
IPSJ SIG Technical Report

A Method for Approximating Document Frequency in
Top-k Document Retrieval

Tokinori Suzuki1,a) Atsushi Fujii1

Abstract:
Top-k document retrieval is essential task for real world applications such as web search and data mining. A new class
of indexes derived from suffix array family have been studied in this decade. This indexes are expected to improve
efficiency of document retrieval task and support general document retrieval, where documents are not written in nat-
ural languages only, on its algorithmic backgrounds. One of main feature of the indexes is indexing all of substrings in
document collection. The indexes ,therefore, have difficulty on handling document frequency in terms of space. Previ-
ous work [3] provided the circumevent method to weight pesudo terms, which is not related to documente frequcency
purely. We propsed two methods: to approximate document frequency of terms from the indexes strucuture and to use
term count for term wightening. Our main contribution is providing simple methods that can run on undorned indexes.
Experimental results show that our methods are great on efficiency and effectiveness trade-off in practical document
retrieval task.

Keywords: Experimentation, Performance, Text Indexing, String Processing

1. Introduction
Reflecting the growing volume of textual information mainly

available via the World Wide Web, effective and efficient docu-

ment retrieval has of late become crucial. While it is prohibitive

to exhaustively search the Web for the documents that are po-

tentially related to a user query, it is usually important to find a

limited number of highly related documents with a quite mini-

mal computation cost. This task, that we dubbed cheating top-k
document retrieval, is continuously one of the main topics in in-

formation retrieval, data engineering, and string processing com-

munities.

Whereas in principle top-k document retrieval is the process

to precisely find the k highest-scoring documents for a query, in

practice the process is terminated after finding a predetermined

number of documents that are likely to be among the highest-

scoring documents, so that the computation cost can substan-

tially be reduced while maintaining the retrieval accuracy. This

technique, termed “early termination”, involves organization and

traversal for the underlying index. From an index structure point

of view, existing methods for cheating top-k document retrieval
can be divided into two categories.

The first category relies on an inverted index, which has been

dominant index structure in document retrieval for a long time.

Methods based on heuristics for cheating top-k document re-
trieval have been well investigated. With max-score ,for exam-

ple, posting lists are arranged in high term frequency order. On

the traversing, we can maintain score to avoid accessing irrele-

vant fragments in the index [5]. A major drawback of the in-

1 Tokyo Institute of Technology, Meguro, Tokyo 152–8552, Japan
a) tokinori.suzuki@gmail.com

verted index is that index terms must be predetermined prior to

the indexing process and thus terms not indexed cannot be used

for querying purposes.

The second category relies on a full-text indexes derived from

suffix array, such as FM-index, which can alleviate the above

mentioned problem related to the inverted index. A number

of methods have recently been proposed to improve efficiency

[10,11] and effectiveness [2–4]. One of the state-of-the-art frame-

work in this category, which has been proposed by Culpepper et

al. [2], uses a FM-index structured and document array repre-

sented by wavelet tree (WT), and traverse document array in a

greedy fashion to find documents in which a query term appears

with a high term frequency (tf). An advantage of this method is

that tf can be calculated while searching for documents. How-

ever, this method cannot handle document frequency (df), which

is usually more effective than tf in retrieval accuracy.

Motivated by the above discussion, in this paper we propose

methods to approximate df values in the WT-based FM-index. In

other words, we intend to improve the effectiveness of the method

proposed by Culpepper et al.. while maintaining its efficiency.

We also compare the effectiveness of different methods for the

early termination experimentally.

In Section 2 we discusses other research related to top-k docu-
ment retrieval. We describes our methods in section 3 and evalu-

ates their effectiveness experimentally in section 4.

2. Related work
Gagie et al. [6] presented range quantile queries on wavelet

tree to document listing problem. As a document array D is rep-

resented by wavelet tree and given range D[sp, ep], their query

can get possible distinct documents within the range in order.

c© 2014 Information Processing Society of Japan 1

Vol.2014-IFAT-113 No.2
2014/2/7

IPSJ SIG Technical Report

The query descends to next level nodes(left and right), calculat-

ing next node interval(sp’ and ep’) over rank operation. In order

to find successive document id, the traversal prefer to go down

left node anytime the interval D[sp’, ep’] is not empty, otherwise

it goes to right node. At the end of traversal, i-th and lower doc-

uments and the those interval on leaf corresponding to tf(p,d) are

gathered.

Culpepper et al. [2] extended above queries for efficiency on

application of Top-k document retrieval. Their main contribution

was the observation that the interval on queries reflects tf(p,d).
The larger interval nodes of wavelet tree possibly contain the

documents with high tf(p,d). Their method ,therefore ,prioritizes

traversal of wavelet tree by the size of nodes interval D[sp’, ep’].
The traversal prefers to descend to the node with lager interval

on same level(GREEDY fashion), maintaining the priority using

priority queue of (node, interval). When it reaches leaf node, it

is possible to report document id and its tf in high tf order. Their

method works well on search task where query consists of one

term, because there are no needs to care about weights among

query terms. However, scoring using only t f is on limited sce-

nario on document retrieval.

Navarro and Valenzuela [11] achieved improving further effi-

ciency of search with precomputed Top-k answer. They sample

k∗(≥ k) most frequent documents within the range on D[sp’, ep’]
in advance, where ep′ − sp′ = parameter g. They store the result

to additional data structure(derived from HSV concept [7]) using

suffix sampling. When range(sp and ep) corresponding to query

comes, it starts with the precomputed results and updates it con-

sidering sub-intervals [sp, sp’-1] and [ep’+1, ep]. While they ap-

plied HSV auxiliary structure to their index structures, this search

task still stayed in sub-problem of document retrieval(scoring

with tf only). Culpepper et al. [3] employed the auxiliary structure

in generating pseudo terms in whole documents collection. [1]

3. Proposed methods
We describe our two method to estimate Document Fre-

quency(df) to index structure consisted of FM-Index and docu-

ment array with wavelet tree. It is hard to handle df on search

time, because of retrieval target domain; We cannot define query

terms(substrings) in advance, and it is not realistic to store df
of all substrings of document collection in terms of space. The

work [3], therefore, provided the way to circumvent this problem

with impact ordering.

Our approach is to estimate df on the index([2, 4]), and do not

require any other auxiliary data structures. Figure 1 shows our

system: FM-Index over T and document array. Document ar-
ray store document ids that correspond every suffix of T . Both

of components are represented by wavelet tree. Drawing suffix
array and suffixes for illustration, we do not store the structures.

3.1 GREEDY traversal with estimating Document Fre-
quency

The idea of first solution is to utilize the tree structure of

wavelet tree of document array. Recall that we know the height

of wavelet tree, that is log d. This information can enhance the

Culpepper’s GREEDY [2] traversal. Their method gather doc-

Fig. 1 T=“AAABAABBAB” is the concatenation of four documents

delimited by terminal symbol $. The last two columns are index

over T :BWT is T BWT as a FM-Index and D is document array.

BWT supports to define the range sp and ep along with pattern p.

Given pattern “A”, for example, it returns 4 and 9. D represented by

wavelettree supports to calculate the statistic within the range

uments in high t f (p, d) order, prioritizing the nodes to descend

with the interval sp and ep. The traversal can eliminate redun-

dant part of document collection, where the documents with p
are less significant(low t f).

First approach is approximating occurrences of documents

hanging down from nodes pruned by the traversal. Algorithm 1

shows the perspective of our method. As the traversal favors big-

ger range node in greedy fashion from root to leaf, it encounters

the node |ep′ − sp′| < σ to prune. Some documents may occur

within the range repeatedly. It is obvious that the number of indi-

vidual documents under the node is at most 2log d−l where l is level

of the node, because wavelet tree is complete binary tree. Choos-

ing a smaller value from 2log d−l and ep′ − ep′ as approximate

occurrence of documents, we update approximate d f (kDF)(line

16 - 20 and 25 - 29 in Algorithm 1). kDF value is also added one

when the candidate document is found on leaf node.

As the result of our traversal, kDF can be formulated as fol-

lows;

kDF(p) = k +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

node 2depth ((ep′ − sp′) > 2depth)∑
node(ep′ − sp′) (otherwise)

(1)

Where depth is the level of the pruned node enumerating from

leaves, sp’ and ep’ are allocated range of the node.

3.2 Term count for approximating document frequency
The second solution is to use term count instead of document

frequency. term count is the number of occurrence of terms

counted in the document collection duplicately. It is well stud-

ied that document frequency and term count are strong correlated

each other in practical data set ,such as web page [8,9]. We substi-

tuted term count for approximate value of df, since it corresponds

to the range ep - sp, where all of suffixes sharing same pattern are

gathered, in our index. Thus, we can obtain the value as the equa-

tion 2. This is our observation that ranges in this index are quite

c© 2014 Information Processing Society of Japan 2

Vol.2014-IFAT-113 No.2
2014/2/7

IPSJ SIG Technical Report

Algorithm 1 GREEDY with DF estimation

Require: sp and ep along with query term and k
Ensure: A list o f k candidate documents
1: A heap H, H.PUS H(l, [sp, ep]), A priority queue PQ, PQ← {}
2: An approximate DF kDF, kDF ← 0

3: l← root o f Doc Array, # o f candidate c, c← 0

4: while c < k and H � {} do
5: l, [sp′, ep′]← H.POP()

6: if l is lea f then
7: PQ.ENQUEUE(l.docid, ep′ − sp′ + 1)

8: c← c + 1

9: kDF ← kDF + 1

10: else
11: [s0, e0]← [Bl.rank0(sp′), Bl.rank0(ep′)]
12: [s1, e1]← [Bl.rank1(sp′), Bl.rank1(ep′)]
13: if e1 − s1 > σ then
14: H.PUS H(l.le f t, [sp0, ep0])

15: else
16: if [sp0, ep0] < 2docarray.depth − l then
17: kDF ← kDF + [sp0, ep0]

18: else
19: kDF ← kDF + 2docarray.depth − l

20: end if
21: end if
22: if e1 − s1 > σ then
23: H.PUS H(l.right, [sp1, ep1])

24: else
25: if [sp1, ep1] < 2docarray.depth − l then
26: kDF ← kDF + [sp1, ep1]

27: else
28: kDF ← kDF + 2docarray.depth − l

29: end if
30: end if
31: end if
32: end while
33: return PQ and kDF

Fig. 2 Document Array D represented by wavelet tree for D =

{3, 1, 0, 2, 1, 0, 0, 3, 2, 1, 3, 2, 1, 3}. The box shows the range corre-

sponding to pattern p in SA.

term count, not by previous works. This approximation have the

advantages; it is easy to get approximate value, because of range
and we can get the values before start traversing document array.

Therefore, the second advantage also can prioritize query terms

to process in indexes.

kDF(p) = ep − sp (2)

4. Experiments
We conducted two experiments to evaluate our methods on ef-

ficiency and effectiveness of practical search task using NTCIR-2

test collection. To evaluate methods, we measured time to process

queries as efficiency measures and effectiveness measures such as

mean average precision using the topics. We illustrated the effi-

ciency and effectiveness trade-offs of methods for comparison at

the end of this experiments.

4.1 Test Collection
We conducted our experiments with NTCIR-1 and 2 monolin-

gual IR task, E-E task and E-collection *1. E-E task is the task that

search English documents using topics also written in English. E-

collection is composed of texts extracted from title, authors’ name

and abstract on scientific paper in English. The number of doc-

uments is 322,058, and total size of the collection is 438MB. A

sum of 49 topics(topic number e0101-0149) and associated rel-

evance judgments were prepared in E-E task. Relevance assess-

ment had carried out in four grades: ”highly relevant (S)”, ”rele-

vant (A)”, ”partially relevant (B)” and ”non-relevant (C)” for each

document. We used ”highly relevant (S)” and ”relevant (A)” as

relevant documents(Level 1) to calculate effectiveness measures.

Our framework and algorithms were implemented with

C/C++(gcc 4.2.1, -O3 option). All of experiments were run on

a system with 2.3Ghz Intel Core i5 Processor(2-Core) with 8GB

RAM.

4.2 Query setting
We used two manners to generate queries in a series of experi-

ments: Very short and Short Query in NTCIR-2. Very short query

is set of the words extracted from a title part in each topic. Short
query is also set of the words appeared in a description part in

each topic.

In order to evaluate effectiveness of the search in our index

structure, we applied two query processing to the query terms,

Stopward removal and Term padding. On Stopword removal, we

removed the words in the stoplist on SMART test collection from

query. The other processing ,Term padding, is a little bit special

processing for the indexes using suffix array family. The indexes

were built not on terms, but all substrings in document collection.

Some terms might match quite different terms as those subtrings,

such as ”Some” including ”me”. Previous work studied this prob-

lem, and provided the way to handle it [4]. They experimented

three ways ,prefix, suffix and space, to solve substring problem

using additional white space. prefix and suffix add single white

space at the beginning and end ,respectively, of each query terms.

space also add single white space both begging and end of each

query terms. It marked the highest effectiveness on their experi-

ment. Thus, we used the space as term padding to queries.

Query ,for example, is “ High-speed ”, “ transfer ” and “ TCP

” from title on topic “High-speed transfer in TCP”.

*1 http://research.nii.ac.jp/ntcir/index-en.html

c© 2014 Information Processing Society of Japan 3

Vol.2014-IFAT-113 No.2
2014/2/7

IPSJ SIG Technical Report

Table 1 The number of terms and average number of terms in topic on E-E
task

Query # of all the terms Average # of terms on topic

Title(Very short) 131 3

Description(Short) 523 11

4.3 Evaluation setting
We use BM-25 similarity metrics(Equality 3) on scoring docu-

ments.

S (p, di) =
∑
p∈Q

IDFpart · (k1 + 1) · t f (p, di)

k1((1 − b) + b × (L(di)/Lavg)) + t f (p, di)

IDFpart = log
(

N − d f (p) + 0.5

d f (p) + 0.5

) (3)

Where parameters k1 = 1.2 b = 0.5 are used in the previ-

ous work [3], N is the number of documents in the collection,

L(di) and Lavg are the length of i-th document, and average length

of all documents in the collection respectively, t f (p, di) is the

number of occurrence of pattern p in document di, d f (p) is the

number of individual documents containing pattern p.

We compared our methods(TA, TC), Culpepper’s

method(CUL) and Exhaustive method(EXH) for evaluating

effectiveness of search. TA cannot handle df but kDF in scoring,

TC use term count 　 too. CUL is not able to use any kind

of weighting from terms, because of their pruning traversal.

EXH is modified method of Culpepper’s method to collect every

documents within the range on D. Thus, while the efficiency is

spoiled, this method can reproduce df.
Here, we are able to estimate the importance of each query

term with range(subsection 3.2). before starting document array
traverse. Therefore, there are some room to consider the which

terms to use. We tried to two manners to choose query terms:

balance and small range. First manner is to gather candidate

documents on same level for each query terms. For example, to

gather three relevant documents, we extract one document from

each query terms. Second manner is to prioritize query terms

with small range high, which is term count, and choose to collect

candidates along with the terms preferably. In this manner, for

example, we gather 3 candidates on one highest query terms in

the said setting. The combination of methods and setting are in

Table 2.
Table 2 Features of methods:　 df value and pruning

method df(p) in S (p, di) pruning prioritizing terms

TA approximate df pruning balance

TA-m approximate df pruning small range

TC term count pruning small range

CUL constant pruning balance

CUL-m constant pruning small range

EXH df not pruning balance

4.4 Evaluating efficiency
We measured the time to process all of query terms in title of

E-collection, breaking down our method to parameter k’, which

is the rate(k′ × 10%) to the range ep - sp. Given a query term

with the range ep − sp = 123 ,for example, our method with

k′ = 1 gathers 12 candidate documents relative to the terms. The

number of the terms was 93, which return at least one document.

TA1 TA2 TA3 TA4 TA5 TA6 TA7 TA8 TA9 Exhaus.

0
10

20
30

40
50

Processing time [Very Short]

methods

tim
e

[m
se

c]

Fig. 3 Processing time for our method and exhaustive method on 93 Very
short query terms on E-collection

Figure 3 shows the processing time of ten run on the terms per

methods. Table 3 also shows average of the time. Our method on

every parameter is superior to EXH, since the pruning increase

the efficiency.

Our method with k′ = 1 was the most efficient among all of

the methods. while the time fluctuate widely on its document fre-
quency, once the parameter is over 2, the average time were not

quite different from on the other(roughly 3.5 msec). The aver-

age time are about a half of the time of EXH. Main reason of

unchange is that the number of candidate documents is enough

large to cover the balance tree structure of document array.

4.5 Evaluating effectiveness
We evaluated the effectiveness of search about our methods:TA

, TA-m and TC measured by mean average precision(MAP) on

all the topic of E-E task using both Very short and Short queries.

The result is shown in tables 4 and 5. Since parameter k’ influ-

ence on the coverage of tree structure, the MAP in tables vary

with the parameter and accuracy of approximate value. However,

all variation of our methods overwhelmed CUL on MAP using

both queries. Though the differences of MAP between ours with

best parameter and EXH was tight, our values were lower than

exhaustive method.

On the result of Very short (Table 4), TA on k′ = 8 and 9

showed statistical significance to Cul on k′ = 9, increasing its

MAP over parameter k’ gradually. The other variations: TA-m

and TC, on the other hand, showed the significance early on the

parameter from three to nine. This is because the manner could

collect relevant documents. The MAP of TC is slightly lower than

TA-m, it indicated that approximate value kdf is more appropriate

than tc. This trend of effectiveness result was similar to the result

on Short query(Table 5). However, the difference on the number

of query terms boosted MAP up to approximate 0.15 at the top of

each methods. At the last of effectivenss evaluation, we discuss

the accuracy of our approximate value itself in the section A.2,

overall the values were super highly correlated with document
frequency.

4.6 Evaluating efficiency and effectiveness trade-off
At the end of our experiment, we investigated trade-offs be-

tween efficiency and effectiveness of search on our method com-

c© 2014 Information Processing Society of Japan 4

Vol.2014-IFAT-113 No.2
2014/2/7

IPSJ SIG Technical Report

Table 3 Average Processing time for our method and exhaustive method on 93 Very short query terms on

E-collection

TA & parameter k’ Exh.

k’ 1 2 3 4 5 6 7 8 9

Avg.time 1.861 3.572 3.571 3.780 3.861 3.837 3.922 3.993 3.911 7.02

Table 4 Effectiveness results for TA, CUL and EXH on Very Short queries measured by mean aver-

age precision. “*” and “**” indicate statistical significance ,based on paired t-test, at p <
0.005 and p < 0.001 levels respectively. The significance were tested relative to Cul with pa-

rameter k′ = 9 for TA and Cul-m with parameter k′ = 9 for TA-m and TC, on which the method

achieved the best mark.

TA & parameter k’

k’ 1 2 3 4 5 6 7 8 9

MAP 0.0248 0.0404 0.0657 0.0787 0.0848 0.0862 0.0879 0.0955* 0.0958*

Cul. & parameter k’ Exhaus.

k’ 1 2 3 4 5 6 7 8 9

MAP 0.0211 0.0350 0.0529 0.0618 0.0666 0.0668 0.0676 0.0713 0.0713 0.1138

TA-m & parameter k’

k’ 1 2 3 4 5 6 7 8 9

MAP 0.0574 0.0864 0.0914 0.0965 0.1026* 0.1041* 0.1040* 0.1048* 0.1055*

TC & parameter k’

k’ 1 2 3 4 5 6 7 8 9

MAP 0.0594 0.0838 0.0922 0.0982 0.1006* 0.1019* 0.1019* 0.1031* 0.1039*

Cul-m & parameter k’ Exhaus.

k’ 1 2 3 4 5 6 7 8 9

MAP 0.0310 0.0579 0.0632 0.0680 0.0742 0.0759 0.0757 0.0765 0.0772 0.1139

Table 5 Effectiveness results for TA, CUL and EXH on Short queries measured by mean average preci-

sion. “*” and “**” indicate statistical significance ,based on paired t-test, at p < 0.005 and p <
0.001 levels respectively. The significance were tested relative to Cul with parameter k′ = 8 for

TA and Cul-m with parameter k′ = 1 for TA-m an TC, on which the method achieved the best

mark.

TA & parameter k’

k’ 1 2 3 4 5 6 7 8 9

MAP 0.0368 0.0752 0.0991 0.1201* 0.1341** 0.1392** 0.1485** 0.149** 0.1487**

Cul. & parameter k’ Exhaus.

k’ 1 2 3 4 5 6 7 8 9

MAP 0.0123 0.0382 0.0497 0.0581 0.0724 0.0742 0.0772 0.0776 0.0775 0.1540

TA-m & parameter k’

k’ 1 2 3 4 5 6 7 8 9

MAP 0.1482* 0.1508** 0.1532** 0.1532** 0.1532** 0.1532** 0.1532** 0.1532** 0.1532**

TC & parameter k’

k’ 1 2 3 4 5 6 7 8 9

MAP 0.1453* 0.1464** 0.1471** 0.1471** 0.1471** 0.1471** 0.1471** 0.1471** 0.1471**

Cul-m & parameter k’ Exhaus.

k’ 1 2 3 4 5 6 7 8 9

MAP 0.0804 0.0758 0.0777 0.0777 0.0777 0.0777 0.0777 0.0777 0.0777 0.1572

pared to other methods. Figures 4.6, 4.6 and 4 shows the trade-

offs, and these are basically re-plot the above results. The fig-

ures showed that our methods were the best on the trade-off. Our

method was higher MAP than CUL and could reduce processing

time compared to EXH.

5. Conclusion
We presented the methods approximating document frequency

on the indexes derived from suffix array family without any aux-

iliary structures. The ideas are making use of the topology of

c© 2014 Information Processing Society of Japan 5

Vol.2014-IFAT-113 No.2
2014/2/7

IPSJ SIG Technical Report

0
0.00

MAP - Time [Very Short]

Avg. Time [msec]

Avg. MAP

0.02

0.04

0.06

0.08

0.10

2 0 1 2 3 4 5 6

0.00

MAP - Time [Short]

Avg. Time [msec]

Avg. MAP

0.05

0.10

0.15

TA
Cul10
Exhas.

4 6 8

0 2 4 6 8
0.00

MAP - Time [Very Short]

Avg. Time [msec]

Avg. MAP

0.02

0.04

0.06

0.08

0.10

0.12

2 3 4 5 6 7 8

0.06

MAP - Time [Short]

Avg. Time [msec]

Avg. MAP

0.08

0.10

0.12

0.14

0.16

TA-m
Cul10-m
Exhas-m

0 2 4 6 8
0.00

MAP - Time [Very Short]

Avg. Time [msec]

Avg. MAP

0.02

0.04

0.06

0.08

0.10

0.12

2 3 4 5 6 7 8
0.00

MAP - Time [Short]

Avg. Time [msec]

Avg. MAP

0.05

0.10

0.15

TC
Cul10-m
Exhas-m

Fig. 4 Average MAP is average of MAP over all the topics, average time is average processing time to

process all terms in Very short and Short queries

c© 2014 Information Processing Society of Japan 6

Vol.2014-IFAT-113 No.2
2014/2/7

IPSJ SIG Technical Report

wavelet tree on traversing the index and applying term count for

df on our observation; range in the index equals term count.
We also investigated the efficiency and effectiveness of search

on NTCIR-2 test collection in details, and showed our methods

and approximate calculation work well in practical setting. This

work is an important mile stone on this research fields, because

our methods could grasp term weight(approximate df) in the in-

dex and on time to search. It makes possible to develop methods

that eliminate inrelevant part of indexed documents on traversing

time. This term weight are actually for arbitrary indexed sub-

strings. This fact can lead this index structure to the framework

on other retrieval tasks where we cannot be define terms in ad-

vance.

It is still required the approximate methods and novel ranking

metrics specifically on this indexes framework for practical index

framework. As to our methods, there are some room to optimize

the methods by applying heuristics studied in inverted index. We

will investigate the way to handle substrings or phrases in search

for further improvement of effectiveness for future work.

References
[1] Anh, V. N. and Moffat, A.: Pruned query evaluation using pre-

computed impacts, Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information re-
trieval, New York, NY, USA, ACM, pp. 372–379 (2006).

[2] Culpepper, J. S., Navarro, G., Puglisi, S. J. and Turpin, A.: Top-
k ranked document search in general text databases, Proceedings of
the 18th Annual European Symposium on Algorithms (ESA 2010),
ESA’10, Berlin, Heidelberg, Springer-Verlag, pp. 194–205 (online),
available from 〈http://dl.acm.org/citation.cfm?id=1882123.1882145〉
(2010).

[3] Culpepper, J. S., Petri, M. and Scholer, F.: Efficient in-memory top-k
document retrieval, Proceedings of the 35th international ACM SIGIR
conference on Research and development in information retrieval, SI-
GIR ’12, New York, NY, USA, ACM, pp. 225–234 (online), DOI:
10.1145/2348283.2348317 (2012).

[4] Culpepper, J. S., Yasukawa, M. and Scholer, F.: Lan-
guage Independent Ranked Retrieval with NeWT, Proceed-
ings of the 16th Australian Document Computing Symposium
(ADCS 2011), Canberra, pp. 18–25 (online), available from
〈http://goanna.cs.rmit.edu.au/ e76763/publications/cys11-adcs.pdf〉
(2011).

[5] Fontoura, M., Josifovski, V., Liu, J., Venkatesan, S., Zhu, X. and Zien,
J. Y.: Evaluation Strategies for Top-k Queries over Memory-Resident
Inverted Indexes, Proceedings of 37th International Conference on
Very Large Data Bases (VLDB 2011), Vol. 4, No. 12, pp. 1213–1224
(2011).

[6] Gagie, T., Puglisi, S. and Turpin, A.: Range Quantile Queries: An-
other Virtue of Wavelet Trees, Proceedings of the 16th International
Symposium on String Processing and Information Retrieval (SPIRE
2009) (Karlgren, J., Tarhio, J. and Hyyrö, H., eds.), Lecture Notes
in Computer Science, Vol. 5721, Springer Berlin Heidelberg, pp. 1–6
(online), DOI: 10.1007/978-3-642-03784-9 1 (2009).

[7] Hon, W.-K., Shah, R. and Vitter, J.: Space-Efficient Framework for
Top-k String Retrieval Problems, 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2009), FOCS ’09, pp. 713–
722 (online), DOI: 10.1109/FOCS.2009.19 (2009).

[8] Klein, M. and Nelson, M. L.: Approximating Document Frequency
with Term Count Values, Computing Research Repository (CoRR),
Vol. abs/0807.3755 (2008).

[9] Klein, M. and Nelson, M. L.: A Comparison of Techniques for Esti-
mating IDF Values to Generate Lexical Signatures for the Web, Pro-
ceedings of 10th ACM International Workshop on Web Information
and Data Management, WIDM 2008 (2008).

[10] Navarro, G. and Nekrich, Y.: Top-k document retrieval in op-
timal time and linear space, Proceedings of the 23rd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2012),
SODA ’12, SIAM, pp. 1066–1077 (online), available from
〈http://dl.acm.org/citation.cfm?id=2095116.2095200〉 (2012).

[11] Navarro, G. and Valenzuela, D.: Space-Efficient Top-k Document Re-
trieval, Proceedings of 11th International Symposium on Experimental
Algorithms (SEA 2012) (Klasing, R., ed.), Lecture Notes in Computer

Science, Vol. 7276, Springer Berlin Heidelberg, pp. 307–319 (online),
DOI: 10.1007/978-3-642-30850-5 27 (2012).

Appendix

A.1 Basic concepts
In this section, we refer to the algorithms and data structure

consisting our index structure. We pick up fundamental opera-

tions: Rank and Select in compact data structure, Wavelet tree
and FM-index as key features of our system to explain.

A.1.1 Rank/Select on binary sequence
Let us define two operation on binary sequence B[0,n-1].

rankb(B, i) returns the number of occurrence of bit b in B[0,i]

selectb(B, j) returns the position of jth appearance of bit b in

B

Two simple operations on B are essential for compact data

structures. The efficiency of the data structures are depend on

these operations, because the operations are unit functions for

calculating B.

A.1.2 Rank/Select on general sequence
Let extend rank/select operation to over general sequence S[0,

n-1], alphabet size |Σ| > 2. These operations can be supported by

wavelet trees. Basic operations on wavelet trees as follows:

ranks(S , c, i) returns the number of occurrence of symbol c
in S[0, i]

selects(S , c, j) returns the position of jth occurrence of sym-

bol c in S[1, i]

access(S , i) returns the symbol S[i]

A wavelet tree over over alphabet Σ is a binary balanced tree

with σ leaves. The root node store binary Broot defined as fol-

lows: if S [i] ≤ σ/2(that is, S [i] is descendant on alphabetical

order) then Broot[i] = 0, else Broot[i] = 1. Subtexts S 0 is formed

by concatenating symbols S [i] where Broot[i] = 0, and S 1 is also

formed by same manner concatenating S [i] where Broot[i] = 1.

Then, S 0 is allocated to left node and S 1 is allocated to right node.

The wavelet tree can be construct above procedures recursively

to logσ level. Important properties of the tree are each leaf indi-

cates individual symbol c and the height is logσ. ranks/selects

operations computed by rankb/selectb operations on each level

on from root to leaf node and combining the results. There-

fore, ranks/selects operations can computed in O(logσ). access
operation ,returning any symbol c at S [i] , can be supported in

O(logσ).

A.1.3 FM-Index
Self-index is a data structure that index a text T , and supports

to the following operations:

locate(p) returns the positions where pattern p appears in T
count(p) returns the number of occurrence of pattern p in T

c© 2014 Information Processing Society of Japan 7

Vol.2014-IFAT-113 No.2
2014/2/7

IPSJ SIG Technical Report

Fig. A·1 Approximate values and document frequency

0e+00

5e+04

1e+05

0 10000 20000 30000 40000 50000
Document Frequency

A
pp

ro
xi

m
at

e
va

lu
e

(k
D

F
an

d
TC

) variable
kdf1

kdf2

kdf3

kdf4

kdf5

kdf6

kdf7

kdf8

kdf9

tc

Table A·1 Correlation coefficient

kdf tc

k’ 1 2 3 4 5 6 7 8 9

R 0.9915 0.9961 0.9969 0.9969 0.9982 0.9986 0.9992 0.9995 0.9996 0.9804

extract(sp, ep) returns the substring T [sp, ep]

A suffix array SA[0, n− 1] is in the class of self-index, built on

top of T . SA is a permutation of all suffixes positions 0 .. n− 1 in

T , where the suffixes are in lexicographical order. Given pattern

p[0,m − 1] occurring in T , SA[sp, ep](range) is determined by

two locate operations on SA. The suffixes sharing p as the prefix

are gathered in this range SA[sp, ep], because of lexicographical

order within SA.

We can determine a range sp and ep along with p on T BWT

transformed T by Burrows-Wheeler Transform with some func-

tions, which is FM-Index. T BWT is just a permutation of T . It is

generated by sorting n cyclic shifts of T in lexicographical order,

then, picking the last column of n ∗ n matrix up; corresponding

T BWT . The range sp and ep on FM-Index can be computed with

equation below;

spi = C[p[i]] + ranks(T BWT , p[i], spi+1 − 1) (A.1)

epi = C[p[i]] + ranks(T BWT , p[i], epi+1) − 1 (A.2)

Where C[] a is look up table storing the occurrence of sym-

bols smaller than symbol p[i] in T . First, starting with the last

symbol of p[m − 1] and spm−1 = 0, epm−1 = m − 1, we update

spi and epi using the range spi+1 and epi+1 corresponding to the

previous symbols p[i + 1,m − 1].

A.2 Evaluation of approximate document fre-
quency

We evaluated accuracy of our approximate values: kDF and
term count to measure correlation coefficient between the values

and (real) document frequency. We used all terms in Very short
query and on our estimating method(kDF) with parameter k’ and

term count for this evaluation. Table A·1 indicate that all of ap-

proximate values remarked high correlation with (read) df. Those

values are over 0.98. Though, term count marked high correla-

tion with df enough, the value is the lowest of all. Figure A·1
displayed this result; term count was more scattered than kDF
values.

c© 2014 Information Processing Society of Japan 8

Vol.2014-IFAT-113 No.2
2014/2/7

