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Abstract: With an aim to realizing highly accurate position estimation, we propose in this paper a method for effi-
ciently and accurately detecting the 3D positions and poses of traditional fiducial markers with black frames in high-
resolution images taken by ordinary web cameras. Our tracking method can be efficiently executed utilizing GPGPU
computation, and in order to realize this, we devised a connected-component labeling method suitable for GPGPU
execution. In order to improve accuracy, we devised a method for detecting 2D positions of the corners of markers
in subpixel accuracy. We implemented our method in Java and OpenCL, and we confirmed that the proposed method
provides better detection and measurement accuracy, and recognizing from high-resolution images is beneficial for
improving accuracy. We also confirmed that our method is more than two times as fast as the existing method with
CPU computation.
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1. Introduction

HD resolution cameras are becoming inexpensive and many
mobile devices have built-in HD cameras with very good perfor-
mance. We can expect to realize an accurate and inexpensive
position estimation method utilizing these inexpensive cameras.
Detecting and decoding artificial fiducial markers [5], [11], [12]
from a video is robust compared to detecting other features and
works well under varying lighting conditions. Although track-
ing methods for artificial fiducial markers are old, they are still
widely used in much research [4], [14], [15]. The accuracy of
position and pose estimation with fiducial markers depends on
the number of pixels of the marker in a video frame, where the
accuracy can be defined by the amount of differences between
the estimated and real positions for each corner of tracked mark-
ers. This accuracy can be improved by recognizing markers from
high resolution videos. Recently, SoCs with Graphics Processing
Units (GPUs) are becoming inexpensive, and General-Purpose
computing on GPU (GPGPU) is especially suited for applications
like image processing. By offloading CPU tasks to the GPU, the
CPU can handle other tasks, and this can improve the user ex-
perience while increasing the overall power efficiency. However,
existing good algorithms for a CPU are not always suited for GPU
computation, and rewriting current programs for single-threaded
CPU computation to highly parallelized GPGPU programs is not
an easy task.

In this paper, aiming at realizing highly accurate position es-
timation, we propose a method for efficiently and accurately de-
tecting the 3D positions and poses of traditional fiducial markers
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with black frames in high resolution images taken by cameras on
mobile devices. The accuracy is improved by detecting the 2D
positions of the corners of markers in subpixel accuracy, and we
propose a new method for this. In our method, we utilize GPGPU
computation to improve tracking speed, and for this purpose,
we devised a new method for efficiently performing connected-
component labeling on GPGPU. The tracking method proposed
in this paper can be utilized for tracking many kinds of commonly
seen square-shaped fiducial markers with black frames [5], [12].

In the proposed method, we first use GPGPU to apply an edge
detection with the Sobel operator to the input image; then apply
thresholding to get a binary image. We then apply connected-
component labeling (CCL) to this binary image using GPGPU;
and then we detect the coordinates of the corners of the markers
in one pixel. We then, analyze the four outer edges of the black
frame of the marker image to get the subpixel coordinates of the
corners of the markers. Finally, we find the 3D coordinates of
the markers by Newton’s method. Our main contributions in this
paper are the fast CCL algorithm for GPGPU and the method to
obtain subpixel coordinates of the corners of the markers.

We implemented our method in Java and OpenCL, and eval-
uated the accuracy and performance of the method. We com-
pared measurement accuracy by our method with that by AR-
ToolKit, and our experimental results show that our method has
significantly better accuracy in both distance and angle measure-
ments. We also compared the performance of our method with
ARToolKit, and our results show that our method is more than
two times as fast as ARToolKit.

The remainder of this paper is organized as follows. Section 2
introduces some related works. Section 3 presents the proposed
tracking methods. Section 4 explains the proposed connected-
component labeling algorithm suitable for GPGPU computation.
Section 5 explains the method for detecting 2D positions of the
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corners of markers with subpixel accuracy. Section 6 show results
from evaluating the accuracy and speed of the proposed method.
Section 7 presents our conclusions.

2. Related Works

In this section, we introduce some related work on fiducial
marker tracking, applications of fiducial markers, planar tracking,
connected component labeling and subpixel object detection.

2.1 Fiducial Marker Tracking
Several tracking methods for fiducial markers have been pro-

posed [5], [11], [12]. ARToolKit [12] would be the best-known
fiducial marker tracking library, and it can be characterized in that
the user can freely design the marker by specifying the design by
a 16 × 16 pixel image. The tracking algorithm in ARToolKit first
detects the black frames of the markers from the input image and
calculates the transform matrices from their coordinates. Then,
the transformed image is matched with the registered payload de-
signs. ARTag [5] is an improvement over ARToolKit in terms of
false recognition rate, robustness against nonuniform lighting, jit-
ter and recognition speed. The design of the marker includes 36
bits of cells including error-correcting codes. reacTIVision [11]
is developed as a component of reacTable. They use amoeba-
shaped fiducial markers generated by a genetic algorithm. The
markers are managed in a tree data structure. They tolerate some
noise by traversing this tree structure during recognition.

2.2 Applications of Fiducial Markers
Ferretti et al. proposed a user interface for video stream man-

agement utilizing ARToolKit in Ref. [4]. With this interface, each
configuration of a video stream can be manipulated using a box
with a fiducial marker. By manipulating these boxes like knobs,
the user can layout or resize each video clip. In Ref. [14], fiducial
markers based on ARToolKit are attached to items like container
boxes and pictures to realize a system to aid managing and look-
ing up these items. Mulloni et al. developed a conference guide
system called Signpost based on a Studierstube ES (Embedded
Systems) framework and describe the results of their controlled
user study to compare a map-based guidance system without lo-
calization function to a guidance system with a GPS-like real-
time localization function [15].

2.3 Planar Tracking
Several planar tracking methods are proposed that enable

tracking textured planar objects with any 2D image [3], [9]. In
Ref. [9], by modeling how the shot images degrade when the pla-
nar surface is shot from steep angles, a method is presented that
enables stable tracking even when the planar surface is shot from
a steep angle. In Ref. [3], a method utilizing the Maximally Stable
Extremal Region detector is proposed to accurately track weakly
textured planar objects. These methods for planar tracking re-
quire a higher CPU load compared to tracking simple artificial
markers. In Ref. [3], the authors report that their planar tracking
method has a 20 fps tracking speed when 640 × 480 pixel images
are input. In our method, we aim at a higher tracking speed for
higher-resolution images.

2.4 Connected Component Labeling
Connected Component Labeling (CCL) is the well known tech-

nique for assigning a unique label to each of connected compo-
nents in a given image. It has many applications in image pro-
cessing and various methods have been proposed [1], [7], [10],
[13], [17]. Suzuki et al. proposed a method based on sequential
local operations in the course of a forward raster scan followed by
a backward raster scan [13]. In their paper, they experimentally
show that the execution time of their method is proportional to
the number of the input pixels. Hawick et al. describe a method
for GPGPU computation based on Suzuki’s method [7]. How-
ever, since the original Suzuki method is not intended for GPGPU
computation, this method could require a long execution time on
GPGPU under some conditions. In this paper, we propose a CCL
algorithm suitable for GPGPU computation, where the main CCL
kernel does not have a loop, and the labels propagate exponen-
tially as the kernel is applied to the pixels.

2.5 Subpixel Object Detection
There are several methods for detecting object positions in an

image with subpixel accuracy. Chen et al. proposed a method to
detect X-corner positions on a checkerboard with subpixel accu-
racy for calibration [2]. Grompone et al. proposed a subpixel line
segment detector based on the Hough Transform [6]. However,
since the Hough Transform requires a large amount of computa-
tions, this method is not suitable for our purpose. In this paper, we
propose a method where the approximate positions of the corners
of a marker are detected first, and then the edges of the marker
are analyzed to detect the accurate corner positions based on the
linear regression.

3. Proposed Marker Tracking Method

In this section, we first give a brief explanation of some prop-
erties required for programs to be efficiently executed on GPU.
Then, we briefly describe the specifications of the fiducial marker
used in this paper. After that, we describe the proposed tracking
method utilizing GPGPU computation. We will explain the pro-
posed CCL algorithm in Section 4, and the method for detecting
the 2D positions of the corners of markers with subpixel accuracy
in Section 5.

3.1 Properties Required for GPGPU Programs
GPUs have been primarily used for rendering 3D images. Re-

cently, programmable shaders have been added to the rendering
pipelines to enhance expressiveness. With the programmable
shaders, users can specify rendering methods with shader pro-
grams. GPGPU is the way to use GPUs to perform computa-
tion utilizing the capability of shaders to execute programs [16].
A GPU has multiple thread execution blocks, and each block is
capable of executing many threads in parallel. All threads in a
block execute the same sequence of instructions simultaneously
with different input data. If the instructions contain conditional
branches, both of the branch paths are executed in turn and the
unused results are discarded. Thus, the results of conditional
branches in the threads in a block must be almost identical in
order to make the execution efficient. If the number of itera-
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tions differs in each thread, the execution of the whole block does
not finish until the last thread finishes. Thus, in order to make
a GPGPU program efficient, we need to eliminate conditional
branches whose results depend on the input data. Redesigning
existing applications for a CPU is not a trivial matter. GPGPU
programs are coded in languages like OpenCL or CUDA, and
almost all discrete graphics cards and a large portion of inte-
grated graphics processors for PCs being sold today have capa-
bility for GPGPU execution. Although a large portion of smart-
phones have a capability for GPGPU computation in the hardware
level, GPGPU computation is not possible on smartphones due to
software limitations at this time. We expect this situation to be
improved within a few years.

3.2 Marker Specifications
Figure 1 (a) and (b) show an example of the marker and its

structure, respectively. Markers are composed of square-shaped
cells painted in two distinct colors B and W. We assigned 9 bits
for CRC out of the available 21 bits so that it detects all errors
up to 2 bits and thus false positive detection errors are practically
eliminated.

3.3 Overview of Proposed Tracking Method
The proposed tracking method outputs all 6DOF positions and

payloads of the markers in the given image captured by a cam-
era. The method does not refer to previous images or results, and
it processes each image independently. The method consists of
the GPU processing part and the CPU processing part. The GPU
mainly processes the image, and the CPU mainly performs trans-
formation of coordinates.

(a) Example of Marker (b) Structure of Marker

Fig. 1 Marker used in this paper.

(a) Original image (b) After edge detection and CCL (c) After extracting 8 representative
points

(d) After pose estimation

Fig. 2 Images after each step.

3.4 GPU Processing Part
In the GPU processing part, edge detection is performed on

the input image, and then candidates for the sets of pixels that
represent the outer edge of markers are extracted. Then, 8 rep-
resentative points for each set of the pixels are extracted. Here,
8 representative points are the pixels on the top, top right, right,
bottom right, bottom, bottom left, left, and top left of the pixels.
The GPU processing part consists of the following 3 steps.
Step G1 The Sobel operator and edge thinning are applied to the
original image (Fig. 2 (a)). Then, thresholding and CCL are ap-
plied (Fig. 2 (b)). The details of the CCL algorithm is described
in Section 4. In Fig. 2 (b), each color represents the last few bits
of the labels assigned by CCL.

If thresholding is applied first to the input image, an inappro-
priate way of choosing the threshold may increase the error ratio.
We apply thresholding to the detected edge of the image in order
to avoid this problem.
Step G2 The components with less than 30 pixels of area size
are discarded in this step. This step is composed of two phases.
From the results of Step G1, a unique ID is attached to each com-
ponent. We use this ID as an address in a buffer. We first prepare
a buffer filled by zeroes and perform the atomic inc operation on
the value specified by the address in the buffer for each pixel.
The atomic operations are operations where reading a value from
memory, doing some simple calculation with the value, and writ-
ing the value back to the memory are performed without interfer-
ence from other threads. The atomic inc operation takes a pointer,
and increments the pointed value. The area size for each compo-
nent is assigned to the value in the buffer. In the second phase,
we discard theose components having less than 30 pixels of area
size.
Step G3 8 representative points are calculated for each compo-
nent in this step. The unique ID attached to each component
is used as the address in a buffer to find the minimum coordi-
nates of the x axis, for each component. We first prepare a buffer
filled by zeroes and we perform the atomic min operation on the
value pointed by the address with the x coordinates for each pixel.
The atomic min operation takes a pointer and a value and reads
the value from the pointer, compares it with the given value, and
stores the smaller value to the pointer. As a result, we obtain the
minimum x coordinates for each component. In order to get the
coordinates at the upper-left corner, for example, we find the point
that has the minimum (x + y), where x and y are the coordinates
of each pixel. We obtain the minimum and maximum coordinates
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for 4 directions, i.e., up, upper-left, left, and lower-left.

3.5 CPU Processing Part
The 8 points of a marker image derived by the GPU part re-

dundantly contain the 4 corners of the marker. If the marker is
warped, the 8 points may contain other pixels. In the CPU part,
we first choose the correct 4 corners from the 8 points. Then, we
find the coordinates of the four corners in subpixel accuracy, fol-
lowed by calculating three-dimensional coordinates for each cor-
ner. The CPU processing part consists of the following 5 steps.
Step C1 The coordinates of the four outer corners of the black
frame shown in Fig. 1 (b) are extracted. The 8 representative
points output from Step G3 should contain these points. Some
of the 8 points may be redundant or irrelevant. We first choose
the most distant combination of 2 points from the 8 points, and
we assume that these 2 points are 2 corners of the marker. We
then find the two vectors orthogonal to the line segment between
these two points. The most distant points from the midpoint of
the two points in the direction of the each of two vectors are the
remaining two corners.
Step C2 We discard components that are unlikely to be markers
in this step. First, we discard components that are too flat. Then
we calculate the intersection of the two diagonals of each compo-
nent. This intersection is the center point of the marker, and by
utilizing the property that the center cell is painted in color W, we
discard components that do not meet this condition.
Step C3 The coordinates of the four corners derived in Step C1
have a precision of only 1 pixel. In this step, we find the sub-
pixel coordinates of the four corners. The details are described in
Section 5.
Step C4 3D coordinates are calculated for each corner of the
markers. As shown in Fig. 3, the 3D positions of the camera,
the image, and the marker are determined from the field of view
and the aspect ratio of the camera. We then find the three dimen-
sional positions of the four corners with Newton’s method using
the property that the 3D distances between adjacent corners are
1, and the angles of the corners are 90 degrees. In order to derive
the camera parameters, we used the calibration method described
in Ref. [8] combined with the proposed method described in Sec-
tion 5.
Step C5 From the results of Step C4, we can now calculate the 2D
coordinates of each cell in each marker. The payload and CRC
are read from the image and decoded.

Fig. 3 Find 3D coordinates from 2D coordinates.

4. Connected Components Labeling Algo-
rithm for GPGPU Computation

Connected Component Labeling (CCL) is the well known tech-
nique for assigning a unique label to each of connected compo-
nents in a given image. It has many applications in image pro-
cessing and various methods have been proposed. In Ref. [7],
a CCL algorithm for GPGPU is proposed. However, in some
cases, it takes a long execution time on GPGPU. More specifi-
cally, the number of iterations of the repeat∼until loop in func-
tion Mesh Kernel D Analysis Phase in Algorithm 8 in Ref. [7] is
O (width of input image).

In this paper, we propose a CCL algorithm suitable for GPGPU
computation. In the proposed method, the kernel is applied to
each of the pixels in the frame buffer several times. The ker-
nel does not have a loop, and thus it finishes execution within
a constant number of steps. We will experimentally show that
the label propagates exponentially as the kernel is applied to the
frame buffer. The kernel is designed so that it can be applied to
the pixels in parallel.

The proposed CCL algorithm takes a pointer f b to the frame
buffer as the input. We assume that each element (pixel) of the
frame buffer can store one 32-bit integer value. Each pixel has a
unique address p, and it can be accessed by f b[p]. We assume
that the given image initially stored in the frame buffer is already
thresholded, and if f b[p] is 0, the pixel is in the background color.
Otherwise it is in the foreground color. For the sake of simplicity,
we assume that the pixels in the most perimeter including f b[0]
are in the background color. We will explain the proposed al-
gorithm using the example input image shown in Fig. 4 (a). The
output of the algorithm is shown in Fig. 4 (h), and each pixel in
the foreground color will be substituted with the label, which is
the smallest address of the pixels in the same connected compo-
nent.

Algorithm 1 Preparation for Connected Components Labeling
Input: Pointer to the frame buffer f b, pixel number p.

1: if f b[p] = 0 then

2: f b[p] = 0;

3: else

4: f b[p] = p;

5: end if

The proposed algorithm consists of the preparation part and the
propagation part. The preparation kernel is first applied to all pix-
els once at the initial stage. Then, the propagation kernel will be
applied to all pixels several times. The preparation part is shown
in Algorithm 1, and it is applied to all pixels in parallel. As a
result, the pixels in the foreground color are substituted with the
address of each one (Fig. 4 (b)).

Algorithm 3 is a naive algorithm for the propagation part.
Function CCLSub shown in Algorithm 2 called by Algorithm 3
returns the smallest label stored in the connected adjacent pixels.
By applying Algorithm 3 once to the all pixels, the labels can be
propagated by one pixel as shown in Fig. 4 (c).

Now, we try to improve the propagation speed of Algorithm 3.
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(a) Original (b) After preparation (c) 1st pass (d) 2nd pass

(e) 3rd pass using Alg. 4 (f) 4th pass using Alg. 4 (g) 3rd pass using Alg. 5 (h) 4th pass using Alg. 5

Fig. 4 Transition of pixel value in frame buffer.

Algorithm 2 CCLSub( f b, p)
Input: Pointer to the frame buffer f b, pixel number p.

1: g = f b[p];

2: if g � 0 then

3: s = f b[up(p)];

4: if s � 0 ∧ s < g then

5: g = s;

6: end if

7: s = f b[down(p)];

8: if s � 0 ∧ s < g then

9: g = s;

10: end if

11: s = f b[le f t(p)];

12: if s � 0 ∧ s < g then

13: g = s;

14: end if

15: s = f b[right(p)];

16: if s � 0 ∧ s < g then

17: g = s;

18: end if

19: end if

20: return g;

Algorithm 3 Naive CCL
Input: Pointer to the frame buffer f b, pixel number p.

1: g = CCLS ub( f b, p);

2: if g � 0 then

3: f b[p] = g;

4: end if

Algorithm 4 shows an improved version. Applying it to Fig. 4 (b)
results in Fig. 4 (c), and there is no difference. However, we apply
the algorithm again and we get Fig. 4 (d). By the effect of line 3 in
Algorithm 4, labels are propagated further than 1 pixel. However,
if we apply the algorithm once or twice more, we get the results
shown in Fig. 4 (e) and (f), respectively, and we see that after the
labels are once propagated vertically to the ends, the algorithm

Algorithm 4 Still Slow CCL
Input: Pointer to the frame buffer f b, pixel number p.

1: g = CCLS ub( f b, p);

2: if g � 0 then

3: g = f b[ f b[ f b[ f b[g]]]];

4: f b[p] = g;

5: end if

Algorithm 5 Proposed CCL Algorithm
Input: Pointer to the frame buffer f b, pixel number p.

1: h = f b[p];

2: g = CCLS ub( f b, p);

3: if g � 0 then

4: g = f b[ f b[ f b[ f b[g]]]];

5: atomic{ f b[h] = min( f b[h], g); }
6: atomic{ f b[p] = min( f b[p], g); }
7: end if

propagates labels by only constant pixels.
The proposed CCL algorithm is shown in Algorithm 5, and it

propagates labels fast after labels are propagated vertically to the
ends. Applying this algorithm to Fig. 4 (d) gives (g), we see that
label 11 is propagated to pixel 15, and label 15 is propagated to
pixel 18 by the effect of line 5. In the next application of the ker-
nel, label 11 will propagate to the pixels that have labels 15 or 18
by the effect of line 4 (Fig. 4 (h)). We will experimentally show
that this algorithm propagates labels exponentially in Section 6.3.

5. Subpixel Corner Detection

In this section, we will explain the method for detecting co-
ordinates of the 4 corners of a marker with subpixel accuracy.
The method takes approximate coordinates of the corners as in-
put, and it outputs coordinates with improved accuracy. In this
method, we measure the distance between the calculated edges
from the input coordinates and the real borders of the marker in
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Algorithm 6 Algorithm to Find Subpixel Positions of Edges
Input: Ends A and B of line segment, the number m of distance measure-

ment.

1: sx = 0; sxx = 0; sxy = 0; sy = 0;

2: �r = the unit vector orthogonal to AB;

3: for ( j = 1 ; j <= m ; j + +) (in parallel) do

4: �p0 = A + j
m+1
�AB;

5: sum = 0; summax = −HUGE; argmax = 0;

6: for (i = −n ; i <= n ; i + +) do

7: �p = �p0 + u · i · �r;

8: sum = sum +
(
c(�p) − t

)
;

9: if sum > summax then

10: summax = sum; argmax = i;

11: end if

12: end for

13: d = u · argmax;

14: atomic{ sx = sx + j
m+1 ; }

15: atomic{ sxx = sxx + ( j
m+1 )2; }

16: atomic{ sxy = sxy + d · j
m+1 ; }

17: atomic{ sy = sy + d; }
18: end for

19: det = sxx · m − sx2;

20: a = −sx·sxy+sxx·sy
det ;

21: b = m·sxy−sx·sy
det ;

22: A′ = A + a · �r;

23: B′ = B + (a + b) · �r;

24: return A′, B′;

Fig. 5 Example of marker edge in captured image.

the image. We measure distances at multiple points on the edge,
and apply linear regression to the measured distances to get the
distance between the input corner coordinates and the real border
in the image. We then correct the positions of the 4 edges, and,
by taking the intersections of neighboring edges, we calculate the
accurate corner positions.

5.1 Measuring Distance Between Input Edge and Real Bor-
der

We now explain how to measure the distance between an input
edge and the real border in the image using the example shown in
Fig. 5. Suppose that A and B are the two ends of an edge derived
by Step C1 in Section 3.5. We calculate the distance at multiple
points on the edge with subpixel accuracy. We now explain how
to make measurement at P0. �r is defined as the unit vector or-
thogonal to AB. Pi is defined as Pi = P0 + u · i ·�r. The pixel value
at p interpolated by the bicubic method is denoted by c(p). The
threshold of the pixel is denoted by t, and the number of sampled
points is denoted by n. The value of u and n should be adjusted by
the user, but we use u = 1/8, n = 32 here. We define the distance
d between the edge and the real border by the following equation,

and the measurement can be made by calculating the value d by
this equation.

d = u · arg max
x

⎧⎪⎪⎨⎪⎪⎩
x∑

i=−n

(t − c(Pi)) +
n∑

i=x+1

(c(Pi) − t)

⎫⎪⎪⎬⎪⎪⎭ (1)

We make the same measurements at Q0 and R0.

5.2 Adjusting Edges and Corners by Linear Regression
We now adjust the edges and the corners based on the mea-

sured distances. We denote the distance measured at pk by dk. In
this case, we apply linear regression to the pairs

( |pk A|
|BA| , dk

)
, and

we get a and b such that dk ≈ a + b |pk A|
|BA| . Then, the adjusted ends

A′ and B′ of the edge can be calculated as follows.

A′ = A + a · �r
B′ = B + (a + b) · �r
We apply the above operation to all 4 edges. Then, the ad-

justed corners are calculated by extending the adjusted edges and
finding the intersections of the adjacent edges.

5.3 Parallel Algorithm
We now describe how to efficiently execute the above method

in parallel. First, Eq. (1) can be transformed as follows.

d = u · arg max
x

⎧⎪⎪⎨⎪⎪⎩−
x∑

i=−n

(c(Pi) − t) +
n∑

i=x+1

(c(Pi) − t)

⎫⎪⎪⎬⎪⎪⎭

= u · arg max
x

⎧⎪⎪⎨⎪⎪⎩−
n∑

i=−n

(c(Pi) − t) + 2
n∑

i=x+1

(c(Pi) − t)

⎫⎪⎪⎬⎪⎪⎭

= u · arg max
x

n∑

i=x+1

(c(Pi) − t) (2)

Algorithm 6 shows the proposed parallel algorithm, where the
loop from line 3 to 18 can be executed in parallel. From line 6 to
12, Eq. (2) is calculated and the result is stored in d. From line
14 to line 17, and from line 19 to line 21, the calculations for the
linear regression are performed. This algorithm adjusts only one
edge, and this can be applied to the all edges in parallel.

Although the algorithm can be executed in parallel, we imple-
mented the subpixel corner detection algorithm in a nonparallel
fashion in this paper.

6. Evaluation

In this section, we show the results from evaluating of the pro-
posed method. We first compare the tracking accuracy of the pro-
posed method with ARToolKit. Then, we compare the execution
speed of the two methods. Then, we show some evaluation re-
sults of the proposed connected component labeling algorithm.
Finally, we show the evaluation of detection accuracy by the pro-
posed subpixel corner detection algorithm.

6.1 Tracking Accuracy
In order to measure the accuracy for the two methods, we used

a Microsoft LifeCam Studio Q2F-00008 web camera. Our pre-
liminary experiments revealed that the angle of view of the cam-
era is changed by the autofocus function, and thus we turned off
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(a) Adjusting heights of markers (b) Measurements

Fig. 6 Setting up markers and camera.

the autofocus function and set the focus to infinity.
We used 5 cm × 5 cm markers placed at a height of 1.5 m.

We used a BOSCH DLE40 laser range finder with accuracy of
±1.5 mm to measure the distance during setting up. We set up the
markers and the camera as follows.
(1) We used a string with weight to place the markers and the
camera at the same height. We confirmed that they are placed
exactly by a laser beam (Fig. 6 (a)).
(2) We attached a marker on a cubicle partition, and then we put
marks on the left, right, top and bottom of the marker at the same
distance from the marker. Then, we measure the distance between
the camera and the markers with a laser range finder, and we ad-
justed the camera position so that the distances are equalized.
(3) We took a string with weight and a horizontal laser beam with
the camera, and adjusted the camera so that they become perfectly
vertical and horizontal in the captured image.
(4) We attached markers on the partition at the same height, and
the adjusted their positions based on the distance between the
markers.

We used three different resolutions: 640 × 480 (480 p), 1280 ×
720 (720 p), and 1920 × 1080 (1080 p). We obtained the results
by setting up the camera and markers, starting the applications,
waiting for about 10 seconds until the video stabilizes, and then
taking and processing 1000 frames of video.

We measured the error in distance measurement for each
method. We placed the camera in front of a marker as shown
in Fig. 6 (b), and changed the distance between the marker and
the camera from 150, 250 and 350 cm. We used a marker with
50×50 mm of size. Figure 7 shows the component ratios for dis-
tance measurement errors at video frames. Since only one marker
is captured with the camera, only one marker should be detected
for each video frame. If no marker is detected from a video frame,
this frame is classified into the “false negative” category. If more
than one markers are detected, that frame is classified into the
“false positive” category. For video frames with only one marker
detected, we calculated the difference between the measured dis-
tance and the real distance from the camera to the center of the
marker, and calculated the ratio of the frames in each category
according to the measurement errors to make the graph.

We can see that the proposed method shows significantly bet-
ter results compared to ARToolKit above 720 p. We can clearly
see the subpixel detection method is beneficial to the accuracy of
the method, and that detecting from higher resolution videos are
beneficial in recognizing and measuring distances of markers.

We evaluated the accuracy in measurement of the direction of

Fig. 7 Error in distance measurement.

Fig. 8 Error in angle measurement.

normal vector of a marker. We attached a marker in the same
size as above on a cubicle partition. We placed the camera at 2 m
of distance from the partition, and we directed the camera per-
pendicularly to the partition. Thus, the normal vectors of the all
markers are parallel to the direction of the camera. We changed
the angle between the direction of the camera and the direction of
a marker from 5◦ to 20◦ at 5◦ interval. The results are shown in
Fig. 8. This graph shows the component ratios for angular mea-
surement errors at video frames. Video frames from which no
marker is detected and more than one markers are detected are
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(a) COMPLEX input image (b) SIMPLE input image

Fig. 9 Input images for measuring execution time.

classified into “false negative” and “false positive” categories, re-
spectively. For video frames with only one marker detected, we
calculated the angle between the measured normal vector of the
detected marker and the direction of the camera, and calculated
the ratio of the frames in each category according to the angles
to make the graph. We can see that our method provides bet-
ter results above 720 p. We can see the effectiveness of the sub-
pixel corner detection method and detecting from higher resolu-
tion videos.

6.2 Tracking Speed
We compared the time for the proposed method and ARToolKit

to process one video frame. We implemented the proposed
method using Java SE 7 (64 bit) and OpenCL via JOCL (Java
bindings for OpenCL). We also compared the cases where the
OpenCL kernels and other parts in the proposed method are all
executed on the CPU, and the case where the OpenCL kernels are
executed on the GPU. We used PCs with the following two con-
figurations for the speed evaluation. We used a Logitech HD Pro
Webcam C920 web camera for capturing video, and AMD Ac-
celerated Parallel Processing SDK for executing OpenCL kernels
on the CPU devices.
OLDPC CPU : Intel Core 2 Quad 6600 (2.4 GHz), GPU : nVidia
GeForce GTX 560 Ti, OS : Windows 7 Enterprise (64 bit)
NEWPC CPU : Intel Core i7 3770T (2.5 GHz), GPU : nVidia
GeForce GTX 670, OS : Windows 7 Enterprise (64 bit)

We used the images shown in Fig. 9 (a) and (b) (COMPLEX
and SIMPLE images, hereafter) as input images captured with the
web camera. We placed one corresponding marker in the SIM-
PLE images and three corresponding markers of the same size in
the COMPLEX images for the methods. We measured the time
for detection, excluding the time for capturing images from the
camera and displaying the resulting images. The execution time
was measured using the profiling functions built in the OpenCL
framework, and the System.currentTimeMillis function in Java.
The shown values are averages over 100 frames. The results are
shown in Fig. 10. We can see that the proposed method runs more
than two times as fast as ARToolKit when GPU is used. We mea-
sured the execution time for each part in the proposed method on
the NEWPC. The results are shown in Fig. 11. We can see that
the parts executed on the CPU are not taking excessive execution
time, and the bottleneck is the CCL.

6.3 Connected Component Labeling
We first investigated how many kernel applications are needed

to complete labeling by the proposed method. We used square
images with simple text, spiral patterns and zigzag spiral patterns
as shown in Fig. 12 (a), (b) and (c), respectively. The black and

Fig. 10 Comparison of detection time.

Fig. 11 Execution time of each part.

(a) TEXT (160 × 160
pixels)

(b) SPIRAL (40 × 40
pixels)

(c) ZSPIRAL (40×40
pixels)

Fig. 12 Patterns for evaluating CCL algorithm.

Table 1 Number of kernel applications to finish labeling.

Image size 40 80 160 320 640 1280
TEXT 5 5 5 6 6 7
SPIRAL 6 7 8 9 10 11
ZSPIRAL 7 8 9 10 10 11

white pixels in the figures represent the pixels in the background
and foreground colors, respectively. We varied the pattern sizes
and counted the number of kernel applications until the correct
labeling was derived. When we changed the image size, we mag-
nified or reduced the size of the font according to the image size
for the text pattern, and we changed the number of rotations of
the spiral and zigzag spiral patterns while the width of the pat-
terns were maintained to 1 pixel. The results are shown in Ta-
ble 1. The image sizes in the table show the lengths in pixels of
one side of the square image. We see only a linear increase in the
number of kernel applications when the image size is exponen-
tially increased.

We investigated the execution speed of the CCL algo-
rithms. We specified the three patterns used above with
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Table 2 Time to execute CCL (msec.).

Pattern TEXT SPIRAL ZSPIRAL
Proposed on OLDPC 2.4 9.8 11.9
OpenCV on OLDPC 6.6 94.2 78.4
Proposed on NEWPC 1.5 3.4 3.2
OpenCV on NEWPC 3.6 54.3 42.1

Table 3 Corner detection accuracy (pixel).

Noise intensity
0 2 4 8 16

B
lu

r
ra

di
us

– 0.077 0.077 0.079 0.092 1.2
2 0.069 0.069 0.073 0.26 0.38
4 0.065 0.082 0.13 0.93 1.1
6 0.29 0.30 0.37 0.76 2.1
8 1.1 1.1 1.2 1.5 2.9

1280 × 1280 image size as input, and measured the execu-
tion times on GPU excluding the time for transferring data be-
tween CPU and GPU. We executed Algorithm 1 once and
Algorithm 5 eleven times. As a comparison, we executed
the implementation of the method in Ref. [1] obtained from
http://opencv.willowgarage.com/wiki/cvBlobsLib. We used g++
version 4.6.3 x86 64 with an optimization option –O3 in order
to compile the implementation, and we executed the binary on
Ubuntu 12.04 OS (64 bit) with VirtualBox 4.1.18. Table 2 shows
the result.

We can see that the proposed method is significantly faster
on all patterns. Although the number of kernel applications are
same, we see differences in the execution time for the proposed
method. One explanation for this is the difference in cache hit
ratios.

6.4 Subpixel Corner Detection
We describe the result of applications of the proposed subpixel

corner detection method to synthetic images with blurs and noise.
We specified u = 1/8 and n = 32, and we made measurements at
8 points between A and B.

We used the BufferedImage and Graphics2D classes in Java
SE 6 with the anti-alias option turned on. We generated the input
images as follows. We first made a BufferedImage object with
512 × 512 pixels, and filled it with the color of (205, 205, 205).
We then drew a rotated square 300 pixels on a side at the center
of the buffer with the color of (51, 51, 51). We confirmed that the
corners of the square can be specified by subpixel precision, and
the fractions are reflected on the drawn square. We then applied
a Gaussian Blur filter to the buffer, and then we added noise with
uniform random numbers. We specified this image as the input of
the proposed method, and observed the distances between the de-
tected corners and the specified coordinates of the square. Table 3
shows the average distances of 1,000 trials with different angles
of rotation for the square. Noise intensity in the table represents
the intensity of the added noise, and adding noise of intensity at
in means that we added uniform random numbers within [−in, in]
to each pixel. Blur radius r in the table represents the radii of the
Gaussian Blur filters, and it means that the standard deviation of
the Gaussian distribution is r/3.

The results show that the proposed method can detect corner
coordinates with less than 0.15 pixels of accuracy with up to 4
pixels of the blur radius and up to 4 pixels of noise intensity.

7. Conclusion

We proposed a method for detecting the 3D positions and poses
of traditional fiducial markers in high-resolution images utilizing
GPGPU computation. Our main contributions in this paper are
a fast CCL algorithm for GPGPU and a method to obtain sub-
pixel coordinates of the corners of the markers. Our experiments
showed that our method is faster and more accurate than AR-
ToolKit. We are distributing our implementation at our web site
https://freecode.com/projects/gpumarkertracker.
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