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Abstract: Several load balancing techniques for IP routing scheme have appeared in the literature. However, they
require optimization process to compute optimal paths to meet traffic demand so that it requires a mechanism to mea-
sure traffic demand and to share them among all routes in order to follow dynamics of traffic. It naturally results in
communication overhead and losing sensitivity to follow traffic dynamics. In this paper, we investigate a load balanc-
ing mechanism from another approach, i.e., based on IP fast reroute mechanisms. The main idea is simply to forward
packets into detour paths supplied by IP fast reroute mechanisms only when packets meet congestion. This strategy en-
ables us to use vacant resources adaptively as soon as they are required to avoid and dissolve the congestion. Through
traffic simulation we show that IP fast reroute based load balancing mechanisms improve the capacity of networks.
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1. Introduction

Recent growth of the Internet and the rapid increase of user
traffic require more bandwidth and communication quality for
infrastructure networks. To make the most of existing network
resources, several traffic engineering (TE) techniques have been
proposed so far. Currently TE techniques for MPLS scheme have
become important [1] and several techniques are working in prac-
tice mainly in backbone networks. However, since MPLS routers
are expensive and complicated, IP routing is still given significant
attention, and many TE tecniques in IP networks are continuously
studied even now.

As an early-stage TE technique in IP networks, Forts et al. [2]
presented a method to optimize link metrics to achieve good load-
balancing performance. They formulated the problem to opti-
mize link metrics by means of linear programming, which com-
putes the link metrics that minimize the maximum link usage
from the traffic demand among every pair of nodes. As a result,
they showed that IP based TE potentially achieves a comparable
level of load-balancing performance compared to MPLS based
TE techniques.

However, in IP based shortest-path schemes, traffic tends to be
concentrated on particular links or nodes because the shortest-
paths tend to use the common low-cost links. From this point of
view, Dasgupta et al. [3] presented a result of performance com-
parison between the metric-optimized IP shortest path scheme
and the MPLS based traffic engineering scheme. Their simula-
tion demonstrated that, under the traffic variation coming from
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link failure, IP based TE often brings severe congestion hotspots
caused by concentration of shortest paths, while MPLS based TE
leads to much less congestion. Their result showed one aspect of
the vulnarability in IP based TE techniques, and offers a point to
improve.

As a more efficient load balancing approach than metric opti-
mization that possibly improves the vulnarability above, several
multi-path load-balancing schemes have been proposed. Mishra
et al. presented an OSPF-based TE technique S-OSPF (Smart-
OSPF) [4], in which source nodes distribute traffic to their neigh-
bor nodes to try load balancing among the shortest paths from
neighbor nodes. In S-OSPF, each node selects a set of neighbor
nodes to distribute traffic among them without creating loops, and
determines the ratio of traffic to distribute to these neighbors us-
ing a linear-programming based optimization process. Antić et
al. presented TPR (Two Phase Routing) [5], [27] that once for-
wards packets to some intermediate nodes using IP tunnels and
then forwards them to their destinations using normal shortest
paths. They are capable of more efficient load balancing than
metric-optimization based traffic engineering. They both, how-
ever, require the optimization process that computes the paths for
traffic distribution from a traffic demand matrix. In practice, the
optimization process requires mechanisms to measure the traffic
demand, to share the measured information among all nodes, and
to re-compute the new distribution paths. This process would re-
sults in losing sensitivity for dynamic transition of traffic.

In this paper, as another approach of load balancing in IP rout-
ing schemes, we propose a load balancing mechanism that is
based on the IP fast reroute technique. IP fast reroute is the tech-
nique to prevent packet loss in case of link/node or component
failure using pre-computed alternative paths [9], [12], [15]. IP
fast reroute techniques achieve immediate recovery against fail-
ure (usually in 50 msec), but they require considerable overhead

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

such as additional routing table entries. Unfortunately, this over-
head for pre-computed backup paths is dedicated only for the case
of failure. The load balancing mechanism that we propose in this
paper utilizes these unused paths even under normal state where
no failure is present to reduce congestion hot spots of networks.

The approach of load balancing using IP fast reroute has sev-
eral good characteristics as follows:

1. Packet forwarding is based on local decision so that no addi-
tional communication overhead (especially to measure and
advertise information of traffic demand) is required for load
balancing.

2. No optimization process is required to follow dynamics of
traffic so that sensitive response is achieved for traffic tran-
sition. This property is effective especially in case of failure
protected by IP fast reroute mechanisms.

3. It is possible to work seamlessly with IP fast reroute mech-
anisms which provide failure protection function within the
same framework.

4. Since only the packets faced to be dropped are detoured,
communication paths are basically the same as the shortest-
path routing scheme. Namely, the current operational expe-
rience over traffic estimation is available.

Note that there are several studies on load balancing that in-
corporate IP fast reroute schemes such as Ref. [7]. However,
they are based on the IP fast reroute schemes that use alterna-
tive hops for failure protection, such as LFA (Loop-Free Alter-
nate) [8]. Thus, not only they cannot provide backup paths for
every single link/node failulre, but also the load-balancing per-
formance would be limited because every backup path is 1-hop
long. To the best of our knowledge, this paper is the first proposal
to provide load-balancing fuctionality over full-coverage IP fast
reroute schemes.

The remainder of the paper is organized as follows: In Sec-
tion 2 we describe the base IP fast reroute mechanism called SBR
(Single Backup-table Rerouting) and present our load balancing
technique over SBR. In Section 3, we will have a quick look at
the property of SBR detour paths that is used for load balancing.
In Section 4 we give the results of traffic simulation to show the
performance of our mechanisms. In Section 5 we describe several
IP fast rerouting schemes proposed so far and discuss how we can
apply the proposed load balancing technique to them. Finally, we
conclude the work in Section 6.

2. Load Balancing Mechanisms Using IP Fast
Reroute Scheme SBR

2.1 SBR Mechanisms
In this section we explain the base IP fast reroute mecha-

nism SBR (Single Backup-table Rerouting) [19], [20] and de-
scribe how packets are forwarded into backup paths in it. SBR
is an IP fast reroute scheme that recovers every single link failure
with low overhead, i.e., two 1-bit flags on the packet header and
one additional routing table. Note that there are several major IP
fast reroute mechanisms studied so far, but we use SBR as the
base scheme of our load balancing method because the mecha-
nism is convenient to design load balancing functions; SBR it-
self uses several 1-bit flags on packet header. Naturally, our load

Fig. 1 The SBR mechanism.

balancing method can be implemented with other major IP fast
reroute schemes such as NotVia [12] and FIFR [15]. How to ap-
ply the load balancing method to these IP fast reroute schemes is
described in Section 5.

SBR is first described in a theoretical manner [19] and later its
practical protocol that extends OSPF framework is presented in
[19]. Note that the algorithm to compute a backup routing table
is similar to Ref. [22], which presents a time-efficient algorithm
to compute the secondary routing table for FIFR. Specifically, the
main difference as a link protection framework is that SBR con-
siders link metrics to compute backup paths, whereas [22] com-
putes backup paths based on hop-count.

The mechanism of SBR is illustrated in Fig. 1. Since we de-
scribe SBR as an extension to the link-state routing scheme, it is
assumed that every node has its primary routing table that rep-
resents the shortest-path tree for each destination. In SBR, ev-
ery router has a secondary routing table, called a backup table,
to protect any single link failure. To guarantee at every node a
backup path that bypasses the next-hop link, backup table entries
are classified into two types, “backup” and “switch,” and we dis-
tinguish the type of a backup table entry by the extra 1-bit label
attached to each backup table entry. For an example to show the
SBR mechanism, see Fig. 1 (a) that shows the situation that ev-
ery node (except d) in the network has its primary and backup
next-hops for a destination d. Primary next-hops are indicated by
solid arrows and backup next-hops by two sorts of broken arrows.
Here, you see that backup next-hops are classified into two types
“backup” or “switch,” where “switch” type plays a special role in
forwarding packets.

Packets are forwarded in combination with these two routing
tables. See Fig. 1 (b) for an example. Once a link (x, d) fails,
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Fig. 2 The proposed load balancing mechanisms.

the node x detects it and immediately forwards packets to u in-
stead of d, using its backup next-hop. Then the packets travel
along backup next-hops for a while, and after going through that
of switch type, i.e., (v,w) in this figure, they return to the primary
route to reach the destination. Namely, packets sent from u des-
tined to d travel along the path u→ x→ u→ v→ w→ y→ d.

Such forwarding is realized by a 1-bit b-flag on the packet
header; keep b-flag 0 when a packet uses primary tables, change
to 1 when the packet is firstly forwarded using backup tables (at
x in Fig. 1 (b)), then return to 0 when the packet passes a backup
next-hop of type “switch” (at v in Fig. 1 (b)). Namely, this flag
represents which table to be used to forward the packet. SBR is
able to protect every single link failure. Figure 1 (c) is the exam-
ple when link (y, d) failed. The packets sent from w destined to d

travel along the path w→ y→ v→ x→ d.
Additionally in SBR, we introduce another 1-bit flag called r-

flag on packet header, which prevents loops in case of multiple
link failure. The r-flag is set when a packet first returned to the
shortest path (i.e., when the b-flag is first reset), and the packet
with r-flag is never forwarded into backup next-hop. Namely, r-
flag limits the number of detours in order to prevent loops caused
by repeated rerouting.

2.2 Load Balancing Mechanisms Based on SBR
Based on SBR, we propose a load balancing technique to uti-

lize vacant resources adaptively to prevent packet loss. Our strat-
egy is simply to rescue the packets which are to be dropped as
they have met congestion, by means of forwarding them into the
backup path instead of the primary path. Our method detects con-
gestion using output queue length. See Fig. 2. There is a router
with three links, and we assume that packets come from the left
side and are forwarded to a link in the right side. When a packet
without b-flag arrives at the router, the router makes route de-
cision for it, i.e., decides the output interface according to the
queue length of its primary next-hop. Specifically, when the sum
of queue length and the packet size is longer than threshold T1

(T1 is usually set as 100% of the queue length), the packet is en-
queued into the queue of the backup interface with the packet’s
b-flag set, and otherwise the packet is enqueued into the queue of
the primary interface.

This simple rule, however, causes the detour chain problem.
The detour chain problem is the problem where detouring packets
that bypass a congestion cause another congestion to generate de-
touring packets again, and the repeated detouring continues like
a chain. This problem must be avoided since the chain generates
lots of detour packets which heavily consume network resources,

and in the worst case they may form a loop, resulting in signifi-
cant amplification of congestion.

To prevent the problem from occurring, we introduce another
threshold T2 on the output queue to suppress detouring packets
before they cause a new congestion. When a packet with b-flag
or r-flag arrives at the router, the router checks the queue length
of the next-hop interface (i.e., the queue length of the backup
next-hop is checked for b-flag packets, and that of the primary
next-hop is checked for r-flag packets) to decide the route to for-
ward it. If the queue length is longer than T2, the router drops the
detouring packet, and otherwise, the router forwards it into the
corresponding next-hop according to the forwarding rule of SBR.

Note that we detour packets only if the packets are to be
dropped under the conventional single shortest-path scheme. Our
strategy is to use vacant resources to rescue packets as long as
they do not cause any bad effect on (non-detouring) shortest-path
traffic. By protecting the shortest-path traffic from the harmful in-
fluence of detouring traffic, we try to have the shortest-path traffic
behave the same as in the non-load-balanced scheme, even in our
load balancing environment. Also note that to reduce the bad ef-
fect (such as delay) on shortest-path traffic, it is important that
T2 is sufficiently small, but at the same time, T2 should hold the
minimum necessary value to afford dynamics of the traffic in the
network.

2.3 Enabling Multiple Detour
We further consider detouring packets more than once to im-

prove the performance in larger networks. In a larger network, a
packet meets congestion more than once with higher probability
so that multiple detouring is essential from the viewpoint of scal-
ability. To enable this, we introduce r-count instead of r-flag on
the packet header which indicates the number of detours that the
packet experienced. By introducing the maximum allowed num-
ber of detours for each packet, we allow several detours while
preventing packet loops. If we allow detouring three times, a 2-
bit field on packet header is required for r-count.

The change on router behavior is simple: if a packet without b-
flag is received and the primary next-hop is congested (i.e., the
queue length is more than T1), the router forwards the packet
into backup next-hop and increments the r-count of the packet
only if its r-count is lower than the maximum allowed value, and
the packet is dropped if the r-count is larger than or equal to the
maximum allowed value. Note that only the packets which are
using the primary route (i.e., the packet without b-flag) can be
detoured, because SBR does not provide further “backup paths”
for the packets that are currently using backup paths.

Table 1 summarizes the whole behavior of routers in our pro-
posal. This table shows the process of the forwarding decision
and flag manipulation at each router when a packet arrives. The
process is different according to the condition on the state of flags
(b, r) on the packet header and the queue length of the next-hop
interface. Here, let (b, r) be the b-flag and the r-counter of the
packet, let max be the number of maximum allowed detouring,
and let q(p) and q(b) be the queue length of the output queue for
the primary and backup next-hop, respectively.
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Table 1 Formal forwarding process at each router in the proposed method.

Conditions Packet Manipulation

Flags and Counters (b,r) Conditions on Queue Forwarding Decision Flag Manipulation

q(p) < T1 Forwarding into primary next-hop

(0,0) q(p) ≥ T1 and q(b) < T2 Forwarding into backup next-hop
Increment r-counter, and set b-flag if the

backup table entry is not the switch type.

q(p) ≥ T1 and q(b) ≥ T2 Drop

q(p) < T2 Forwarding into primary next-hop

(0,n) q(p) ≥ T2 and q(b) < T2 Forwarding into backup next-hop
Increment r-counter, and set b-flag if the

backup table entry is not the switch type.

1 ≤ n < max q(p) ≥ T2 and q(b) ≥ T2 Drop

(0,max) q(p) < T2 Forwarding into primary next-hop

q(p) ≥ T2 Drop

(1,n) q(b) < T2 Forwarding into backup next-hop
Reset b-flag if Backup Table entry is the

switch type.

1 ≤ n ≤ max q(b) ≥ T2 drop

3. Optimality Analysis of SBR Paths

The characteristic of backup paths is important because it di-
rectly effects on the load-balancing performance. Thus, in ad-
vance of traffic simulation, we just have a quick look at the opti-
mality of the backup paths of SBR, and see that the backup paths
of SBR is near optimal.

To achieve better load balancing performance in the presence
of congestion hot spots, it is desirable that the backup paths are
as short as possible. Thus, we define the best backup path from
node s to d as the shortest path in the network where we omit the
link expected to fail, (i.e., the link connected to primary nexthop
from s), and we analyze how the length of the backup paths are
different from the best backup paths.

The topologies used in our analysis are generated by
BRITE [23] with the Waxman [24] and the Barabasi-Albert [25]
models, which model the Internet topology. To see the influence
of scalability, the number of nodes is varied between 10 and 400.
Also to see the effect of network density (i.e., link-to-node ra-
tio), we also vary its range between 1.2 and 2.0. In every case,
we tried two patterns of link-cost distribution: one is randomly
given costs within certain range (10–100), and the other is con-
stant value. We executed the algorithm of SBR to create backup
tables [21] for these networks and obtained the results shown in
Figs. 3 and 4. Here, all results are the average of 10 times repeti-
tion.

In Fig. 3, we show the ratio of the best backup paths among
all computed backup paths (i.e., the ratio of the pair of nodes for
which the computed backup path is the best backup path), with
the variation of network scale. It shows that the performance is
very good where all values are over 99%, meaning that 99% of
the backup paths computed are the best backup paths. Especially,
the case of constant link costs marks a fine score compared with
random cost distribution. Figure 4 is the result where we vary the
density (i.e., link-to-node ratio) of networks. We create sparse
networks by generating the network whose link-to-node ratio is
2 using BRITE, then randomly removed edges one by one as
long as the network is 2-link-connected. Here, 2-link-connected
means that there are at least two link-disjoint paths between every
pair of nodes. The result is also good; all values are over 97%.

Fig. 3 Optimal ratio of backup paths (with number of nodes).

Fig. 4 Optimal ratio of backup paths (with link density).

Fig. 5 Number of backup hops (with number of nodes).
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Fig. 6 Number of backup hops (with link density).

The performance improves slightly as the density increases.
In Fig. 5, we show the average number of hops in backup paths.

From the result, the average backup hops are low and in every
case the average is under 1.2 hops. Although this test is done with
dense networks in which the link-to-node ratio is 2, it is shown
that the length of the backup paths is mostly small, regardless of
network scale. Figure 6 shows the same value under variation of
link-to-node ratio. It is natural that the number of backup hops
increases as networks become sparse.

4. Traffic Simulation

4.1 Simulation Setup
We evaluate the proposed load balancing method through traf-

fic simulation using ns-2 [26] simulator with random topologies
that models the Internet. To evaluate the performance of the case
where traffic is partially concentrated on particular links, our sce-
nario is designed to locate several narrower links to cause con-
gestion. Our simulation settings are shown as follows: We gen-
erate the network topology of Waxman model [24] with 30 and
100 nodes, respectively, using topology generator BRITE [23].
We select 10% of the links randomly as “bottleneck” links which
bandwidth is 50 Mbps while normal link bandwidth is 100 Mbps.
In this network, we generate several 10 Mbps CBR flows with
1 Kbyte packets in which the source and the destination nodes
are also selected randomly. We increase the CBR flows as time
passes to raise the load of the network. Output queue length is as
long as 50 packets. Threshold T1 is 100% and T2 is 10% of the
output queue length. The number of maximum allowed detour-
ing is set to 3. Simulation is done with the randomly generated
10 topologies, and for each of them, we select two distinct sets of
bottleneck links and traffic patterns, and then we use the average
values among them to show the results.

4.2 Throughput Performance
We first describe the throughput performance of our load bal-

ancing method. Figure 7 shows the improvement of total net-
work throughput of the proposed method compared to conven-
tional single-path shortest-path routing, with the variation of net-
work load. To perform fair comparison of the proposed and the
conventional methods, we use as x-axis the average link usage
with the shortest-path packets, where the shortest-path packets
means the packets that have not detoured by the proposed method.

Fig. 7 Improvement of throughput with variation of traffic load.

Fig. 8 Ratio of packets rescued by detouring.

Fig. 9 The number of detours to reach destination (case of 30 nodes).

Namely, the network load in x-axis is determined from the num-
ber of flows generated at that time. The result shows that, in both
cases of 30 and 100 nodes, the proposed method improved net-
work throughput, and the improvement reaches 10% at 40–50%
of the link load. There is a small difference between the cases
of 30 and 100 nodes, but generally they indicate the similar per-
formance. Figure 8 shows the ratio of packets rescued out of all
the detoured packets. Both cases indicate similar performances,
where the rescued ratio decreases as the load increases.

Figure 9 shows the classification result of the rescued packets
by the number of detours experienced. Most part of them is res-
cued with single detour, while two and three times detoured pack-
ets occupy a non-negligible part of them. This result shows that
the multiple detouring contributes to the improvement of through-
put. Figure 10 shows the same classification result in the case of
100 nodes. The similar tendency is seen here, but the ratio of

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

Fig. 10 The number of detours to reach destination (case of 100 nodes).

Fig. 11 Increase of packet delay of shortest-path traffic.

Fig. 12 Ratio of throughput of shortest-path traffic.

more than one detour grows larger as the network size gets larger.

4.3 Effect on the Original Traffic
Our method intends to utilize vacant capacity using backup

paths, without effecting on the behavior of the original non-
detoured traffic. In this section, we show the results to clarify
the influence of the detoured traffic over the original shortest-path
traffic.

Figure 11 shows the increased delay of the original traffic,
compared to the case of the shortest-paths without the proposed
method. The packet delay slightly increased; at most 5% when
the load is as high as 60%. Figure 12 shows the effect over the
throughput of the original traffic in ratio compared to the case
of the shortest paths. In both cases of 30 and 100 nodes, the
throughput of the original traffic is almost the same as the case of
the shortest paths.

Fig. 13 Averaged packet delay to reach destinations.

Fig. 14 Increase of packet delay compared to the shortest-path routing.

Fig. 15 Ratio of rescued packets in detoured packets.

Note that we can decrease the delay if we use a smaller T2

value; there is a trade-off between the delay and the resilience
against the bursty traffic. Therefore, we conducted another sim-
ulation to estimate the effect of T2 value. The simulation is done
using the same scenario and parameters, except that the value T2

is varied.
Figure 13 shows the packet delay to reach destinations in the

30 node scenario under variation of total transmitted rate. Nat-
urally, packet delay gets larger as the transmitted rate increases.
Also, the packet delay gets larger as T2 goes larger. Figure 14 is
the same result with a different x-axis, the network load used in
Fig. 7. The increase of packet delay is within 5% when T2 = 10%,
whereas it increases rapidly when we increase T2. Figure 15
shows the ratio of rescued packets among all the detoured pack-
ets. The rescued ratio is almost the same regardless of T2 values,
although the case T2 = 10% is slightly small. This implies that,
the value T2 = 10% is sufficiently large to afford fluctuation of
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traffic in this scenario.
From the whole results above, it is clarified that the effect of

the detoured traffic over the original traffic is sufficiently small.

5. Discussion

5.1 Consideration of Base IP Fast Reroute Mechanisms
In this paper, we investigated the performance of the proposed

load balancing method, which is based on an IP fast reroute mech-
anism SBR. There are, however, several well studied IP fast
reroute mechanisms [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22] other than SBR, and we can also use
them as the base IP fast reroute schemes of the proposed method.
In this section, we first describe the literature of IP fast reroute
schemes concisely, and then present how to modify the existing
IP fast reroute schemes to provide the load balancing functional-
ity.

In designing IP fast reroute mechanisms, there is a tradeoff be-
tween the overhead required to extend routing protocols and the
capability of schemes. LFA (Loop-Free Alternate) [8] would be
the least overhead IP fast reroute scheme, which only uses the
pre-computed alternative hop if a node cannot use the primary
next-hop due to failure. However, they cannot guarantee to pro-
tect even single link failure because LFA can use the backup paths
whose length is limited to 1-hop.

To cover every single link/node failure, further overhead is re-
quired. Lee et al. proposed a FIR (Failure Inferencing based
Rerouting) [14], which covers single link failure. FIR requires
an additional routing table, which is same as LFA, but watches
the in-coming interface of packets to distinguish the packets that
have met failure and need more to use the secondary routing table
to avoid the failed link. Later, they proposed FIFR [15], [16] that
recovers from any single node failure with the same overhead.
SBR [19], the IP fast reroute scheme used in this paper, is clas-
sified into this two-table approach. The authors further extended
SBR to support protection of any single node failure [9]. With
a 2-bit field on packet header, SBR prevents inefficient packet
bouncing in backup paths as well as harmful packet loops in case
of multiple failure.

As another major approach for IP fast reroute, Shand et al.
proposed the mechanism based on IP tunneling, which is called
NotVia [12]. It protects any single node/link failure by forward-
ing packets first to some intermediate nodes using IP tunnels, and
then forwarding them to their destinations using shortest paths.
NotVia requires the overhead of IP encapsulation and the table of
the intermediate nodes for each destination.

As a scheme that is possibly more capable, Kvalbein et al. pro-
posed a multi-tree approach for node protection called MRC [17],
[18], which computes multiple spanning trees computed from the
topologies in each of which several nodes and links are “isolated”
from the original topology. MRC is potentially capable to pro-
tect multiple failure, but it requires heavy overhead; it not only
requires multiple routing tables corresponding to each spanning
tree, but also packet marking on packet header to indicate the tree
that the packets are forwarded with.

To apply our load balancing mechanism to these IP fast reroute
schemes in the literature, we have to implement (1) the r-counter

Fig. 16 Three parts of forwarding paths in IP fast reroute schemes.

to count the number of rerouting that the packet experienced, and
(2) the flag to judge whether a packet is in the backup path or
not. Fortunately, in most of the IP fast reroute schemes proposed
so far, including all the referred ones in this paper, this exten-
sion is possible; they normally use the primary path, switch to the
backup path in face of failure, and then return back to the primary
path (see Fig. 16). Because most IP fast reroute schemes distin-
guish these three parts of the forwarding path, the same exten-
sion that we present for SBR is possible for these IP fast reroute
schemes using a few-bit field on packet header.

5.2 Practical Issues
In this paper, we evaluated the proposed method in compari-

son to the naive IPFRR scheme, rather than the TE based load-
balancing methods such as Refs. [2], [4], [5], [6], [28]. We note
that it is difficult to implement them as real-time load balancing
schemes due to the complexity of their optimization process.

The link-cost optimization approach [2] and S-OSPS [4] incor-
porate the linear programing as its optimization process that re-
quires a demand matrix as its input. Because the demand ma-
trix consists of the requested bandwidth between all pairs of
nodes, it requires cost to measure the traffic amount among all
pairs of nodes in a network. Note that, in practice, a naive
observation would not be able to measure the pairwise traffic
amount within the network. To avoid this difficulty, Kodialam
et al. [28] proposed an optimization process that requires only the
in-coming and the out-going traffic amount at all nodes. Although
they reduced the measurement cost in the network, their linear-
programming-based optimization process includes O(MN2) vari-
ables and constraints, where M is the number of links and N is
that of nodes; the complexity of the problem is too large and crit-
ical for practice use. Reference [27] reported that it takes more
than five hours even for a small real topology.

Antic et al. [27] proposed a more time-efficient optimization
process for load balancing, which includes O(N) variables and
O(M) constraints. They reported that it takes at most 60 sec-
onds even for a large real topology stored in Rocketfuel topology
database [29]. Although this process might be used in a small
topology, it would be hard to pursue the rapid transition of the re-
cent Internet traffic in a large topology. In the current Internet, the
traffic transition is getting harder to predict due to several sorts of
unpredictable high-rate traffic such as P2P and on-demand flows.
Flexible and immediate control of traffic would be valuable in the
current and the future Internet.

The proposed method, in contrast, provides immediate reac-
tion against real-time transition of traffic by omitting neither the
complex traffic measurement within a network and the time-
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consuming optimization processes. This not only allows us to
implement a load-balancing function inexpensively, but also en-
ables us to pursue any rapid transition of the Internet traffic, which
would provide a new benefit in load-balanced traffic controlling
in IP networks.

As another issue that should be considered in practice, we
would consider the few-bit field on packet header. Because the
standard of IP format hardly affords extra-bits on packet header,
even a few-bit extra field may be a problem in practice. For
IPv4, TOS (Type Of Service) field would be the candidate for
the few-bit field. Although TOS field is used in several other
standards such as DiffServ [30], it is still possibly available in the
network that does not deploy such mechanisms. For IPv6, the
option header may be a candidate for it. Note that this issue is
the matter of standardization. Although discussions for it would
be required towards practical use, we now just mention that the
space for the few-bit field is possibly available.

6. Concluding Remarks

In this paper we proposed a new load balancing technique
based on IP fast reroute mechanisms. Our method detours pack-
ets when packets meet congestion to make the most of vacant
resources of networks. Also, to suppress the bad influence of
detoured traffic on the original shortest-path traffic, our method
gives priority to the original traffic over the detoured traffic.
Through traffic simulation with various network load, we con-
firmed that the proposed method improves network capacity at
most 10% under the scenario with congestion hot-spots. We also
confirmed that the bad influence on the original traffic is sup-
pressed to a level acceptable in practical use.

There are several tasks to be done in the future. First, it is desir-
able to perform evaluation on the real topology with realistic traf-
fic patterns. Although the result in this paper using the modeled
random topology shows a general performance of the proposed
method, case studies using specific real topologies is valuable to
understand the behavior of the proposed method in practice. Sec-
ond, evaluation of the performance when we apply the proposed
load-balancing method to other IP fast reroute schemes is one of
the major interests for the future. Note that, several IP fast reroute
schemes have been proposed that protect single node failure with
the same overhead as single link protection. Especially, the per-
formance over node-protection IP fast reroute schemes would be
one of the tasks to be done for the next step. Finally, we point out
that it is essential to take TCP traffic into account. TCP perfor-
mance is degraded due to packet reordering. We have mainly two
choices to deal with TCP traffic, i.e., (i) applying hash-based load
balancing where packets in the same flow use the same path, or
(ii) detouring only UDP packets to balance the network load. To
find the better choice is one of the important issues for the future.
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