1
2 [0] − S ∗2[3] − j∗2

K[4] = S ∗−1
3 [254] − S ∗3[4] − j∗3

K[5] � S ∗−1
4 [3] − S ∗4[5] − j∗4

(mod N) (8)

S ∗, j∗ change by other K, so K[1], . . . ,K[5] are not the same
value at all times. These values are determined while operating
the KSA.

4.2 Probability for Weak Keys
In this section, we explain how a weak key leads a b-predictive

a-state. A predictive state is defined by S , i, and j. Please note
that for the sake of ease, we limit i = j = 0, and consider only
the S . In this paper, we define P[Eout |Ekey] as the probability that
predictive state is generated from weak keys.

At first, we derive the probability that each S yi [yi] stored to the
S pre[yi] at round yi in the KSA (yi ∈ y). Because i∗yi

= yi, the
requirement is that the value pointed by j∗yi

is S pre[yi]. This con-
dition is written as Eq. (7), and the probability is 1. Furthermore,
S pre[yi] should not move in (N−yi−1)-rounds until 0-th round in
the PRGA that the predictive state demands. To put another way,
the pointer j∗ should not point to the yi. This probability is

(
N − 1

N

)N−yi−1

. (9)

Thus, c-values, S pre[y1], . . . , S pre[yc], are stored until the 0-th
round in the PRGA. The remaining (a− c)-values are not fixed in
the middle of the KSA, fit in the correct position by coincidence.
Assuming that the value is moved at random, the probability that
one value fits correctly is

(
1
N

)
. (10)

Therefore, P[Eout |Ekey] is derived as the following equation:

P[Eout |Ekey] =
c∏

i=1

(
N − 1

N

)N−yi−1

·
(

1
N

)a−c

=

(
N − 1

N

)c(N−1)−∑c
i=1 yi

(
1
N

)a−c

. (11)

4.3 Probability from Keystream
In this section, it is defined P[Ekey|Eout] that the probability of

the keystreams was extracted from the weak keys. P[Ekey|Eout] is
calculated from P[Eout |Ekey] using Bayes’ theorem:
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P[Ekey|Eout] =
P[Ekey]

P[Eout]
· P[Eout |Ekey]. (12)

If the generation probability of keys and keystream have no bias,
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P[Eout] =

(
1
N

)b

,

P[Ekey] =

(
1
N

)c

·
(

N−1
N

)a−c
.

(13)

Therefore, using the P[Eout |Ekey] in Section 4.1,

P[Ekey|Eout] =

(
N − 1

N

)a+c(N−2)−∑c
i=1 yi

(
1
N

)a−b

. (14)

P[Ekey|Eout] is a value to be decided by a, b, c and
∑c

i=1 yi (rather
than yi itself). As a representative parameter, we show the case
that y = (1, 2, . . . , c) in Table 3. In our weak key, c byte partial
keys are able to be predicted and other keys are recovered by only
NL−c times searching with probability of P[Ekey|Eout]. Hence, the
efficiency of our weak key, which is defined as the time complex-
ity / probability, is calculated as

NL−c

P[Ekey|Eout]
. (15)

Table 4 is the representative example, it has same parameter of
Table 3.

4.4 Number of Weak Keys
In this section, we derive the total number of our weak keys.

Our weak keys exist for each predictive state a lot, and a lot of
predictive states themselves exist, too.

At first, we derive the number of weak keys corresponding to
each predictive state. Weak keys that belong to each predictive
state are subdivided by parameter c and y. Our weak key decides
c byte keys, K[y1], . . . ,K[yc], and we can choose c-positions,

Table 3 Typical P[Ekey |Eout]. The cells with the parenthesis have a negative
gain.

a b c = 1 c = 2 c = 3 c = 4

2 1 (2−9.43) 2−10.86

2 2 2−1.43 2−2.86

3 1 (2−17.43) (2−18.86) 2−20.29

3 2 (2−9.43) 2−10.86 2−12.29

3 3 2−1.43 2−2.86 2−4.29

4 1 (2−25.43) (2−26.86) (2−28.29) 2−29.70

4 2 (2−17.43) (2−18.86) 2−20.29 2−21.70

4 3 (2−9.43) 2−10.86 2−12.29 2−13.70

4 4 2−1.43 2−2.86 2−4.29 2−5.70

Table 4 Typical efficiency of our weak keys. Teramura et al.’s weak keys
are used only a = c.

a b c = 1 c = 2 c = 3 c = 4

2 1 (2129.43) 2122.86

2 2 2121.43 2114.86

3 1 (2137.43) (2130.86) 2124.29

3 2 (2129.43) 2122.86 2116.29

3 3 2121.43 2114.86 2108.29

4 1 (2145.43) (2138.86) (2132.29) 2125.70

4 2 (2137.43) (2130.86) 2124.29 2117.70

4 3 (2129.43) 2122.86 2116.29 2109.70

4 4 2121.43 2114.86 2108.29 2101.70

y1, . . . , yc, freely from {0, 1, . . . , a}. Therefore, it is NL−c ·
(

a
c

)
that

the number of candidates of weak keys corresponding each pa-
rameter. The true weak keys, which lead a predictive state, exist
in these candidates with P[Eout |Ekey]. Hence, the number of weak
keys when the parameter c is fixed is NL−c ·

(
a
c

)
· P[Eout |Ekey]. The

total number of weak keys from each predictive state can approx-
imate as

a∑
c=a−b+1

(
NL−c ·

(
a
c

)
· P[Eout |Ekey]

)
. (16)

Table 5 is the list of typical parameters which has same parameter
as other tables, y = (1, 2, . . . , c).

Next, we derive the total number of weak keys from all known
predictive states using the number of each predictive state. Weak
keys have inclusive relationship as well as predictive state. The
weak keys which based extended predictive state are only a sub-
set of weak keys based on the original predictive state. Therefore,
when the total number of weak keys is calculated, extended weak
keys must be omitted. Table 6 is the total number of weak keys
calculated from the number of original predictive states, which is
written as “w/o extension” in Table 2. In Table 6, we calculate
the exact number in consideration of the

∑c
i=1 yi of each predic-

tive state. 1-predictive 2-states occupy the majority of weak keys,
the total number does not change significantly even considering
the parameters not in this table. The number of our weak keys is
more than twice Teramura et al.’s weak keys.

5. Key Recovery Attack

In this section, we propose two key recovery attacks using our

Table 5 The number of weak keys from each predictive state. The number
of Teramura et al.’s weak keys was decided only by a, but our weak
keys increase even by b because of the flexibility of the c.

a b Ours Teramura et al.’s (c = a)

2 1 2109.14 2109.14

2 2 2111.81 2109.14

3 1 299.71 299.71

3 2 2102.89 299.71

3 3 2104.65 299.71

4 1 290.30 290.30

4 2 293.84 290.30

4 3 296.07 290.30

4 4 297.34 290.30

Table 6 The strict total number of weak keys. The total number of Ter-
amura et al.’s weak keys is derived by the number of predictive
states in [20] and Table 5 in this paper. Because Teramura et al.
didn’t search the predictive states which have low parameter, some
cells are not clear.

a b w/o extended All Teramura et al.’s

2 1 2118.22 2118.22 2117.28

2 2 2111.81 2111.81 2109.14

3 1 2115.82 2115.91 −
3 2 2104.90 2112.11 2105.82

3 3 2106.43 2106.43 0

4 1 2114.50 2114.61 −
4 2 2110.59 2112.22 2107.45

4 3 2106.33 2109.36 2100.54

4 4 2100.44 2103.61 293.30

Total 2118.58 2117.29
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weak keys. One is a single-key attack, which is a case of perform-
ing an attack on any keystream. This is the standard key recovery
setting. In this attack, efficiency changes for the predictive state
corresponding by the keystream. It is possible to recover the key
with efficiency of 2115.11. The other attack uses only most effec-
tive predictive state, the setting is used by Teramura et al. This
attack focus on specific keystreams which have same output as
the predictive state. It is necessary to observe a large amount of
keystream group, but it is possible to recover the key with effi-
ciency of 276.32.

5.1 Single-key Attack
Our attack uses the list of predictive states which predict two

bytes keystream, namely, Z1 and Z2. All keystream match any one
of listed predictive states. The making method of the list is shown
in Appendix A.1. Because each pattern has plural predictive
states, the list adopts the only the most efficient predictive state.
As a result of exploring the patterns of all, all keystreams corre-
sponding to the 2-predictive 5-state shown below even worst:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S 0[1] = 2

S 0[2] = 13

S 0[4] = 12

S 0[14] = Z2

S 0[15] = Z1

i0 = 0, j0 = 0.

(17)

Efficiency of this predictive state is 2119.00, this is the worst ef-
ficiency in our attack. Also, when it is Z1 = Z2 can be applied
following 2-predictive 4-state:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S 0[0] = 4

S 0[1] = 0

S 0[2] = 2

S 0[4] = Z1 = Z2

i0 = 0, j0 = 0.

(18)

Others, more effective predictive states exist in 0 ≤ Z1, Z2 ≤ 15.
Under the condition of b = 2, 2-predictive 2-state in case of
Z1 = Z2 = 0 is the best, its efficiency is 2114.86. Figure 1 is
the graph that shows efficiencies of every Z1 and Z2. To unify
these, the list of predictive states is made for every Z1 and Z2 pat-
tern. The attacker chooses the predictive state corresponding to
the keystream which be observed among the list. The average effi-
ciency of this attack is calculated by the average time complexity
/ the average success probability. The average time complexity
and the average success probability are the arithmetical means of
each Z1,Z2. We explain the details about the time complexity.
Let a(Z1 ,Z2) be defined the parameter a for each Z1, Z2, which is
changed by each predictive state. In each Z1,Z2, the time com-
plexity is written as 25616−a(Z1 ,Z2) . Therefore, the time complexity
as the arithmetical mean is

1
2562

255∑
Z1=0

255∑
Z2=0

25616−a(Z1 ,Z2) . (19)

Fig. 1 The efficiency map of the predictive state. The vertical axis shows
efficiency with a logarithm. As for z-axis being high, the efficiency
is little. Because the efficiency means average time complexity, the
less efficiency the better. Z1 = Z2 = 0 is the most powerful pattern,
and the worst efficiency is 2119.

Fig. 2 Efficiency map without Teramura et al.’s weak keys. Compared with
Fig. 1, Z1 = Z2 = 0 decrease in the efficiency. However, most of the
list does not change. RC4 is not available safely by measures to only
Teramura et al.’s weak keys.

The probability is calculated equally. The average time complex-
ity of all patterns is 296.36. The average of the attack success
probability, namely the success probability for every keystream is
2−18.75. Therefore, the efficiency for the whole is 296.36/2−18.75 =

2115.11.
We consider if all Teramura et al.’s weak keys are excluded. In

other words, the predictive states using y = (0, 1, . . . , a) are ex-
cluded. Figure 2 is the result. Because the 2-predictive 2-state,
which is most efficient parameter, corresponds to Teramura et al.’s
weak keys, the overall efficiency declines a little. Although, it is
not affected by most of predictive states in the list, because Tera-
mura et al.’s weak keys have the lowest

∑c
i=1 yi and not be adapted

to the list. As a result, even if Teramura et al.’s weak keys are ex-
cluded, the average time complexity maintains 294.13, the success
probability is 2−22.53, and the average efficiency is 2116.67.

Our attack’s average efficiency (2115.11) is smaller than
Sepehrdad et al.’s efficiency (2122.06). Hence, we propose a useful
attack in key recovery attack on RC4.

5.2 Multiple-key Attack
In this section, we consider the case that relieved a condition

than Section 5.1. In Section 5.1, we propose the attack to ev-
ery keystream, but the most effective attack using our weak keys
is not so. It is effective to use only the most excellent predic-
tive state without using the plural predictive states. Namely, the
attack searches a key only to the keystream which conform to
predict. To this attack, it is necessary to observe a large quantity
keystream as a premise.

This attack is classified into the keystream choice stage and
the key search stage. In the keystream choice stage, it is de-
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termined whether the observed keystream accords with the pre-
diction of the most effective predictive state. When we assume
time complexity 1 per one comparison, the time complexity nec-
essary to discover the keystream according in the prediction of
the b-predictive a-state is Nb. In the key search stage, the c-
bytes during 16 bytes key are fixed and the remaining keys are
searched. c = a is the most effective, and it is not necessary to
search for c < a. The time complexity of the key search stage is
NL−c, and the success probability is P[Ekey|Eout], which is shown
in Eq. (14). Therefore, the efficiency that adds up two stages is

Nb + NL−c

P[Ekey|Eout]
. (20)

In 128-bit key RC4, the most powerful parameter is 8-predictive
8-state (c = 8). We confirmed that the number of 8-predictive
8-states is at least 10,000 by a restrictive search. Although, it is
not necessary to grasp all and is enough any one for the attack.
Show an example below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S 0[1] = 2

S 0[2] = 3

S 0[3] = 1

S 0[4] = 255

S 0[5] = 6

S 0[6] = 251

S 0[7] = 0

S 0[8] = 4

i0 = 0, j0 = 0.

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1 =6

Z2 =3

Z3 =0

Z4 =255

Z5 =4

Z6 =3

Z7 =6

Z8 =4.

(21)

In this example, the attacker can discover one keystream agreeing
with the 8-predictive 8-state by comparing 264 kinds keystream.
In addition, time complexity of the key search stage is 264 and
success probability is 2−11.32. Therefore, efficiency is

264 + 264

2−11.32
= 276.32. (22)

This efficiency is the best value of our attack.
Time-memory-data trade-off attack is a general attack model

under the conditions of this section. When the attacker observes
264 kinds of keystream and hold all in memory, one of 264 random
keys produces a keystream which was observed. The efficiency
of time-memory-data trade-off attack is 264 + 264 = 265. How-
ever, the memory space that 264 kinds of keystreams can keep
is essential to this attack. In contrast, our attack does not store
any keystream, works only with the data of the predictive state.
In other words, our attack dispensed with memory by decreasing
efficiency to 276.32.

6. Conclusion

In this paper, we expanded weak-key space of RC4. By thor-
oughly analyzing the relation between the key and the initial state
of the PRGA, we found new classes of predictive states which
are utilized for key recovery attacks. In addition, we succeed in
relaxing the condition for leading a part of the secret key from
predictive state by utilizing probabilistic events in the KSA. As a

result, we showed the total number of our weak keys is 2118.58 at
least, whose number is more than twice the number of Teramura
et al.’s weak keys. Given any keystream, our weak-key attack can
recover a 128-bit secret key with efficiency of 2115.11. Note that
our attack is the known best single-key key recovery attack on
RC4 with respect to the efficiency. In addition, even if previous
weak keys are removed from RC4, 2117.82 our weak keys remains
behind and the attack efficiency is still 2116.67. Those mean RC4
has potential vulnerabilities, unless otherwise our weak keys are
removed. If we focus on specific keystreams similar to Teramura
et al.’s attack, the 128-bit secret key can be recover with efficiency
of 276.32. Therefore, the evaluation of our weak keys in this paper
is useful as the security assessment of RC4.
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[7] Sepehrdad, P., Sušil, P., Vaudenay, S. and Vuagnoux, M.: Smashing
WEP in A Passive Attack, Fast Software Encryption-FSE (2013).

[8] Mantin, I. and Shamir, A.: A practical attack on broadcast RC4, Fast
Software Encryption, pp.87–104, Springer (2002).

[9] Maitra, S., Paul, G. and Gupta, S.S.: Attack on broadcast RC4 revis-
ited, Fast Software Encryption, pp.199–217, Springer (2011).

[10] Isobe, T., Ohigashi, T., Watanabe, Y. and Morii, M.: Full Plaintext
Recovery Attack on Broadcast RC4, Fast Software Encryption-FSE
(2013).
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Appendix

A.1 Predictive State Searching Algorithm
from Keystream

In this appendix, we show the predictive state search algorithm,
which correspond with given keystream as much as possible. The
basic idea is simple, the PRGA is operated without determining
the value of S , and values are not fixed unless they are pressed
by necessity. Namely, the necessities are the track of pointer j

and output Zi. Because this algorithm target discoveries the pre-
dictive state which is led by weak key, the search range is limited
to S 0[0], S 0[1], . . . , S 0[L − 1]. S p is the pointer array, which use
to make the value of S 0 clear. V[x] is the array which manage
the value x as used or unused in S . This algorithm is the tree
search which has two kinds of leaves, SUCCESS or FAILURE.
SUCCESS means no room for the search or the further search is
difficult. FAILURE means that the search is in conflict. Inciden-
tally, this algorithm cannot detect the predictive state which has
discrete keystream, e.g., Z1,Z2 and Z4 without Z3.

Editor’s Recommendation
Mantin et al. pointed out vulnerability of WEP arisen from the

initialization of RC4, which tries to guess a part of secret key
from the output sequences. The size of such weak keys in RC4
has been extended by many subsequent researches. This paper
revisited some equations in the previous literatures, and showed
that the space of the weak key becomes larger than that of the pre-
viously investigated ones. Indeed the authors extended the size of
the weak key in RC4 by 8 times, namely from 2100.91 to 2103.78.
This attack is not a real threat in practice, but the theoretical con-
tribution is worth recommending for publication in JIP.

(Program Chair of Computer Security Symposium 2012,
Tsuyoshi Takagi)

Algorithm 3 Predictive state searching algorithm
Require: {Z1,Z2, . . . ,Zmax} are the target keystream.

1: S 0[x] (0 ≤ x ≤ N − 1)← “undefined”

2: S 0[x] (0 ≤ x ≤ L − 1) are tagged “available”

3: S 0[x] (L ≤ x ≤ N − 1) are tagged “unavailable”

4: S p[x]← x (0 ≤ x ≤ N − 1)

5: V[x] (0 ≤ x ≤ N − 1)←“unused”

6: a = 0, b = 0

7: i = 0, j = 0

8: Set label: “Main Loop”

9: i = i + 1 mod N

10: if i > max then

11: return(SUCCESS)

12: else if S 0[S p[i]] �“available” then

13: return(SUCCESS)

14: end if

15: if S 0[S p[i]] =“undefined” then

16: fork the search as many as the number of “unused” in V .

Copy all variables from parent.

n← a “unused” number

S 0[S p[i]]← n

V[n]←“used”

a + +.

17: end if

18: j← j + S 0[S p[i]] mod N

19: Swap(S p[i], S p[ j])

20: if S 0[S p[i]] tagged “unavailable” then

21: return(SUCCESS)

22: end if

23: if S 0[S p[i]] �“undefined” then

24: Go to “Search Value”

25: end if

26: if V[Zi] =“unused” then

27: fork the search same as Line 16

28: Go to “Search Value”

29: end if

30: if V[S −1[Zi] − S 0[S p[ j]]] =“used” then

31: return(FAILURE)

32: end if

33: S 0[S p[i]]← S −1[Zi] − S 0[S p[ j]]

34: V[S 0[S p[i]]]←“used”

35: a + +, b + +

36: Go to “Main Loop”

37: Set label: “Search Value”

38: k ← S 0[S p[i]] + S 0[S p[ j]]

39: if S 0[S p[k]] tagged “unavailable” then

40: return(SUCCESS)

41: else if S 0[S p[k]] =“undefined” then

42: if V[Zi] =“used” then

43: return(FAILURE)

44: end if

45: S 0[S p[k]]← Zi

46: a + +, b + +

47: Go to “Main Loop”

48: else if S 0[S p[k]] = Zi then

49: b + +

50: Go to “Main Loop”

51: end if

52: return(FAILURE)
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