
Augmented パスワード認証方式の Sanity Check について

辛　星漢 † 古原　和邦 †

†産業技術総合研究所セキュアシステム研究部門
305-8568 茨城県つくば市梅園 1-1-1

seonghan.shin@aist.go.jp

あらまし 本稿では IEEE 1363.2 と ISO/IEC 11770-4 に標準化された Augmented パスワード認
証方式の sanity checks について検討する。

On Augmented Password-Authenticated Key Exchange

SeongHan Shin† Kazukuni Kobara†

†Research Institute for Secure Systems, AIST
1-1-1 Umezono, Tsukuba City, Ibaraki 305-8568, JAPAN

seonghan.shin@aist.go.jp

Abstract In this document, we investigate APKAS-AMP in IEEE 1363.2 and KAM3 in
ISO/IEC 11770-4 which require several validity checks on the values, received and computed by
the parties, when using a secure prime.

1 Introduction

The Password-Authenticated Key Exchange
(PAKE) protocols provide password-only au-
thentication and establishment of temporal ses-
sion keys to be used for subsequent crypto-
graphic algorithms. These protocols are de-
signed to be secure against passive/active at-
tacks as well as off-line dictionary attacks on
human-memorable passwords, shared by the
participating parties. For a long time, PAKE
protocols have received much attention because
password authentication is commonly used and
widely deployed in practice. Since the ap-
pearance of Encrypted Key Exchange (EKE)
[1, 2], a number of PAKE protocols (see [10]
and references therein) have been proposed in
the literature. And, some PAKE protocols
have been standardized in IEEE 1363.2 [7],
ISO/IEC 11770-4 [8] and IETF [16].

In general, PAKE protocols can be classified
into ’balanced’ PAKE and ’augmented’ PAKE
[7, 8]: in the former case a client and a server
share a common password; and in the latter
case a client remembers his/her password and
a server has password verification data (de-
rived by applying a one-way function to the
password). Since password verification data
has the same entropy of the password, the off-
line dictionary attacks are inevitable if server
is compromised in the augmented PAKE pro-
tocols. Nonetheless, an augmented PAKE pro-
tocol may be preferable because it provides
extra protection for server compromise. Ac-
tually, there has been a significant amount of
works (e.g., [5, 4]) on making PAKE protocols
secure even in the case of server compromise.

There is an exceptional augmented PAKE
protocol (AMP and its variants [11, 12, 13, 14,

Computer Security Symposium 2013
21 - 23 October 2013

－451－



15]), not based on balanced one. Among AMP
and its variants, AMP2 [13] and AMP+ [12]
have been standardized in IEEE 1363.2 [7] and
ISO/IEC 11770-4 [8], respectively. Though
AMP and its variants do not give any security
proofs (i.e., reduction to a computationally-
hard problem), IEEE P1363.2 working group
has chosen AMP as an augmented PAKE pro-
tocol due to the computational efficiency on
client side (see Annex C.2.5 of IEEE 1363.2
[7]).

1.1 Our Contributions

In this paper, we investigate APKAS-AMP
(based on AMP2 [13] and standardized in IEEE
1363.2 [7]) and KAM3 (based on AMP+ [12]
and standardized in ISO/IEC 11770-4 [8]) which
require several validity checks on the values,
received and computed by the parties, when
using a secure prime p. After showing some at-
tacks on APKAS-AMP and KAM3, we suggest
new sanity checks that are clear and sufficient
to prevent an attacker from doing any possible
attacks (to be discussed in this paper).

1.2 Notation

Here, we explain some notation to be used
throughout this paper. LetG be a finite, cyclic
subgroup of prime order q of the multiplica-
tive group Z?p where p = aq+1 is a prime such
that (a/2) is also a prime [9]. Such p is called
a secure prime. Let g be a generator of G in
which the group operation is denoted multi-
plicatively. The (p, q, g) are public to everyone
and (p, q) are called domain parameters. In
the aftermath, all the subsequent arithmetic
operations are performed in modulo p unless
otherwise stated.

Let k be the security parameter for hash
functions. Let {0, 1}? denote the set of fi-
nite binary strings and {0, 1}k the set of bi-
nary strings of length k. We use two different

hash functions H and H where H : {0, 1}? →
Z?q and H : {0, 1}? → {0, 1}k. Let KCF and
KDF be the key confirmation function and key
derivation function, respectively, both of which
are instantiated with secure one-way hash func-
tions H (see Section 12.3 and 11 of [7]). Also,
let A‖B be the concatenation of bit strings of
A and B in {0, 1}?. Let C and S be the iden-
tities of client and server, respectively, with
each identity ID ∈ {0, 1}?.

2 APKAS-AMP

In this section, we describe APKAS-AMP
(Section 9.5 of IEEE 1363.2 standard [7]) in
detail where APKAS is an acronym for Aug-
mented Password-Authenticated Key Agree-
ment Scheme. For computational efficiency of
APKAS-AMP, it is strongly recommended to
use a secure prime p (defined in Section 1.2).
The APKAS-AMP scheme is actually based
on AMP2 [13], and it consists of registration
phase and key agreement operation phase.

2.1 Registration

In the registration phase, client C registers
his/her password verification data V ≡ gv se-
curely to server S where v = H(pw) and pw is
the client’s password. After this phase, client
C just remembers his/her password pw and
server S stores password verification data V

on its database. Note that this phase is done
only once.

2.2 Key Agreement Operation

Whenever client C and server S need to
share an authenticated session key SK, they
execute the below key agreement operation over
insecure networks. During the key agreement
operation, the APKAS-AMP scheme requires
several validity checks on the values, received

－452－



and computed by the parties.

Step 1: The client C selects a random private
key x from the range [1, q − 1]1 and computes
its public key X ≡ gx. Then, client C sends
the first message (C,X) to server S.

C → S : (C,X)

Step 2: After receiving (C,X), server S checks
whether the client’s public key X is in the par-
ent group or not. If X 6∈ [1, p − 1], it out-
puts ”invalid” and stops (Server validation 1).
Otherwise, server S selects a random private
key y from the range [1, q− 1] and computes a
password-entangled public key Y ≡ (Xu · V )y

where u = H(X‖C‖S) and V is the client’s
password verification data. Then, server S

sends the second message (S, Y ) to client C.

S → C : (S, Y )

Step 3: After receiving (S, Y ), client C checks
whether the server’s public key Y is in a spe-
cific range or not. If Y 6∈ [2, p − 2], it out-
puts ”invalid” and stops (Client validation 1).
Otherwise, client C computes a shared secret
key ZC ≡ Y (x+1)/(x·u+v), where u = H(X‖C‖S)
and v = H(pw), and an authenticator VC =
KCF(1, X, Y, ZC). Then, client C sends the
third message VC to server S.

C → S : VC

Step 4: The server S computes a shared se-
cret key ZS ≡ (X · g)y. If the order of ZS is
unacceptably small, it outputs ”invalid” and
stops (Server validation 2, this will be explained
in Section 3.2). If VC 6= KCF(1, X, Y, ZS), it
outputs ”invalid” and stops (Server validation 3).
Otherwise, server S computes an authentica-
tor VS = KCF(2, X, Y, ZS) and a session key

1Refer to D.5.2.1 of IEEE 1363a-2004 [6] for select-
ing a private key from a uniformly random distribution
over the full range of private keys.

SK = KDF(ZS). Then, server S sends the
fourth message VS to client C.

S → C : VS

Step 5: The client C receives the authenti-
cator VS . If VS 6= KCF(2, X, Y, ZC), it out-
puts ”invalid” and stops (Client validation 2).
Otherwise, client C computes a session key
SK = KDF(ZC).

As in Step 4, server S should first confirm
the client’s proof of knowledge of shared secret
key Z because the client does not provide a
commitment to the password during the key
agreement operation.

3 A New Sanity Check for APKAS-

AMP

Here, we suggest a new sanity check for the
APKAS-AMP scheme. This sanity check is
clear and sufficient to prevent an attacker from
doing any possible attacks (to be discussed in
Section 3.1 and 3.2).

3.1 When X ≡ (p− 1)

If client C inadvertently sends a public key
X ≡ (p− 1) to server S, a passive attackerM
can perform off-line dictionary attacks on the
communication messages (X,Y, VC/S). When
X ≡ (p− 1), a password-entangled public key
Y (computed and sent by server S) and a shared
secret key ZC/S (included in an authenticator
VC/S) will be as follows:

Y ≡ ((p− 1)u · V )y ≡ (−1)u·y · (gv)y

≡
(

(−1)
u·y
v · gy

)v

and

ZC/S ≡ ((p− 1) · g)y ≡ (−1)y · gy .

－453－



Note that X ≡ (p − 1) is a valid value in
the check of Server validation 1. Also, it is
clear that X ≡ (p − 1) exists since the dis-
crete logarithm of X (i.e., x ≡ logg(p − 1) ≡
logg(aq) mod q) is in the range [1, q − 1].

Because the server’s private key y is ran-
domly selected, the attacker M can test if
VC

?= KCF(1, X, Y,±Y 1/v′) for all possible val-
ues (i.e., passwords) v′ = H(pw′). After these
tests, attacker M finally finds out the correct
client’s password pw. Though the probability
of X ≡ (p − 1) is negligible in the security
parameter for G, this attack might be mean-
ingful because it is possible without knowing
the discrete logarithm of X.

A countermeasure to the above attack is clear
in the check of Server validation 1: If X 6∈
[1, p− 2], it outputs ”invalid” and stops. Note
that X ≡ 1 does not exist in the passive at-
tack, and any active attacks are not possible
when X ≡ 1.

3.2 Server Validation 2

In Step 4 of the APKAS-AMP scheme, server
S checks if the order of ZS is unacceptably
small or not (Server validation 2). For that,
IEEE 1363.2 standard [7] explains how and
why one should validate that ZS is not a small
order group element and the meaning of ”un-
acceptably small”. From Appendix D.2.2.1.4
of [7],

”Without this check, an attacker
impersonating client C could choose
a small order element e, send X ≡
e/g to server S, and confine ZS to a
small group, and thus determine the
server’s value for ZS without knowl-
edge of pw.”

and, for the meaning of ”unacceptably small”,
from Appendix D.2.1.5 of [7]

”Some schemes include steps for
verifying that the order of a group el-
ement e is not ”unacceptably small”
in order to defend against small sub-
group attacks. In a small subgroup
confinement attack, an attacker selects
e, modifies e, or causes a party to com-
pute e so that it generates an unac-
ceptably small group, in an attempt
to confine a subsequently-derived se-
cret value Z to a set that is enumer-
able by the attacker.∼However, it may
be sufficient to merely ensure that e is
a generator of any group of b or more
elements, where the implementation
determines security parameter b such
that any e of order less than b is re-
jected. This ensures that an attacker
cannot confine the legitimate party’s
derived secret Z to a set with less than
b elements, thus ensuring that the at-
tacker using a random password pw

has no greater than a 1/b probability
of negotiating shared key Z in each
run.2∼ One way to simplify address-
ing small subgroup confinement is to
choose domain parameters such that
there are no non-trivial factors of (p−
1)/2 smaller than q.”

Now, we clarify the check of Server vali-
dation 2 from the well-known number theory
facts when p is a secure prime.

Fact 1 (Euler’s Theorem) Let n be a pos-
itive integer and α ∈ Z?n. Then, αϕ(n) ≡ 1
where ϕ(·) is Euler’s phi function. In particu-
lar, the multiplicative order of α divides ϕ(n).

As a consequence of Fact 1, we obtain Fermat’t
little theorem that, for every prime p and every
α ∈ Zp, αp ≡ α.

2Essentially, b indicates a desired level of resistance
to on-line dictionary attacks [7].

－454－



Fact 2 Let p be an odd prime and β ∈ Zp.
Then, β2 ≡ 1 if and only if β ≡ ±1.

Proof. It is obvious that, if β ≡ ±1, then β2 ≡
1. Conversely, suppose that β2 ≡ 1 (mod p),
which means that

p | (β2 − 1) = (β − 1)(β + 1) .

Since p is prime, we must have p | (β − 1) or
p | (β + 1). This implies that β ≡ ±1. �
This fact says that the only square roots of
1 are ±1 (mod p), which obviously belong to
distinct residue classes (since p > 2).

From Fact 1 and 2, we have the following
theorem for Server validation 2:

Theorem 1 Let p = 2a′q+ 1 be a prime such
that (a′, q) are also primes and a′ > q > 2. In
Server validation 2, the order (smaller than q)
of ZS is 2 if and only if X ≡ ±g−1.

Proof. By Fact 1 and Fermat’s little theorem,
the multiplicative order (smaller than q) of ZS
is 2 since ZS 6≡ 0, ϕ(p) = 2a′q and a′ > q > 2.
So, we have

(ZS)2 ≡ 1⇐⇒ (X · g)2 ≡ 1⇐⇒ X ≡ ±g−1

where the last congruence is derived from Fact
2. In other words, the order (smaller than q)
of ZS is 2 if and only if X ≡ ±g−1. �
This theorem guarantees that the only unac-
ceptably small order elements ZS of the parent
group Z?p exist when X ≡ ±g−1. Note that
any value ZS , when X 6≡ ±g−1 and X 6≡ 0
(already excluded by Server validation 1), is
either of order a′ or order q.

With Theorem 1, we can simplify the check
of Server validation 2 as follows: IfX ∈ {±g−1},
it outputs ”invalid” and stops.

3.3 In Summary

By combining the results of Section 3.1 and
3.2, we have a new sanity check for the APKAS-
AMP scheme.

Step 1’: Same as Step 1 of Section 2.2

Step 2’: After receiving (C,X), server S checks
whether the client’s public key X is in a spe-
cific range or not. If X 6∈ [1, p−2]\{±g−1}, it
outputs ”invalid” and stops (Server validation 1).
Otherwise, server S selects a random private
key y from the range [1, q− 1] and computes a
password-entangled public key Y ≡ (Xu · V )y

where u = H(X‖C‖S) and V is the client’s
password verification data. Then, server S

sends the second message (S, Y ) to client C.

S → C : (S, Y )

Step 3’: Same as Step 3 of Section 2.2

Step 4’: The server S computes a shared se-
cret key ZS ≡ (X · g)y. If VC 6= KCF(1, X, Y, ZS),
it outputs ”invalid” and stops (Server validation 3).
Otherwise, server S computes an authentica-
tor VS = KCF(2, X, Y, ZS) and a session key
SK = KDF(ZS). Then, server S sends the
fourth message VS to client C.

S → C : VS

Step 5’: Same as Step 5 of Section 2.2

In Step 4’, Server validation 2 is no longer
needed. As said before, the check of X 6∈
[1, p−2]\{±g−1} in Server validation 1 is suffi-
cient to prevent any possible attacks, discussed
in Section 3.1 and 3.2.

4 Key Agreement Mechanism

3

In this section, we describe Key Agreement
Mechanism 3 (Section 6.3 of ISO/IEC 11770-4
[8]) which is different from the APKAS-AMP
scheme in IEEE 1363.2 standard [7]. Note that
ISO/IEC 11770-4 [8] restricts domain param-
eters to a secure prime p = aq + 1 satisfying

－455－



co-factor a = 2r1r2 · · · rt for primes ri > q,
i = 1, 2, · · · , t (optionally, t = 0). The Key
Agreement Mechanism 3 (for short, KAM3) is
actually based on AMP+ [12], and it consists
of registration phase and key agreement oper-
ation phase.3

4.1 Registration

In the registration phase, client C registers
his/her password verification data V ≡ gv se-
curely to server S where v = H(pw) and pw is
the client’s password. After this phase, client
C just remembers his/her password pw and
server S stores password verification data V

on its database. Note that this phase is done
only once.

4.2 Key Agreement Operation

Whenever client C and server S need to
share an authenticated session key SK, they
execute the below key agreement operation over
insecure networks. During the key agreement
operation, the KAM3 requires several validity
checks on the values, received and computed
by the parties.

Step 1: The client C selects a random private
key x from the range [1, q − 1] and computes
its public key X ≡ gx. Then, client C sends
the first message (C,X) to server S.

C → S : (C,X)

Step 2: After receiving (C,X), server S checks
whether the client’s public key X is in the par-
ent group or not. If X 6∈ [1, p − 1], it out-
puts ”invalid” and stops (Server validation 1).
Otherwise, server S selects a random private
key y from the range [1, q− 1] and computes a
password-entangled public key Y ≡ (Xu1 · V )y

3This AMP+ [12] corresponds to AMP [13].

where u1 = H(1‖X) and V is the client’s pass-
word verification data. Also, server S checks
whether the Y is in a specific range or not. If
Y 6∈ [2, p − 2], it outputs ”invalid” and stops
(Server validation 2). Otherwise, server S sends
the second message (S, Y ) to client C.

S → C : (S, Y )

Step 3: After receiving (S, Y ), client C checks
whether the server’s public key Y is in the par-
ent group or not. If Y 6∈ [1, p − 1], it out-
puts ”invalid” and stops (Client validation 1).
Otherwise, client C computes a shared secret
key ZC ≡ Y (x+u2)/(x·u1+v), where u1 = H(1‖X),
u2 = H(2‖X‖Y ) and v = H(pw), and an
authenticator VC = H(1‖X‖Y ‖ZC). Then,
client C sends the third message VC to server
S.

C → S : VC

Step 4: The server S computes a shared se-
cret key ZS ≡ (X · gu2)y where u2 = H(2‖X‖Y ).
If VC 6= H(1‖X‖Y ‖ZS), it outputs ”invalid”
and stops (Server validation 3). Otherwise, server
S computes an authenticator VS = H(2‖X‖Y ‖ZS)
and a session key SK = KDF(ZS). Then,
server S sends the fourth message VS to client
C.

S → C : VS

Step 5: The client C receives the authen-
ticator VS . If VS 6= H(2‖X‖Y ‖ZC), it out-
puts ”invalid” and stops (Client validation 2).
Otherwise, client C computes a session key
SK = KDF(ZC).

Like the APKAS-AMP scheme in Section
2.2, server S should first confirm the client’s
proof of knowledge of shared secret key Z.

The main differences between KAM3 (in ISO/IEC
11770-4 [8]) and APKAS-AMP (in IEEE 1363.2
[7]) are in the computation of shared secret key
ZC/S and some validity checks (i.e., Client val-
idation 1 and Server validation 2).

－456－



5 A New Sanity Check for KAM3

After showing an impersonation/passive at-
tack on the KAM3, we suggest a new sanity
check that is sufficient to prevent any possi-
ble attacks (to be discussed in Section 5.1 and
5.2).

5.1 An Impersonation Attack on KAM3

Here, we show a simple impersonation at-
tack on KAM3 to break semantic security of
session keys and server authentication (defined
in [3]) with probability 1.

Suppose an attacker M who impersonates
server S by sending a public key Y ≡ ±1.
Note that Y ≡ ±1 is a valid value in the check
of Client validation 1. In case of Y ≡ 1, at-
tackerM can compute a correct authenticator
VS and session key SK since ZC/S ≡ 1. In case
of Y ≡ (p − 1), attacker M first finds out d,
satisfying VC = H(1‖X‖Y ‖d) for d ≡ ±1, and
then can compute a correct authenticator VS
and session key SK with ZC/S ≡ d. In both
cases, the attacker M does not need to know
the password pw.

A countermeasure to the above attack is clear
in the check of Client validation 1: If Y 6∈
[2, p − 2], it outputs ”invalid” and stops. At
the same time, Server validation 2 in Step 2 is
no longer needed because Y ≡ ±1 (computed
and sent by server S) does not pass the new
validity check and does not give any informa-
tion about the password pw.

5.2 When X ≡ (p− 1)

Similar to Section 3.1, a passive attack when
X ≡ (p− 1) is also applicable to KAM3.

If client C inadvertently sends a public key
X ≡ (p− 1) to server S, a passive attackerM
can perform off-line dictionary attacks on the
communication messages (X,Y, VC/S). When
X ≡ (p− 1), a password-entangled public key

Y (computed and sent by server S) and a shared
secret key ZC/S (included in an authenticator
VC/S) will be as follows:

Y ≡ ((p− 1)u1 · V )y ≡ (−1)u1·y · (gv)y

≡
(

(−1)
u1·y
v · gy

)v

and

ZC/S ≡ ((p− 1) · gu2)y ≡ (−1)y · gy·u2

where u2 = H(2‖X‖Y ). Note that X ≡ (p−1)
is a valid value in the check of Server valida-
tion 1. Also, it is clear that X ≡ (p − 1) ex-
ists since the discrete logarithm of X is in the
range [1, q − 1].

Because the server’s private key y is ran-
domly selected, the attacker M can test if
VC

?= H(1‖X‖Y ‖±Y u2/v′) for all possible val-
ues (i.e., passwords) v′ = H(pw′). After these
tests, attacker M finally finds out the correct
client’s password pw. Though the probability
of X ≡ (p − 1) is negligible in the security
parameter for G, this attack might be mean-
ingful because it is possible without knowing
the discrete logarithm of X.

A countermeasure to the above attack is clear
in the check of Server validation 1: If X 6∈
[1, p− 2], it outputs ”invalid” and stops. Note
that X ≡ 1 does not exist in the passive at-
tack, and any active attacks are not possible
when X ≡ 1.

5.3 In Summary

By combining the results of Section 5.1 and
5.2, we have a new sanity check for KAM3.

Step 1’: Same as Step 1 of Section 4.2

Step 2’: After receiving (C,X), server S checks
whether the client’s public key X is in a spe-
cific range or not. If X 6∈ [1, p − 2], it out-
puts ”invalid” and stops (Server validation 1).
Otherwise, server S selects a random private

－457－



key y from the range [1, q− 1] and computes a
password-entangled public key Y ≡ (Xu1 · V )y

where u1 = H(1‖X) and V is the client’s pass-
word verification data. Then, server S sends
the second message (S, Y ) to client C.

S → C : (S, Y )

Step 3’: After receiving (S, Y ), client C checks
whether the server’s public key Y is in a spe-
cific range or not. If Y 6∈ [2, p − 2], it out-
puts ”invalid” and stops (Client validation 1).
Otherwise, client C computes a shared secret
key ZC ≡ Y (x+u2)/(x·u1+v), where u1 = H(1‖X),
u2 = H(2‖X‖Y ) and v = H(pw), and an
authenticator VC = H(1‖X‖Y ‖ZC). Then,
client C sends the third message VC to server
S.

C → S : VC

Step 4’: Same as Step 4 of Section 4.2

Step 5’: Same as Step 5 of Section 4.2

As said before, this sanity check is sufficient
to prevent any possible attacks, discussed in
Section 5.1 and 5.2.

参考文献
[1] S. M. Bellovin and M. Merritt, ”Encrypted

Key Exchange: Password-based Protocols Se-
cure against Dictionary Attacks”, In Proc. of
IEEE Symposium on Security and Privacy,
pp. 72-84, IEEE Computer Society, 1992.

[2] S. M. Bellovin and M. Merritt, ”Augmented
Encrypted Key Exchange: A Password-based
Protocol Secure against Dictionary Attacks
and Password File Compromise”, In Proc. of
ACM CCS’93, pp. 244-250, ACM Press, 1993.

[3] M. Bellare, D. Pointcheval, and P. Rog-
away, ”Authenticated Key Exchange Secure
against Dictionary Attacks”, In Proc. of EU-
ROCRYPT 2000, LNCS 1807, pp. 139-155,
Springer-Verlag, 2000.

[4] C. Gentry, P. MacKenzie, and Z. Ramzan, ”A
Method for Making Password-Based Key Ex-
cahnge Resilient to Server Compromise”, In

Proc. of CRYPTO 2006, LNCS 4117, pp. 142-
159, Springer-Verlag, 2006.

[5] Submissions to IEEE P1363.2. Available at
http://grouper.ieee.org/groups/1363/
passwdPK/submissions.html.

[6] IEEE 1363a, ”IEEE Standard Specifications
for Public-Key Cryptography−Amendment 1:
Additional Techniques”, IEEE Std 1363aTM-
2004, IEEE Computer Society, September
2004.

[7] IEEE 1363.2, ”IEEE Standard Specifica-
tions for Password-Based Public-Key Cryp-
tographic Techniques”, IEEE Std 1363.2TM-
2008, IEEE Computer Society, January 2009.

[8] ISO/IEC 11770-4, ”Information
Technology−Security Techniques−Key
Management−Part 4: Mechanisms Based
on Weak Secrets”, International Standard
ISO/IEC 11770-4:2006(E), May 2006.

[9] D. Jablon, ”Password Authentication Using
Multiple Servers”, In Proc. of CT-RSA 2001,
LNCS 2020, pp. 344-360, Springer-Verlag,
2001.

[10] Research Papers on Password-based Cryp-
tography. Available at http://www.jablon.
org/passwordlinks.html.

[11] T. Kwon, ”Ultimate Solution to Authen-
tication via Memorable Password”, IEEE
P1363.2: Password-Based Public-Key Cryp-
tography, May 2000.

[12] T. Kwon, ”Authentication and Key Agree-
ment via Memorable Password”, In Proc.
of Network and Distributed System Security
(NDSS) Symposium, 2001.

[13] T. Kwon, ”Summary of AMP (Authenti-
cation and Key Agreement via Memorable
Passwords)”, IEEE P1363.2: Password-Based
Public-Key Cryptography, August 2003.

[14] T. Kwon, ”Addendum to Summary of AMP”,
IEEE P1363.2: Password-Based Public-Key
Cryptography, November 2003.

[15] T. Kwon, ”Revision of AMP in IEEE P1363.2
and ISO/IEC 11770-4”, IEEE P1363.2:
Password-Based Public-Key Cryptography,
June 2005.

[16] T. Wu, ”The SRP Authentication and Key
Exchange System”, IETF RFC 2945, Septem-
ber 2000.

－458－


